Dave's Math Tables: Derivative Hyperbolics ![]() |
(Math | Calculus | Derivatives | Table Of | Hyperbolics) |
![]() ![]() ![]() ![]() ![]() ![]() |
Given: sinh(x) = ( e^x - e^-x )/2;
cosh(x) = (e^x + e^-x)/2;
( f(x)+g(x) ) =
f(x) +
g(x);
Chain Rule;
( c*f(x) ) = c
f(x).
Solve:
sinh(x)=
( e^x- e^-x )/2 = 1/2
(e^x) -1/2
(e^-x)
= 1/2 e^x + 1/2 e^-x = ( e^x + e^-x )/2 = cosh(x)   Q.E.D
Proof of Given: sinh(x) = ( e^x - e^-x )/2; cosh(x) = (e^x + e^-x)/2;
Proof of Given:
Proof of cosh(x) = sinh(x) : From the derivative of e^x
( f(x)+g(x) ) =
f(x) +
g(x); Chain Rule;
( c*f(x) ) = c
f(x).
Solve:
cosh(x)=
( e^x + e^-x)/2 = 1/2
(e^x) + 1/2
(e^-x)
= 1/2 e^x - 1/2 e^-x = ( e^x - e^-x )/2 = sinh(x) Q.E.D.
tanh(x)= 1 - tan^2(x) : from the derivatives of sinh(x) and cosh(x)
sinh(x) = cosh(x);
cosh(x) = sinh(x); tanh(x) = sinh(x)/cosh(x); Quotient Rule.
Solve:
tanh(x)=
sinh(x)/cosh(x)
= ( cosh(x)
sinh(x) - sinh(x)
cosh(x) ) / cosh^2(x)
= ( cosh(x) cosh(x) - sinh(x) sinh(x) ) / cosh^2(x) = 1 - tanh^2(x) Q.E.D.
csch(x)= -coth(x)csch(x),
sech(x) = -tanh(x)sech(x),
coth(x) = 1 - coth^2(x) : From the derivatives of their reciprocal functions
Given:
sinh(x) = cosh(x);
cosh(x) = sinh(x);
tanh(x) = 1 - tanh^2(x); csch(x) = 1/sinh(x); sech(x) = 1/cosh(x); coth(x) = 1/tanh(x); Quotient Rule.
csch(x)=
1/sinh(x)= ( sinh(x)
1 - 1
sinh(x))/sinh^2(x) = -cosh(x)/sinh^2(x) = -coth(x)csch(x)
sech(x)=
1/cosh(x)= ( cosh(x)
1 - 1
cosh(x))/cosh^2(x) = -sinh(x)/cosh^2(x) = -tanh(x)sech(x)
coth(x)=
1/tanh(x)= ( tanh(x)
1 - 1
tanh(x))/tanh^2(x) = (tanh^2(x) - 1)/tanh^2(x) = 1 - coth^2(x)