Designing Integrated High Quality Linux
Applications

Avi Alkalay

avi at br.ibm.com
avi at unix.sh

Senior IT and Software Architect :: Linux Market Developer
IBM Linux Impact Team ;:_ibm.com/linux

Copyright © 2002 by Avi Alkalay

v2.1, 2002-08-24

Revision History
Revision 2.1 24 Aug 2002 Revised by: avi

Rewrite of the /opt /usr/local section.Cosmetics on graphical user interface and plugins sections.Fixed scree
and programlistings width.

Revision 2.0 07 May 2002 Revised by: avi

Final XML conversion. Files reorganization.

Revision 1.9.9 20 Apr 2002 Revised by: avi
Included other document locations.

Revision 1.98 14 Apr 2002 Revised by: avi

Title changed from "Creating" to "Designing".

Revision 1.97 09 Apr 2002 Revised by: avi
Converted to XML 4.1.2, and started to use real XSLT. Spell checked the english version.
Revision 1.96 23 Mar 2002 Revised by: avi

Better HTML style sheets.

Revision 1.95 17 Mar 2002 Revised by: avi

Last chapter: One Body, Many Souls. Created appendix. Still have to translate some words here and there.
Revision 1.9 16 Mar 2002 Revised by: avi

Added universal software table with FHS.

Revision 1.7 16 Mar 2002 Revised by: avi
Everything is now translated except some words.

Revision 1.3 27 Feb 2002 Revised by: avi

Translated and reviewed the most important section of the article: The /opt and /usr/local section.
Revision 1.2 23 Feb 2002 Revised by: avi

http://ibm.com/linux

English translation at 65%. Doing some corrections to potuguese version also.

Revision 1.1 17 Feb 2002 Revised by: avi
Started english translation.

Revision 1.0 16 Feb 2002 Revised by: avi
First final version of proposed skeleton.

Revision 0.9.6 16 Feb 2002 Revised by: avi
Finished Plugin chapter.

Revision 0.9.5 15 Feb 2002 Revised by: avi
Finished chapter about boot and subsystems.

Revision 0.9.4 14 Feb 2002 Revised by: avi
Finished chapter describing the boot process.

Revision 0.9.3 08 Feb 2002 Revised by: avi
Text and style updates.

Revision 0.9.2 07 Feb 2002 Revised by: avi
Text updates.

Revision 0.9 06 Feb 2002 Revised by: avi

First translation to DocBook.

Designing Integrated High Quality Linux Applications

Table of Contents

O [0 o Yo (U T To] A TP
2. UserFriendly: GUArANtEEA SUCCESS. . .. uuuiiuiiutiuttiaataaataastaataaaesasseaessassesssssssssssssssssssssssssssssssssssssesseeeseees 2
2.1. Embracehelnstall—and=Us@aradigmL...........cceeeiiieiiiiieieieeieceie s eaneaanr e 2
3. The Four Universal Parts of ANy SOftWAIE..........oooiiiiiiiii e, 3
1st:: The Software on itS OWN: the DOAY.uuuuiiiiiiiiiiiiiii e ee e ssssssssesssessseeseesseesseeeeees 4
2nd :: Configuration FileS: the SOUL..........ceviiiiiiiiiiiieeeeeee e 5
G0 I o 01 (=) o1 ST UTRORTRY
2 o 0 [T B 11141 0TS = (oSSR |
3. 1. PraCtiCAIEXAMPDIES. ittt bt e ettt sttt sttt ettt s s st e e s e e s s e e e e e e e eeeereeaeeeaeees 7
3.2. Thelmportanceof ClearSeparatiorBetweenFQUIPArTS............uvuvviiiiiiiiiiiiiiiiieiirevieeeeeeeeeeeeeeeeeeeee 8
3.3.0NEBOAY., MANY SOUISuuuuiiiiiiiiiiiii it ae b easa s e e ssasssbesssssssssssssssssssssssnssnnssnnsnnnnees 10
4. Linux Directory Hierarchy: Oriented to the Software Parts................oooeeeei i, 11
Il S TS 120 1= SO 11
4.2 ExampledJsingthe FEHS. ... 12
4.3. DeveloperDo Not Installin /opt Or JUSIIOCAILccvviviiiiiiiiiiiie e 13
5. Provide Architecture for Extensionsand PIUGINS............cooooiiiii i 15
5.1. AbstractingABOUL PIUGINScooiiiieeeeeeeeee e ————— 15
6. Allways Provide RPM Packagesof Your SOftWareS..........oooooiiiiiiiiii e 16
6.1. SoftwarePackag@VIOAUIANZALIONuuuureiiieiireiiereeeeieeseeeseeeeseeeeeeeeeeeeeeeeeeereeeeeereeareereeraeeaaeeeaeees 16
7. Security: The OMNIPrESENE CONCEPL .. uuuurrrrrerreeireerieeeeeeeereereeeeererettr ettt tttttatttttttttattattaaataaaaaaaaaaaaaaaaaaaaas 17
8. Graphical USErINIEIfACE.coivviiiiiieeeeeee e, 18
8.1. KDE, GNOME , JAVAOE IMIOLIE?. ..ot e ettt e et e et e e e e et e e e e e e e e e e e e e e e annns 18
8.2.WebInterface:Accessrom ANYWHEIE.........ooooiiiiiii e, 18
8.3. WizardsandGraphicallnStallers...........cooooi i 18
9. Starting Your Software Automatically OnBOOL............oooiiiiiiii s 20
9.1. FromBIOS 0 SUDSYSIEMIS......ccoeeiieiiieee e ———— 20
L A U1 LSV TR 2
o TR T N TS T U 1Yo (=10 S OPRPPRRPPPPPP 21
9.4. Turning Your Softwarelnto 8 SUDSYSIEM.........ccoiiiii bbb resseesaeeeees 22
9.5.PackagingYOur BOOLSCIIPL.cuviiiiiiiiiei et 24
A. RedHat, About the FileSYStEMSIIUCIUIE.c.covviiiiiiiiiieeeeee e, 26
Why Sharea COMMON SITUCTUIE?.......coo e 27

B. About this Document

Designing Integrated High Quality Linux Applications

Table of Contents

1. Introduction

Linux is becoming more and more popular, and many Software vendors are porting their products from othe
platformas. This document (article) tries to clarify some issues and give tips on how to create Linux
applications highly integrated to the Operating System, security and easy of use.

The examples run on Red Hat Linux, and should be compatible with other distributions based on Red Hat
(Conectiva, Turbolinux, Caldera, PL.D, Mandrake, etc).

1. Introduction

http://www.redhat.com/
http://www.conectiva.com.br/
http://www.turbolinux.com/
http://www.calderasys.com/
http://www.pld.org.pl/
http://www.mandrakelinux.com/

2. User Friendly: Guaranteed Success

The user—friendly concept is missassociated with a good GUI (graphical user interface). In fact, it is much
more than that. In systems like Linux (with more server-like characteristics), the user measures how easy a
Software is, mainly in the installation and initial configuration. He can even forget how easy were to install
and use a certain product, but it will never forget that a Software package has a complex configuration and
installation process. A migration or new installation allways will be a nightmare, making the user avoid it.

2.1. Embrace the Install-and-Use Paradigm

Imagine you'll install that expansive product your company bought from ACME, and realized you'll have to
do the following:

1. To have a manual that shows the installation process step—by-step. We know that a manual is the Iz
thing the user reads

2.Read some README files

3. Uncompress huge files in your disk (after downloading them from net our CD), to create the
installation environment

4. Read more README files that appeared in the installation environment

5. Comprehend that the installation requires you to execute in a special way some provided script (the
inconvenient ./install.sh)

6. Uncomfortably answer some questions that the script does, like target directory, user for the
installation, etc. To make it worse, it frequently happens in a terminal that has a missconfigured
backspace

7. After the installation, configure some environment variables in your profile, like $PATH, $LIBPATH,
$ACMEPROGRAM_DATA_DIR, $ACMEPROGRAM_BIN_DIR, etc

8. Edit OS files to include the presence of the new product (e.g. /etc/inetd.conf,

/etc/inittab)
9. And the worse: Change security permissions of OS directories and files to let the product run OK

Sounds familiar? Who never faced this sad situation, that inducts the user to make mistakes? If your produc
installation process sound like Uncompress—Copy-Configure—ConfigureMore-Use, like this one, you have «
problem, and the user won't like it.

Users like to feel that your Product integrates well with the OS. You should not demand that the OS adapt
himself to your Product (changing environment variables, etc). It must let the user Install-and-Use.

The Install-And-Use glory is easily achieved using a 3 ingredients receipt:
1. Understanding the Four Universal Parts of Any Software
2. Understanding how they are related to Linux's directory hierarchy
3. Aggressively use a package system, for process automation and leverage first items. In our case is
RPM.

We'll discuss here what are these ingredients and how to implement them.

2. User Friendly: Guaranteed Success 2

3. The Four Universal Parts of Any Software

The file set of any Application Software, graphical, server—side, commercial, open/free, monolithic etc, has
allways four universal parts:

3. The Four Universal Parts of Any Software 3

15! :: The Software on its own: the body

The executables, libraries, static—data files, examples, manuals and documentation, etc. Regular users mus
have read—only access to these files. They are changed only when the system administrator makes an upgr
in this Software.

1st :: The Software on its own: the body 4

2" :: Configuration Files: the soul

These are files that define how the Software will run, how to use the Content, security, performance etc.
Without them, the Software on its own is usually useless.

Depending on your Software, specific privileged users may change these files, to make the Software behav:
as they want.

It is important to provide documentation about the configuration files.

2nd :: Configuration Files: the soul 5

3" - Content

Is what receives all the user attention. Is what the user delegated to be managed by your Product. Is what
makes a user throw away your product and use the competitors', if it gets damaged.

Are the tables of a database system, the documents for a text editor, the images and HTML pages of a
web-server, the servlets and EJBs of an Application Server, etc.

3rd :: Content 6

4™ :: Logs, Dumps etc

Server Software use to generate access logs, trace files problem determination, temporary files etc. Other
types of softwares also use this files, but it is less common.

It is the last class of file, but many times they are the most problem generator for a system administrator,
because their volume can surpass even the content size. Due this fact, it is important for you to think in som

methodology or facility for this issue, while you are in design time.

3.1. Practical Examples

Let's see how universal is this concept analyzing some types of softwares:

Table 1. Universality of 4 Parts

4th :: Logs,

Dumps etc

S L O 1 Configurations Content Logs, Dumps etc
Own
Files that define the Taple files, index files, et(‘For DBs, there are the
: This software use to havg)
directory of the data backup, generated in a
: . whole trees under the same. ;
files. For this type of directory. And manv time idaily basis. And the logs
Data Base|Binaries, libraries{Software, the y: y are used by the DBA tg
. . they need several L .
Server documentations. |remaining . define indexing strategy.
: : filesystems to guarantee | ..
configurations usually|) His local on the system
. : performance. Their local In :
are in special tables . : IS also defined by the
o the system is defined by :)
inside the database. , . Configurations.
they_Configurations.
As a user—oriented
. They show as temporary
Software, its)
: . files that can be huge.
The same, configurations must be , .
: , 'The documents generatefUser can define their
Text templates, modulgput in each user's . :
.) . y the user, and they go |location with a
Processor|file format filters, |SHOME directory, anclb o L X .
. : some place in his $HOMHuser—friendly dialog
etc are files that defines 2
(that saves it in some
standard fonts and , L
. Configuration file)
tabulation, etc.
Each user has a
MP3 Same, audio configuration file in hig..
generator |modular filters $HOME, and containsSIm”ar to Text Editor Similar to Text Editor
bitrate preferences et¢
Files that define the Preciouses access logs,
Content directory, Directories where the vital for Marketing
Web Similar to Data [network and webmaster deposits his |Intelligence, that are
Server Base performance creativity. Again defined |generated in a location
parameters, security, |by the Configurations and format defined by
etc Configurations
e—Malil Similar to Files that define how {dhe preciouses users majMail transfer log, virus
Server Database and |access user databasgpoxes. Again defined by [detection log, etc. Again
Web-Server mail routing rules, etc|the Configurations defined by the

Designing Integrated High Quality Linux Applications

| Configurations

Pay attention that the Software on its Own contains all your product business logic, which could be useless
you hadn't a Configuration to define how to work with a data bundle, provided by the user. So, Configuratior
are what connects your product to the user.

We can use a metaphor about a Sculptor (business logic), that needs Bronze (content) and a Theme or
Inspiration (configuration) from a Mecenas (user), to produce a beautiful work (content). He make annotatiol
in his Journal_(logs) about his day—by-day activities, to report to his Mecenas (user).

3.2. The Importance of Clear Separation Between Four Parts

OK, so let's be more practical. The fact is, if we correctly use the universal parts concept, we greatly improvi
the quality of our Product. We'll do that simply separating, encapsulating, each one of these parts in differen
system directories (having only different files for each part is not sufficient). There is a standard called FHS
that defines the Linux directories for each part, and we'll discuss it later in Section 4.

By now let's see the value of this separation to the user:

1. He gains a clear vision about where is each part, specially his Configurations and Content, and he
feels your Product as something completely under control. The clareza brings ease of use, security
and confidence in your Product. And in practice it permits him manipulate each part independently

2.1t is clear now that, for instance, when backing up, user action is needed only for Configurations and
Content (the puritans will also backup some logs). The user don't have to care about Software on its
Own, because it is safe, original, on the product CD, in his shelf.

3. For upgrades, the new package will overwrite only the business logic, leaving intact the user's
precious Configurations and Content. Here is very important to keep old content and configuration
compatible, or to provide some tools help migration of data

4. The logs being kept in a separate filesystem (obviously suggested in your documentation), avoids th
their exaggerated growth interfere with the Content, or with the stability of the whole system

5. If your Software follows some directory standards, the user don't have to reconfigure his system or
environment to use it. He will simply Install-and-Use.

Let's make some exercise with separation using as example a system called MySoftware, in which the
business logic is in Example 1 and the configuration_is in Example 2.

Example 1. A Shell program referring an external configuration file

#!/bin/sh

HH R R R R R R R R R R R R R R R
Hi

lusr/bin/MySoftware

Hi

Business logic of MyProgram system.

Do not change nothing in this file. All configuration can be

made on /etc/MySoftware.conf

Hi

We'll not support any modifications made here.

Hi

4th :: Logs, Dumps etc 8

http://www.pathname.com/fhs/

Designing Integrated High Quality Linux Applications

Default configuration file
CONF=/etc/MySoftware.conf (1]

Minimal content directories
MIN_CONTENT_PATH=/var/www:/var/MySoftware/www (2]

if [—r "$CONF"]; then
. "$CONF" ©
fi
All the content I'll serve are the "minimal” plus the ones provided

by the user in the configuration file $CONF
CONTENT_PATH=$MIN_CONTENT_PATH:$3CONF_CONTENT_PATH®

Definition of the configuration file name.
Definition of some static parameters.

The configuration is readed from an external file, if exists.

© © © @

After reading the configuration file, all content directories —— user's + product's —— goes together in
the SCONTENT_PATH, that will be used from now on.

Example 2. File containing only the configurations for MySoftware

HHHHHH R H R H R R
H#it

letc/MySoftware.conf

Hit

Configuration parameters for MySoftware.

Change as much as you want.

H#it

Content directory.

A "' separated list of directories for your content.

The directories /var/www and /var/MySofware are already there, so

include here your special directories, if any.
CONF_CONTENT_PATH=/var/NewlInstance:/var/NewInstance2 (1]

Your e—mail address, for notifications.
EMAIL=john@mycompany.com

Logs directory
LOG_DIR=/var/log/myInstance (3]

006
These are user defined parameters.

4th :: Logs, Dumps etc 9

Designing Integrated High Quality Linux Applications
3.3. One Body, Many Souls

When | was a system administrator for IBM e-business Hosting Services, | was fascinated by Apache's
flexibility letting us do things like this:

bash# /usr/sbin/httpd &

bash# /usr/sbin/httpd —f /etc/httpd/dom1.com.br.conf &
bash# /usr/sbin/httpd —f /etc/httpd/dom2.com.br.conf &
bash# /usr/sbin/httpd —f /etc/httpd/dom3.com.br.conf &

If we don't pass any parameter (like the first example), Apache loads its default, hardcoded configuration file
from /etc/httpd/conf/httpd.conf. We built other configs, one for each customer, with a

completely different structure, IP address, loaded modules, content directory, passwords, domains, log
strategy etc.

This same concept is used by a text editor of a multiuser desktop (like Linux). When the code is loaded, it
looks for a configuration file on the user's $HOME, and depending who invoked him (user A or B), it will
appear differently because each user has its own personal configuration.

The obvious conclusion is that the Software's body (business logic) is pure e completely oriented by his
manipulator's spirit_(configuration). But the competitive advantage lays on how easy we switch from one
spirit to another, like in Apache's example. It is very healthy to promote it to your user. You'll be letting him
create intimacy, reliability, confort with your Product.

We used this approach with many different Softwares in that e—business Hosting time, and it was extremely
usefull for maintenance etc. In a version migration we had total control over where were each of its parts, ar
upgraded and downgraded Software with no waste of time, with obvious success.

But there were some Products that refused to work this way. They had so many hardcoded parameters, tha
couldn't see what divided the body from their spirit (or other parts). These Softwares were marked as bad gt
and discarded/replaced as soon as possible.

We concluded that the good guys Softwares were intuitively blessed by their developer's four parts vision.
And they made our life easyer. In fact, in that time we formulated this theory, that continues to prove itself.

Do you want to deploy bad guy or good guy Software?

4th :: Logs, Dumps etc 10

http://httpd.apache.org/

4. Linux Directory Hierarchy: Oriented to the
Software Parts

By now, all discussion are OS independent. On Linux, the Four Software Parts theory is expressed in his
directory structure, which is classified and documented in the Filesystem Hierarchy Standard. The FHS is ps
of the LSB (Linux Standard Base), which makes him a good thing because all the industry is moving
thowards it, and is a constant preoccupation to all distributions. FHS defines in which directories each peace
of Apache, Samba, Mozilla, KDE and your Software must go, and you don't have any other reason to not us
it while thinking in developing your Software, but I'll give you some more:

1. FHS is a standard, and we can't live without standards

2. This is the most basic OS organization, that are related to access levels and security, where users
intuitively find each type of file, etc

3. Makes user's life easyer

This last reason already justifies FHS adoption, so allways use the FHS !!!

More about FHS importance and sharing the same directory structure can be found in Red Hat website.

4.1. FHS Summary

So let's summarize what the FHS has to say about Linux directories:
Linux system directories

{usr/bin
Directory for the executables that are accessed by all users (everybody have this directory in their
$PATH). The main files of your Software will probably be here. You should never create a
subdirectory under this folder.

/bin
Like /usr/bin, but here you'll find only boot process vital executables, that are simple and small.
Your Software (being high—level) probably doesn't have nothing to install here.

fusr/sbin
Like /usr/bin, but contains only the executables that must be accessed by the administrator (root
user). Regular users should never have this directory in their SPATH. If your Software is a daemon,
This is the directory for some of executables.

/sbin
Like /usr/sbin, but only for the boot process vital executables, and that will be accessed by
sysadmin for some system maintaining. Commands like fsck (filesystem check), init (father of all
processes), ifconfig (network configuration), mount, etc can be found here. It is the system's most
vital directory.

fusr/lib
Contains dynamic libraries and support static files for the executables at /usr/bin and
/usr/shin. You can create a subdirectory like /usr/lib/myproduct to contain your helper
files, or dynamic libraries that will be accessed only by your Software, without user intervention. A
subdirectory here can be used as a container for plugins and extensions.

/lib
Like /usr/lib but contains dynamic libraries and support static files needed in the boot process.

4. Linux Directory Hierarchy: Oriented to the Software Parts 11

http://www.pathname.com/fhs/
http://www.linuxbase.org/
http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/ref-guide/ch-filesystem.html

Designing Integrated High Quality Linux Applications

You'll never find an executable at /bin or /sbin that needs a library that is outside this directory.
Kernel modules (device drivers) are under /lib.

letc
Contains configuration files. If your Software uses several files, put them under a subfolder like
/etc/myproduct/

Ivar
The name comes from "variable", because everything that is under this directory changes frequently
and the package system (RPM) doesn't keep control of. Usually /var is mounted over a separate
high—performance partition. In /var/log logfiles grow up. For web content we use /var/www,
and so on.

/home

Contains the user's (real human beings) home directories. Your Software package should never inst
files here (in installation time). If your business logic requires a special UNIX user (not a human
being) to be created, you should assign him a home directory under /var or other place outside
/home. Please, never forget that.

lusr/share/doc, /usr/share/man
The "share" word is used because what is under /usr/share is platform independent, and can be
shared among several machines across a network filesystem. Therefore this is the place for manual
documentations, examples etc.

{usr/local, /opt
These are obsolete folders. When UNIX didn't have a package system (like RPM), sysadmins neede
to separate an optional (or local) Software from the main OS. These were the directories used for ths

You may think is a bad idea to break your Software (as a whole) in many pieces, instead of keeping it all
under a self-contained directory. But a package system (RPM) has a database that manages it all for you ir
very professional way, taking care of configuration files, directories etc. And if you spread your Software
using the FHS, beyond the user friendliness, you'll bring an intuitive way to the sysadmin configure it, and
work better with performance and security.

4.2. Examples Using the FHS

Now that we know where each part of our software must be installed, lets review the Universal Parts Table
applied to the FHS.

Table 2. Same Software, applying FHS

Software on its Own Configurations Content
Data Base /usr/bin/, lusr/lib/, /var/db/instancel/,
Server /usr/share/doc/mydb/, /etc/mydb/ /var/db/instance2/,
/usr/share/doc/mydb/examples/ etc
/usr/bin/, lusr/lib/,
Text /usr/lib/myeditor/plugins/,

Editor /usr/share/myeditor/templates/, $HOME/.myeditor.conf $HOME/Docs/

/usr/share/doc/myeditor/
/usr/bin/, lusr/lib/,

/usr/lib/mymp3/plugins/, $HOME/.mymp3.conf $HOME/Music/
/usr/share/doc/mymp3/

MP3
Generator

4. Linux Directory Hierarchy: Oriented to the Software Parts 12

Designing Integrated High Quality Linux Applications

Web /usr/sbin/, /usr/bin/, /etc/httpd/, fvariwww/,
Server /usr/lib/httpd—-modules/, /etc/httpd/instancel/, /var/www/instancel/,
/usr/share/doc/httpd/, /etc/httpd/instance?2/ /var/www/instance2/

/usr/share/doc/httpd/examples/

/usr/sbin/, /usr/bin/,
/usr/lib/,
/usr/share/doc/mymail/

E-Mail
Server

/etc/mail/,

/etc/mailserver.cf Ivar/mail/

4.3. Developer, Do Not Install in /opt or /usr/local !

If you are a systems administrator, this section is not for you. This is a subject for developers and packagers
to make sysadmin's life easyer.

The /opt and /usr/local directories are used by sysadmins to manualy non—packaged files (without
RPM) of a software, precisely to not loose control over those files. Notice how separated this folder are from
the rest of the system.

A manual installation process (without RPM, or based on simple file copy) is documented in forgoten
document inside a drawer (if it was documented), and inside the head of who made installation. If he moves
another job, that installations becomes obscure to the rest of the team, and is a time bomb.

With_RPM is different. RPM (or any other package system) is an installation "process" by itself. It is
self-documented in his database and pre and post-install actions, which permits total control. Turns
installations independent from who did it, turning installtions in a business process.

Installations based on coping files into /opt or /usr/local are far from providing the organization,
system visibility and control that RPM provides. | can say /opt and /usr/local would be obsoleted when
all softwares become RPMized.

It is very important to Linux evolution and popularization (especially in the desktop battlefield), that
developers stop using this hell directories, and start using the FHS. After reading this section, if you still thin
this folders are good business, please drop me an e-mail.

Products that are entirely installed under one directory, use the self-contained approach, that has several
problems:

1. Forces the user to change environment variables like $PATH and $LD_LIBRARY_PATH to use your
product easily.

2. Puts files in non-standard places, complicating system integration, and future installation of
extensions to your product.

3. The sysadmin probably didn't prepared disk space in these patrtitions, generating problems in
installation time.

4.1t is an accepted approach only for pure graphical application, without the command line concept.
This is why it were well accepted in Windows. But...

5....even using this approach, you can't avoid installing or changing files in standard locations to, for
instance, make your icons appear in the user desktop.

Many developers believe that the "self-contained" approach let them work with several versions of the sam
product, for testing purposes, or whatever. Yes, agree, with this or any good reason in the planet. But
remember that a High Quality Software (or Commercial Grade Software) objective is to be practical for the

4. Linux Directory Hierarchy: Oriented to the Software Parts 13

Designing Integrated High Quality Linux Applications

final user, and not to be easy to their developers and testers. Invite yourself to visit an unexperienced user (
potential customer) and watch him installing your product.

Developer, don't be afraid of spreading your files according to FHS because RPM will keep an eye on them.
If you have a business reason to let the user work with several versions of your Product simultaneously (or

any other reason), make a relocatable package, which is described in the Maximum RPM book. Be also aw:
about the implications of using this feature, described in the same book.

Red Hat and derivated distributions allways use the directory standard, instead of /opt or /usr/local.
Read what Red Hat says about this subject, and think about it.

&) The Makefiles of an OpenSource Software that is portable to other UNICES must have the standard
installation in /usr/local for compatibility reasons. But must also give the option, and induct the
packager, to create the package using FHS specifications.

4. Linux Directory Hierarchy: Oriented to the Software Parts 14

http://www.rpm.org/max-rpm/ch-rpm-reloc.html
http://www.rpm.org/max-rpm/
http://www.rpm.org/max-rpm/s1-rpm-reloc-wrinkles.html

5. Provide Architecture for Extensions and Plugins

You'll probably let other Software vendors plug extensions to your product. Since you are the author of the
initial Software, is your responsability to organize it in such a way that the user can simply install the
extension RPM and use it, without forcing him modify any configuration file. It is again the famous
Install-and-Use that guarantees ease-of-use.

Well, and extension is nothing more that some files in a right format (DLLs that implements the API your
Software defined), put in the right folders (directories your Software looks for extensions).

We can see many applications requesting the user to change configuration files to "declare" the presence o
new plugin. This is a bad approach that must be avoided because makes user's or plugin provider's life harc

The most important thing to consider in your plugin architecture is to not share files between plugins and you
Software. You should provide an architecture where plugins will be able to fully install and uninstall
themselves by simply putting and removing files in specific directories, documented in you Software. Good
candidates are /ust/lib/myproduct/plugins as the plugins directory, and

letc/myproduct/plugins as the plugins configuration files directory. Your Software and plugins must

be sufficient intelligent to know how to find files, specially configurations, in these directories.

Using this approach, no post-install procedures is required from the user, and from the plugin provider.

5.1. Abstracting About Plugins

| would like to close this subject inviting the reader a se abstratir and think about any Software can be treate
as an extension to the lower level Software. In the same way a third party plugin is an extension to your
Software, your Software is also an extension to the OS (lower level). This is where all the Integration (from
the title of this document) magic lives. So we can apply all the ease—of-use concepts we discussed before t
the plugin architecture design of your Software.

5. Provide Architecture for Extensions and Plugins 15

6. Allways Provide RPM Packages of Your
Softwares

This is extremely important for many reasons:

1. Ease-of-use. This is allways the primordial motivation.

2. Automates some tasks that must be made before and after the installation of your Software. Again
bringing ease—-of-use.

3. Intelligently manages configuration files, documentation etc, providing more control in an upgrade

4. Manages interdependencies with other packages and versions, guaranteeing good functionality.

5. Lets you distribute Software with your company's digital signature, and makes integrity checks
(MD5) in each file, guaranteeing precedence, and reporting unwanted file modification.

6. Provides tools to let interact with your graphic installer.

But a good package is not only put together your files in a RPM. FHS must be followed, configuration and
documentation files must be marked as is, and pre— and post-install scripts must be robust, to not let them
damage the system (remember that installation processes is done by root).

Know well RPM because it can bring much power and facilities to you and your user. There are a lot of
documentation available about RPM on the Internet:

» The book Maximum RPM, also available on-line and in printable PostScript format.
« RPM-HOWTO which is smaller and more straight—forward.

* WWW.Ipm.org

6.1. Software Package Modularization

You should give user the option to install only the part of your Software he wants. Imagine your Software ha
a client part and a server part, and both use files and libraries in common. You should break them in 3 RPM
For instance, lets say the name of your product is MyDB, so you'll provide the packages:

1. MyDB-common-1.0-3.i386.rpm
2. MyDB-server-1.0-3.i386.rpm
3. MyDB-client-1.0-3.i386.rpm

and last 2 packages depends on the first. If the user is installing a client profile, he will use:

1. MyDB-common-1.0-3.i386.rpm
2. MyDB-client-1.0-3.i386.rpm

If he is installing a server profile:

1. MyDB-common-1.0-3.i386.rpm
2. MyDB-server-1.0-3.i386.rpm

This approach will help the user save disk space, and be aware of how your Software is organized.

6. Allways Provide RPM Packages of Your Softwares 16

http://www.redhat.com/docs/books/max-rpm/
http://www.rpm.org/max-rpm/
http://www.rpm.org/local/maximum-rpm.ps.gz
http://www.rpm.org/RPM-HOWTO/
http://www.rpm.org/

7. Security: The Omnipresent Concept

From a very general perspective, security is synonym of order, conscience. And insecure is everything that
makes a system stop without the user wish. So besides open network ports, or weak cryptography (that are
beyond the scope of this document), applications that inducts the user to use it only as root, or make him
change files in inappropriate places, is considered insecure. We can say the same for the apps that fills a
filesystem that is vital to the OS.

Many standards appeared from good practices discussed and developed in conjunction for a long time. So
should know and use them when you'll package your software, because they are key for you to achieve a g
organization (security) level.

7. Security: The Omnipresent Concept 17

8. Graphical User Inter