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Abstract

The bez123 package provides for the drawing of linear, cubic, and ratio-
nal quadratic Bezier curves. The multiply package provides a command to
multiply a length without numerical overflow.
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1 Introduction

This document provides the commented source for a LATEX package file that ex-
tends the LATEX facilities for drawing Bezier curves. The package was originally
developed as part of a suite designed for the typesetting of documents according to
the rules for ISO international standards [Wil96]. This manual is typeset accord-
ing to the conventions of the LATEX docstrip utility which enables the automatic
extraction of the LATEX macro source files [GMS94].

Drawing a non-rational quadratic Bezier curve is provided as part of the stan-
dard LATEX system. Section 2 provides the user manual for the new commands
supplied by this package for drawing a variety of Bezier curves. These include
commands for drawing linear and cubic non-rational Bezier curves and rational
quadratic curves.

Section 3 describes the implementation of the package. As a side-effect of the
implementation, a facility is also provided for performing multiplication in TEX
without overflow. This is described in Section 4.

2 Usage

Leslie Lamport provided the means of drawing a quadratic Bezier curve via the
LATEX 2ε \qbezier [Lam94, pp. 125–126] command. This package extends the
Bezier facility by providing commands to draw linear, rational quadratic, and
cubic Bezier curves.

Bezier curves are named after Pierre Bezier who invented them. They are
widely used within Computer Aided Design (CAD) programs and other graph-
ics systems; descriptions can be found in many places, with varying degrees of
mathematical complexity, such as [FP81, Mor85, Far90].

The Bezier curve is a parameterized curve of degree n and can therefore be
specified by (n+ 1) points (i.e., point p0 through pn). Among its other properties,
a Bezier curve of degree n passes through through the points p0 and pn and passes
close to the other defining points. The general equation for a Bezier curve of
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degree n with parameter t is

p(t) = a0 + a1t+ a2t
2 + · · ·+ ant

n (1)

where the coefficients ai depend on the defining points, and traditionally 0 ≤ t ≤ 1.
For a linear (degree 1) curve, the equation is

p(t) = p0 + (p1 − p0)t (2)

By inspection, p(0) = p0 and p(1) = p1.
Rearranging equation (1) slightly we get

p(t)− p0 = (p1 − p0)t (3)

In other words, we can march along the curve from the starting point to the ending
point by evaluating the right hand side of equation (3) for increasing values of the
parameter t.

In order to shorten the equations slightly, and also make them more convenient
to work with numerically, we will use the notation

lpq = pp − pq

Thus, the final form for the linear Bezier curve is

p(t)− p0 = l10t (4)

The command \lbezier[〈N 〉](〈p0 〉)(〈p1 〉) draws a linear Bezier curve with\lbezier

〈N 〉 plotted points from the point 〈p0 〉 (with coordinates 〈x0,y0 〉) to the point
〈p1 〉 (with coordinates 〈x1,y1 〉). 〈N 〉 is an optional argument. If it is either not
given or is given with a value of zero, then the command will calculate the number
of points to be plotted, subject to a maximum number. There must be no spaces
between the arguments to the \lbezier command; this restriction also applies to
the other Bezier drawing commands provided by the bez123 package.

Figure 3 shows an example of a dotted line drawn using the \lbezier com-
mand. The actual code used is:

\lbezier[50](15,30)(30,0)

thus drawing a straight line consisting of 50 points.
The standard LATEX command \qbeziermax sets a maximum limit on the\qbeziermax

number of points used to draw any of the Bezier curves.
The ‘points’ used in drawing the Bezier curves are small squares. The size\thinlines

\thicklines

\linethickness

of these squares are controlled by the standard LATEX \thinlines, \thicklines
and/or \linethickness commands. Consult Lamport [Lam94] for descriptions
of these, and \qbeziermax, commands.

It is convenient to introduce some general properties of Bezier curves at this
point.
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Figure 1: Four sets of points and their convex hulls

• A degree n Bezier curve is defined by (n+1) points which we will label as p0

through pn. The lines joining the points p0, p1, . . . , pn are called the control
polygon. The Bezier curve is parameterized by a variable we will call t, with
0 ≤ t ≤ 1.

• A degree n Bezier curve starts at point p0 and ends at point pn.

• At t = 0 the curve passes through p0 and is tangent to the line l10 = p1−p0.

• At t = 1 the curve passes through pn and is tangent to the line l(n)(n−1) =
pn − p(n−1).

• A non-rational Bezier curve lies within the convex hull1 of the points p0

through pn. For examples of convex hulls see figure 1. Note that the shape
of a convex hull is independant of the ordering of the points.

The equation for cubic Bezier curves is

p(t)− p0 = 3l10t+ 3(l21 − l10)t2 + (l30 − 3l21)t3 (5)

The command \cbezier[〈N 〉](〈p0 〉)(〈p1 〉)(〈p2 〉)(〈p3 〉) draws a cubic Bezier\cbezier

curve, as defined by equation (5), from point 〈p0 〉 to point 〈p3 〉, where 〈p1 〉 and
〈p2 〉 are the intermediate points defining the control polygon.

1The convex hull can be thought of as the shape that a rubber band will take if it is stretched
around pins placed at each point.
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Figure 2: Four sets of points, the cubic Bezier curves and their control polygons.
Left — curves plotted with N = 30; Right — curves plotted with N = 0

Figure 2 shows four such cubic Bezier curves, their defining points and their
control polygons. These are the same points that were used in figure 1 to illustrate
convex hulls. It is easy to verify that a cubic Bezier curve does indeed lie within
the convex hull of its defining points. The curves on the left of the figure were
specified with a value of 30 for the argument 〈N 〉, while those on the right had
no value given for 〈N 〉 and thus were drawn with the number of plotted points
calculated by the drawing algorithm. The actual drawing commands used were:

\cbezier[30](0,0)(10,30)(20,0)(30,30)

\cbezier[30](0,0)(30,0)(0,30)(0,0)

\cbezier(0,0)(30,30)(10,30)(20,0)

\cbezier(0,0)(30,0)(0,30)(10,10)

Note that points are plotted along the curve at equidistant values of the of the
parameter t. However, as the relationship between the actual distance in (x, y)
coordinate space is a non-linear function of t, the seperation between the plotted
points is non-uniform.

The equation for a non-rational quadratic Bezier curve is

p(t)− p0 = 2l10t+ (l20 − 2l10)t2 (6)

Using standard LATEX this can be drawn by the \qbezier command. There is
another form of a quadratic Bezier curve called a rational quadratic Bezier curve.
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Table 1: Conic forms of the rational quadratic Bezier curve
Conic form Weight (W )
Hyperbola ‖W‖ > 1
Parabola ‖W‖ = 1
Ellipse 0 < ‖W‖ < 1
Circle ‖l10‖ = ‖l21‖ and W = cosβ
Straight line W = 0

Its equation is

p(t)− p0 =
2w1l10t+ (w2l20 − 2w1l10)t2

w0 + 2ω10t+ (ω20 − ω10)t2
(7)

where the wi are the weights corresponding to the points pi and ωpq = wp − wq.
The shape of a non-rational curve can be changed by changing the positions of the
defining points. The shape of a rational curve can also be modified by changing the
values of the weights. A rational curve has the same general properties, outlined
above, as a non-rational curve with the exception that the curve may lie outside
the convex hull of the control polygon.

For the purposes at hand, we use a more restricted form of a rational quadratic
Bezier curve, obtained by putting W = w1/w0 and then making w0 = w2 = 1 in
equation (7). Performing these substitutions we end up with

p(t)− p0 =
2Wl10t+ (l20 − 2Wl10)t2

1 + 2(1−W )t+ 2(1−W )t2
(8)

Note that when W = 1, (8) reduces to equation (6) and when W = 0 it effectively
reduces to equation (4).

It turns out that a non-rational quadratic Bezier curve is an arc of a parabola,
which is one of the conic curves. All the other conic curves can be represented by
the rational quadratic Bezier curve described by equation (8) by suitable choices
for the value of W . From now on, we will call W the weight of the rational
quadratic Bezier curve. Table 1 lists the value, or value range, of W for the
various forms of the conic curve.2 For the case of a circle, β is the angle between
the lines l10 = (p1 − p0) and l20 = (p2 − p0), as shown in figure 3.

The command \rqbezier[〈N 〉](〈p0 〉)(〈p1 〉)(〈p2 〉)(〈W 〉) draws a rational\rqbezier

quadratic Bezier curve from 〈p0 〉 to 〈p2 〉 with weight 〈W 〉, according to equa-
tion (8). As in the other Bezier commands, 〈N 〉 is optional and controls the num-
ber of plotted points along the curve. Figure 4 shows several rational quadratic
curves, all with the same control polygon but with differing values for the weight
W . The code is:

\rqbezier[100](15,30)(0,0)(30,0)(4)

\rqbezier[100](15,30)(0,0)(30,0)(2)

\rqbezier(15,30)(0,0)(30,0)(1)

\rqbezier[100](15,30)(0,0)(30,0)(0.75)

2We do not deal with the degenerate cases.
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Figure 4: The effect of weight variation (W ≥ 0) on rational quadratic Bezier
curves (weightscale = 10000 (the default))

\rqbezier[100](15,30)(0,0)(30,0)(0.5)

\rqbezier[100](15,30)(0,0)(30,0)(0.25)

\rqbezier(15,30)(0,0)(30,0)(0)

When W > 1 the curve is pulled toward the point p1. Conversely, when W < 1
the curve is pushed away from the point p1. In all cases, though, the curve starts
and stops at p0 and p2 respectively.

Like the case of the cubic curve, points are plotted at equidistant values of the
parameter t. The relationship between parameter value and coordinate positions
in the rational case are highly non-linear. Thus the distance between the plotted
points can vary quite remarkably. This is an inherent disadvantage with this type
of curve. The user’s remedy is to increase the number of points to be plotted, but
this can lead to TEX running out of memory, not to mention the increased time
to generate the drawing.

Because of the way in which TEX performs arithmetic, and especially division,\setweightscale

\resetweightscale it is necessary to perform some scaling operations on the divisor when evaluat-
ing equation (8). The optimum value for the scaling is a complex function of
the weight and the size and orientation of the control polygon. The algorithm
uses a heuristic approach to calculate a ‘good’ value but is not always successful.
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Figure 5: The effect of weightscale on the drawing of rational quadratic Bezier
curves

The \setweightscale{〈number〉} command can be used to specify a scale factor.
〈number〉 must be a positive integer. The \resetweightscale command resets
the scale factor to its default value, which is currently 10000 (ten thousand).

Figure 5 illustrates the effect on changing the weightscale used for drawing
the same curves as shown in figure 4. Note that the weightscale has no effect
when W = 1 or W = 0 as in these cases the curves are drawn using the algorithms
for the \qbezier and \lbezier commands respectively.

It is obvious that some choices give very poorly formed curves. In other cases
the curves may be poorly formed but do result in interesting cross-stitch like
patterns.

Table 1 indicates that it is possible to draw circular arcs using a rational
quadratic Bezier curves. The two legs of the control polygon define the tangents
to the curve at the end points. Therefore, to draw a circular arc the two legs must
be equal in length. That is, the convex hull is an isosceles triangle. In the special
case when the convex hull forms an equilateral triangle, the required weight (cosβ,
see figure 3) for drawing a circular arc is cosβ = 0.5. Further, for any given control
polygon the the curves drawn with weights of ±W are complementary. That is,
the curve with weight −W is the ‘remainder’ of the curve drawn with weight W .
Thus, we have a simple means of drawing a complete circle, as shown in figure 6.
The plotting commands of interest were:

\lbezier[25](0,0)(15,26)

\lbezier[25](0,0)(30,0)
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Figure 6: Rational quadratics with weights of ±0.5 and an equilateral triangular
convex hull (weightscale = 50000)

\setweightscale{50000}

\rqbezier[100](15,26)(0,0)(30,0)(0.5)

\rqbezier[200](15,26)(0,0)(30,0)(-0.5)

\resetweightscale

where the \lbezier drawing commands were used to draw the dotted outline of
the control polygon.

A more robust picture of the same circle is shown in figure 7 where the complete
circle is pieced together from three non-complementary circular arcs. The drawing
commands of interest were

\rqbezier[100](15,26)(0,0)(30,0)(0.5)

\rqbezier[100](30,0)(60,0)(45,26)(0.5)

\rqbezier[100](45,26)(30,52)(15,26)(0.5)

The astute reader will have realised that the divisor in equation (8) can go
to zero, and can even be negative. This has interesting consequences, both when
trying to do computer arithmetic, and also on the the kind of curve that results.
Essentially, the curve tends to ∞ as W → +0. At W = −0 the curve is at −∞
and then it tends to −0 as W → −∞. We will get a curve point at ∞ whenever
W = −1 and a ‘negative’ curve for W < −1.

This effect is shown in figure 8 which draws the two branches of a hyperbola.
The basic code for the illustration was

\lbezier[25](30,20)(0,10)

\lbezier[25](0,10)(30,0)

\rqbezier[100](30,20)(0,10)(30,0)(2)

9



e

e

e e

e

e

Figure 7: Three rational quadratics with weights of 0.5 (weightscale = 10000)

e
e

e

Figure 8: A rational quadratic that has gone negative; weights of±2 (weightscale
= 10000)
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\rqbezier[100](30,20)(0,10)(30,0)(-2)

where the control polygon was drawn using the \lbezier commands.

3 The bez123 package implementation

LATEX provides a facility for drawing quadratic Bezier curves. This package pro-
vides additional facilities for drawing linear, rational quadratic, and cubic Bezier
curves.

Announce the name and version of the package, which requires LATEX 2ε.
1 〈∗bez〉
2 \NeedsTeXFormat{LaTeX2e}

3 \ProvidesPackage{bez123}[2009/09/02 v1.1b Bezier curves]

The package also requires the multiply package.
4 \RequirePackage{multiply}[2009/09/02]

5 〈/bez〉

3.1 Arithmetic in TEX

All arithmetic in TEX is based on integer arithmetic, with a maximum integer
value of M = 1073741823. For example, 8/3 = 2, 9/3 = 3, and 10/3 = 3. In other
words, division always reduces the absolute value of the dividend, and also possibly
truncates the value. One consequence of this is that the ordering of multiplication
and division is important. For instance, (8 × 3)/3 = 8 but (8/3) × 3 = 6! Thus,
in arithmetic calculations involving both multiplication and division, the dividend
should be maximised and the divisor minimised, with multiplication preceeding
division; also remembering that there is a limit on the size of an integer. To
avoid multiplication overflow when calculating say, a × b, we must ensure that
‖a‖ ≤ ‖M/b‖.

When calculating polynomials, such as that in equation (1), we use a technique
called Horner’s schema, which is also known as nested multiplication. A general
cubic equation, for example, can be written as:

p(t)− a0 = t(a1 + t(a2 + ta3)) (9)

The following pseudo-code shows one way to implement Horner’s schema for plot-
ting N points in the interval 0 ≤ t ≤ 1 of equation (9) using integer arithmetic.

procedure plot_cubic(a0, a1, a2, a3:vector; N:integer);

local p:vector; end_local;

a3 := a3/N;

repeat i := 0 to N by 1;

p := a3*i;

p := p + a2; p := p/N; p := p*i;

p := p + a1; p := p/N; p := p*i;

draw(p + a0);
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end_repeat;

return;

end_procedure;

We use the above algorithm, with suitable modifications according to the degree
of the polynomial, for plotting the points along Bezier curves.

3.2 Linear Bezier curves

6 〈∗bez〉

As a linear curve is simpler than a quadratic curve there is no need to declare
extra variables from those used in the kernel by the \qbezier macro.

\lbezier The user command to draw a linear Bezier curve represented by equation (4). The
form of the command is:
\lbezier[〈N 〉]{(〈p0 〉)(〈p1 〉)
where 〈pN 〉 is the comma seperated X and Y coordinate values of point pN.

7 \newcommand{\lbezier}[2][0]{\@lbez{#1}#2}

\@lbez The drawing macro.
8 \gdef\@lbez#1(#2,#3)(#4,#5){%

9 %%%%\def\lbezier#1(#2,#3)(#4,#5){%

10 \ifnum #1<\@ne

When the number of plotting points are not given, then we calculate how many
are needed. First determine the X distance between the end points.
11 \@ovxx = #4\unitlength

12 \advance\@ovxx by -#2\unitlength

13 \ifdim \@ovxx < \z@

14 \@ovxx = -\@ovxx

15 \fi

Similarly calculate the Y distance.
16 \@ovyy = #5\unitlength

17 \advance\@ovyy by -#3\unitlength

18 \ifdim \@ovyy < \z@

19 \@ovyy = -\@ovyy

20 \fi

Temporarily store the maximum distance in \@multicnt.
21 \ifdim \@ovxx > \@ovyy

22 \@multicnt = \@ovxx

23 \else

24 \@multicnt = \@ovyy

25 \fi

We use a small square as the visual representation of a point. Calculate the number
of points required to give 50% overlap of adjacent squares, making sure that it
doesn’t exceed the limit. Store the result in \@multicnt.
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26 \@ovxx = 0.5\@halfwidth

27 \divide\@multicnt by \@ovxx

28 \ifnum \qbeziermax < \@multicnt

29 \@multicnt = \qbeziermax\relax

30 \fi

31 \else

The number of points is given.
32 \@multicnt = #1\relax

33 \fi

Now we can prepare the constants for the plotting loop.
34 \@tempcnta = \@multicnt

35 \advance\@tempcnta by \@ne

36 \@ovdx = #4\unitlength

37 \advance\@ovdx by -#2\unitlength

38 \divide\@ovdx by \@multicnt

39 \@ovdy = #5\unitlength

40 \advance\@ovdy by -#3\unitlength

41 \divide\@ovdy by \@multicnt

The next bit of code defines the size of the square representing a point.
42 \setbox\@tempboxa\hbox{\vrule \@height\@halfwidth

43 \@depth \@halfwidth

44 \@width \@wholewidth}%

Start the plot at the first point.
45 \put(#2,#3){%

46 \count@ = \z@

47 \@whilenum{\count@ < \@tempcnta}\do

Evaluate the polynomial (simple in this case) using Horner’s schema.
48 {\@xdim = \count@\@ovdx

49 \@ydim = \count@\@ovdy

Plot this point.
50 \raise \@ydim

51 \hb@xt@\z@{\kern\@xdim

52 \unhcopy\@tempboxa\hss}%

53 \advance\count@\@ne}}%

The end of the definition of \@lbez.
54 }

3.3 Cubic Bezier curves

As cubic curves are more complex than quadratic curves we need some extra
variables.

\@wxc

\@wyc

Lengths.
55 \newlength{\@wxc}

56 \newlength{\@wyc}
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\cbezier The user command for drawing a cubic Bezier curve as represented by equation (5).
It is called as:
\cbezier[〈N 〉](〈p0 〉)(〈p1 〉)(〈p2 〉)(〈p3 〉).

57 \newcommand{\cbezier}[2][0]{\@cbez{#1}#2}

\@cbez The drawing macro for cubic Bezier curves.
58 \gdef\@cbez#1(#2,#3)(#4,#5)(#6,#7)(#8,#9){%

59 \ifnum #1<\@ne

We have to calculate the number of plotting points required. We will use the
maximum of the box enclosing the convex hull as a measure. First do the X value,
using \@ovxx to store the maximum X coordinate and \@ovdx the minimum.
60 \@ovxx = #2\unitlength

61 \@ovdx = \@ovxx

62 \@ovdy = #4\unitlength

63 \ifdim \@ovdy > \@ovxx

64 \@ovxx = \@ovdy

65 \fi

66 \ifdim \@ovdy < \@ovdx

67 \@ovdx = \@ovdy

68 \fi

69 \@ovdy = #6\unitlength

70 \ifdim \@ovdy > \@ovxx

71 \@ovxx = \@ovdy

72 \fi

73 \ifdim \@ovdy < \@ovdx

74 \@ovdx = \@ovdy

75 \fi

76 \@ovdy = #8\unitlength

77 \ifdim \@ovdy > \@ovxx

78 \@ovxx = \@ovdy

79 \fi

80 \ifdim \@ovdy < \@ovdx

81 \@ovdx = \@ovdy

82 \fi

Store the maximum X in \@ovxx.
83 \advance\@ovxx by -\@ovdx

Repeat the process for the maximum Y value, finally storing this in \@ovyy.
84 \@ovyy = #3\unitlength

85 \@ovdy = \@ovyy

86 \@ovdx = #5\unitlength

87 \ifdim \@ovdx > \@ovyy

88 \@ovyy = \@ovdx

89 \fi

90 \ifdim \@ovdx < \@ovdy

91 \@ovdy = \@ovdx

92 \fi

93 \@ovdx = #7\unitlength
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94 \ifdim \@ovdx > \@ovyy

95 \@ovyy = \@ovdx

96 \fi

97 \ifdim \@ovdx < \@ovdy

98 \@ovdy = \@ovdx

99 \fi

100 \@ovdx = #9\unitlength

101 \ifdim \@ovdx > \@ovyy

102 \@ovyy = \@ovdx

103 \fi

104 \ifdim \@ovdx < \@ovdy

105 \@ovdy = \@ovdx

106 \fi

107 \advance\@ovyy by -\@ovdy

Temporarily store the max of X and Y in \@multicnt.
108 \ifdim \@ovxx > \@ovyy

109 \@multicnt = \@ovxx

110 \else

111 \@multicnt = \@ovyy

112 \fi

Calculate the number of points required to give 50% overlap, making sure that it
doesn’t exceed the limit. Store the number of points in \@multicnt.

113 \@ovxx = 0.5\@halfwidth

114 \divide\@multicnt by \@ovxx

115 \ifnum \qbeziermax < \@multicnt

116 \@multicnt = \qbeziermax\relax

117 \fi

118 \else

The number of points is given.
119 \@multicnt = #1\relax

120 \fi

Now we can prepare the constants for the plotting loop. First the control
counts.

121 \@tempcnta = \@multicnt

122 \advance\@tempcnta by \@ne

Then the cubic coefficients, firstly for X.
123 \@ovdx = #4\unitlength \advance\@ovdx by -#2\unitlength

124 \@ovxx = #6\unitlength \advance\@ovxx by -\@ovdx

125 \multiply\@ovdx by \thr@@

126 \advance\@ovxx by -#4\unitlength \multiply\@ovxx by \thr@@

127 \@wxc = #4\unitlength \advance\@wxc by -#6\unitlength

128 \multiply\@wxc by \thr@@ \advance\@wxc by #8\unitlength

129 \advance\@wxc by -#2\unitlength \divide\@wxc by \@multicnt

And similarly for Y.
130 \@ovdy = #5\unitlength \advance\@ovdy by -#3\unitlength

131 \@ovyy = #7\unitlength \advance\@ovyy by -\@ovdy
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132 \multiply\@ovdy by \thr@@

133 \advance\@ovyy by -#5\unitlength \multiply\@ovyy by \thr@@

134 \@wyc = #5\unitlength \advance\@wyc by -#7\unitlength

135 \multiply\@wyc by \thr@@ \advance\@wyc by #9\unitlength

136 \advance\@wyc by -#3\unitlength \divide\@wyc by \@multicnt

Set up the plotting box.
137 \setbox\@tempboxa\hbox{\vrule \@height\@halfwidth

138 \@depth \@halfwidth

139 \@width \@wholewidth}%

Start the plot at the first point.
140 \put(#2,#3){%

141 \count@ = \z@

142 \@whilenum{\count@ < \@tempcnta}\do

143 {\@xdim = \count@\@wxc

144 \advance\@xdim by \@ovxx

145 \divide\@xdim by \@multicnt

146 \multiply\@xdim by \count@

147 \advance\@xdim by \@ovdx

148 \divide\@xdim by \@multicnt

149 \multiply\@xdim by \count@

150 \@ydim = \count@\@wyc

151 \advance\@ydim by \@ovyy

152 \divide\@ydim by \@multicnt

153 \multiply\@ydim by \count@

154 \advance\@ydim by \@ovdy

155 \divide\@ydim by \@multicnt

156 \multiply\@ydim by \count@

Plot the point.
157 \raise \@ydim

158 \hb@xt@\z@{\kern\@xdim

159 \unhcopy\@tempboxa\hss}%

160 \advance\count@\@ne}}%

The end of the definition of \@cbez.
161 }

3.4 Quadratic rational Bezier curve

This is the most complex of the Bezier curves that we deal with. We need yet
more variables.

\@ww

\@wwa

\@wwb

\@wwo

\@wwi

Variables for the weight calculations.
162 \newlength{\@ww}

163 \newlength{\@wwa}

164 \newlength{\@wwb}

165 \newlength{\@wwo}

166 \newlength{\@wwi}
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\c@@pntscale Scale factor for points.
167 \newcounter{@pntscale}

\c@weightscale Scale factor for divisor.
168 \newcounter{weightscale}

\botscale Scale factor for bottom weights.
169 \newlength{\botscale}

\setweightscale User level command \setweightscale{〈number〉} for setting the divisor scaling.
170 \newcommand{\setweightscale}[1]{\setcounter{weightscale}{#1}}

\resetweightscale User level command for setting the divisor scaling to its default value (104). We
also ensure that the scaling is set to this value.

171 \newcommand{\resetweightscale}{\setcounter{weightscale}{10000}}

172 \resetweightscale

\rqbezier The user level command for drawing a rational quadratic Bezier curve as repre-
sented by equation (8). The form of the command is
\rqbezier[〈N 〉](〈p0 〉)(〈p1 〉)(〈p2 〉)(〈W 〉)
where the arguments are as per the other Bezier drawing commands, but with the
final argument being the weight.

173 \newcommand{\rqbezier}[2][0]{\@rqbez{#1}#2}

\@rqbez The drawing macro for a rational quadratic Bezier curve. If the weight is such
that the curve is either rational quadratic (W = 1) or linear (W = 0), we use the
simpler drawing macro.

174 \gdef\@rqbez#1(#2,#3)(#4,#5)(#6,#7)(#8){%

175 \@ovxx = #8\unitlength

176 \ifdim\@ovxx = \unitlength

177 \PackageWarning{bez123}{Rational quadratic denerates to quadratic}

178 \qbezier[#1](#2,#3)(#4,#5)(#6,#7)

179 \else

180 \ifdim\@ovxx = \z@

181 \PackageWarning{bez123}{Rational quadratic degenerates to linear}

182 \lbezier[#1](#2,#3)(#6,#7)

183 \else

Calculate the maximum length of the control polygon’s bounding box. Store the
result in \@wwi.

184 \@ovxx = #4\unitlength

185 \advance\@ovxx by -#2\unitlength

186 \ifdim \@ovxx < \z@

187 \@ovxx = -\@ovxx

188 \fi

189 \@ovdx = #6\unitlength

190 \advance\@ovdx by -#4\unitlength

191 \ifdim \@ovdx < \z@
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192 \@ovdx = -\@ovdx

193 \fi

194 \ifdim \@ovxx < \@ovdx

195 \@ovxx = \@ovdx

196 \fi

197 \@ovyy = #5\unitlength

198 \advance\@ovyy by -#3\unitlength

199 \ifdim \@ovyy < \z@

200 \@ovyy = -\@ovyy

201 \fi

202 \@ovdy = #7\unitlength

203 \advance\@ovdy by -#5\unitlength

204 \ifdim \@ovdy < \z@

205 \@ovdy = -\@ovdy

206 \fi

207 \ifdim \@ovyy < \@ovdy

208 \@ovyy = \@ovdy

209 \fi

210 \ifdim \@ovxx > \@ovyy

211 \@multicnt = \@ovxx

212 \else

213 \@multicnt = \@ovyy

214 \fi

215 \@wwi = \@multicnt sp

Now determine the number of points to be plotted.
216 \ifnum #1<\@ne

217 \@ovxx = 0.5\@halfwidth

218 \divide\@multicnt by \@ovxx

219 \ifnum\qbeziermax < \@multicnt

220 \@multicnt = \qbeziermax\relax

221 \fi

222 \else

Number of points is a given.
223 \@multicnt = #1\relax

224 \fi

We are going to plot the curve in two halves in an attempt to reduce roundoff
problems. At a minimum this should at least make a symmetrical curve look
symmetric about its mid point.

225 \@tempcnta = \@multicnt

226 \advance\@tempcnta by \@ne

227 \divide\@tempcnta by \tw@

228 \advance\@tempcnta by \@ne

We now have to deal with a possible multiplication overflow problem due to mul-
tiplication by the weight. In equation (8) the potentially largest term is the coef-
ficient of t2 (i.e., (l20−2Wl10)). The maximum length likely to be encountered is,
say, 10 inches for a drawing on either A4 or US letterpaper. This is approximately
4.8×108sp. Doing a little arithmetic, and remembering that the maximum length
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in TEX is M = 1073741823sp, it means that we must have ‖W‖ ≤ 1 to prevent
overflow. However, a typical range for W is −10 ≤ W ≤ 10. Therefore we might
have to do some scaling. Being pessimistic, we’ll assume that l20 = −l10 and that
l10 is the largest dimension in the drawing. To prevent overflow we then have to
meet the condition ‖W‖ ≤ (M − l20)/2l20, where all lengths are positive. We will
use \c@@pntscale as a scale factor on W to meet this condition. Earlier we set
\@wwi to be the positive value of the largest dimension in the drawing.

Set the distance scale factor. First evaluating the test condition.
229 \@wwo = \maxdimen

230 \advance\@wwo by -\@wwi

231 \divide\@wwo by \tw@

232 \divide\@wwo by \@wwi

Now perform the check and set the scale factor. We have to get a positive integer
value for W as it may be a fraction. Actually, we only need to be concerned if
‖W‖ > 1.

233 \@wwi = 10sp

234 \@wwi = #8\@wwi

235 \ifdim\@wwi < \z@

236 \@wwi = -\@wwi

237 \fi

238 \divide\@wwi by 10\relax

239 \ifdim\@wwi < \@wwo

240 \c@@pntscale = \@ne

241 \else

242 \divide\@wwi by \tw@

243 \ifdim\@wwi < \@wwo

244 \c@@pntscale = \tw@

245 \else

246 \divide\@wwi by \tw@

247 \ifdim\@wwi < \@wwo

248 \c@@pntscale = 4\relax

249 \else

250 \divide\@wwi by \tw@

251 \ifdim\@wwi < \@wwo

252 \c@@pntscale = 8\relax

253 \else

254 \c@@pntscale = 16\relax

255 \fi

256 \fi

257 \fi

258 \fi

Calculate the constants for the top line of the function.
259 \@ovxx = #4\unitlength \advance\@ovxx by -#2\unitlength

260 \multiply\@ovxx by \tw@

261 \divide\@ovxx by \c@@pntscale

262 \@ovdx = #8\@ovxx

263 \@ovxx = #6\unitlength \advance\@ovxx by -#2\unitlength

264 \divide\@ovxx by \c@@pntscale
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265 \advance\@ovxx by -\@ovdx

266 \divide\@ovxx by \@multicnt

267 \@ovyy = #5\unitlength \advance\@ovyy by -#3\unitlength

268 \multiply\@ovyy by \tw@

269 \divide\@ovyy by \c@@pntscale

270 \@ovdy = #8\@ovyy

271 \@ovyy = #7\unitlength \advance\@ovyy by -#3\unitlength

272 \divide\@ovyy by \c@@pntscale

273 \advance\@ovyy by -\@ovdy

274 \divide\@ovyy by \@multicnt

Now the constants for the bottom line. We also need to do some scaling here.
This scaling can be set by the user.

275 \setlength{\botscale}{\c@weightscale sp}

276 \@wwo = \botscale

277 \@wwi = #8\@wwo

278 \@wwa = \@wwo \advance\@wwa by -\@wwi

279 \multiply\@wwa by \tw@

280 \@wwb = \@wwa

281 \divide\@wwb by \@multicnt

Prepare for the drawing.
282 \@wwi = \botscale

283 \setbox\@tempboxa\hbox{\vrule \@height\@halfwidth

284 \@depth \@halfwidth

285 \@width \@wholewidth}%

Draw the first half of the curve.
286 \put(#2,#3){%

287 \count@ = \z@

288 \@whilenum{\count@ < \@tempcnta}\do

289 {\@xdim = \count@\@ovxx

290 \advance\@xdim by \@ovdx

291 \divide\@xdim by \@multicnt

292 \multiply\@xdim by \count@

293 \@ydim = \count@\@ovyy

294 \advance\@ydim by \@ovdy

295 \divide\@ydim by \@multicnt

296 \multiply\@ydim by \count@

297 \@ww = \count@\@wwb

298 \advance\@ww by -\@wwa

299 \divide\@ww by \@multicnt

300 \multiply\@ww by \count@

301 \advance\@ww by \@wwo

302 \divide\@ww by \c@@pntscale

303 \ifdim\@ww = \z@

We are about to divide by \@ww which is zero. Treat \@ww as unity.
304 \else

305 \divide\@xdim by \@ww

306 \divide\@ydim by \@ww

307 \fi
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For reasons I don’t understand, the % signs at the end of the next few lines are
important!

308 \multnooverflow{\@xdim}{\botscale}%

309 \multnooverflow{\@ydim}{\botscale}%

310 \raise \@ydim

311 \hb@xt@\z@{\kern\@xdim

312 \unhcopy\@tempboxa\hss}%

313 \advance\count@\@ne}}

We now repeat the above process for plotting the second half of the curve,
starting at the end point.

Calculate the constants for the top line of the function.
314 \@ovxx = #4\unitlength \advance\@ovxx by -#6\unitlength

315 \multiply\@ovxx by \tw@

316 \divide\@ovxx by \c@@pntscale

317 \@ovdx = #8\@ovxx

318 \@ovxx = #2\unitlength \advance\@ovxx by -#6\unitlength

319 \divide\@ovxx by \c@@pntscale

320 \advance\@ovxx by -\@ovdx

321 \divide\@ovxx by \@multicnt

322 \@ovyy = #5\unitlength \advance\@ovyy by -#7\unitlength

323 \multiply\@ovyy by \tw@

324 \divide\@ovyy by \c@@pntscale

325 \@ovdy = #8\@ovyy

326 \@ovyy = #3\unitlength \advance\@ovyy by -#7\unitlength

327 \divide\@ovyy by \c@@pntscale

328 \advance\@ovyy by -\@ovdy

329 \divide\@ovyy by \@multicnt

The constants for the bottom line are the same as before as the function is sym-
metric. Similarly we don’t need to recalculate the size of the rule box.

Draw the second half of the curve.
330 \put(#6,#7){%

331 \count@ = \z@

332 \@whilenum{\count@ < \@tempcnta}\do

333 {\@xdim = \count@\@ovxx

334 \advance\@xdim by \@ovdx

335 \divide\@xdim by \@multicnt

336 \multiply\@xdim by \count@

337 \@ydim = \count@\@ovyy

338 \advance\@ydim by \@ovdy

339 \divide\@ydim by \@multicnt

340 \multiply\@ydim by \count@

341 \@ww = \count@\@wwb

342 \advance\@ww by -\@wwa

343 \divide\@ww by \@multicnt

344 \multiply\@ww by \count@

345 \advance\@ww by \@wwo

346 \divide\@ww by \c@@pntscale

347 \ifnum\@ww = \z@
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We are about to divide by \@ww which is zero. Treat \@ww as unity.
348 \else

349 \divide\@xdim by \@ww

350 \divide\@ydim by \@ww

351 \fi

For reasons I don’t understand, the % signs at the end of the next few lines are
important!

352 \multnooverflow{\@xdim}{\botscale}%

353 \multnooverflow{\@ydim}{\botscale}%

354 \raise \@ydim

355 \hb@xt@\z@{\kern\@xdim

356 \unhcopy\@tempboxa\hss}%

357 \advance\count@\@ne}}

End of definition of \@rqbez.
358 \fi\fi}

The end of this package.
359 〈/bez〉

4 Multiplication without overflow: The multiply
package

TEX provides for integer arithmetic, subject to an upper limit given by \maxdim.
For at least the bez123 package we need to be able to multiply without overflow.

Announce the name of the package.
360 〈∗mult〉
361 \ProvidesPackage{multiply}[1998/10/14 v1.1 Multiplication of lengths without overflow]

\n@fl@wa

\n@fl@wb

\n@fl@wc

\ifch@nge

We need three length variables for this function. We also need a boolean flag for
dealing with negative numbers.

362 \newlength{\n@fl@wa}

363 \newlength{\n@fl@wb}

364 \newlength{\n@fl@wc}

365 \newif\ifch@nge

\multnooverflow The routine \multnooverflow{〈a〉}{〈b〉} sets a to the minimum of ab and
\maxdimen, preserving signs. 〈a〉 must be a length; it must not be a number
literal.

366 \newcommand{\multnooverflow}[2]{%

367 \n@fl@wa = #1\relax%

368 \n@fl@wb = #2\relax%

369 \ch@ngefalse%

Easy if −1 ≤ b ≤ 1.
370 \ifnum\n@fl@wb = \@ne%
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371 \else%

372 \ifnum\n@fl@wb = \z@%

373 \n@fl@wa = \z@%

374 \else%

375 \ifnum\n@fl@wb = \m@ne%

376 \ch@ngetrue%

377 \else%

Also easy if −1 ≤ a ≤ 1.
378 \ifnum\n@fl@wa = \z@%

379 \else%

380 \ifnum\n@fl@wa = \@ne%

381 \n@fl@wa = \n@fl@wb%

382 \else%

383 \ifnum\n@fl@wa = \m@ne%

384 \n@fl@wa = -\n@fl@wb%

385 \else%

We have to check for potential overflow. First make sure that we deal only with
positive values.

386 \ifnum\n@fl@wa < \z@%

387 \ch@ngetrue%

388 \n@fl@wa = -\n@fl@wa%

389 \fi%

390 \ifnum\n@fl@wb < \z@%

391 \n@fl@wb = -\n@fl@wb%

392 \ifch@nge%

393 \ch@ngefalse%

394 \else%

395 \ch@ngetrue%

396 \fi%

397 \fi%

Check for overflow.
398 \n@fl@wc = \maxdimen%

399 \divide\n@fl@wc by \n@fl@wb%

400 \advance\n@fl@wc by -1sp% \m@ne

401 \ifnum\n@fl@wa > \n@fl@wc%

We have overflow. Set the multiplication result to \maxdimen.
402 \n@fl@wa = \maxdimen%

403 \PackageWarning{multiply}{Multiplication overflow}%

404 \else%

It is safe to do the multiplication.
405 \multiply\n@fl@wa by \n@fl@wb%

406 \fi%

407 \fi%

408 \fi%

409 \fi%

410 \fi%

411 \fi%
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412 \fi%

The result of ab is in \n@fl@wa. Adjust the sign if necessary.
413 \ifch@nge%

414 \n@fl@wa = -\n@fl@wa%

415 \fi%

Return the result in the first argument variable.
416 #1 = \n@fl@wa%

417 }

The end of this package.
418 〈/mult〉
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