
FAQ SiteMap Directives Modules Search

Apache HTTP Server Version 1.3

Release Notes

New Features in Version 1.3

Upgrading to Version 1.3

Apache License

Reference Manual

Compiling and Installing

Starting

Stopping or Restarting

Run-time Configuration Directives

Modules: By Type or Alphabetical

Server and Supporting Programs

Dynamic Shared Object (DSO) Support

The Apache API

Platform Specific Notes

Microsoft Windows | Cygwin

Novell Netware 5

HP MPE/iX

UnixWare

TPF

Using the Apache HTTP Server

Authentication, Authorization, and Access Control

CGI: Dynamic Content with CGI

Configuration Files

Content negotiation

Environment Variables

General Performance hints

Handlers

Log Files

Security tips

Server Side Includes

Server-Wide Configuration

suexec: Using SetUserID Execution for CGI

URL Mapping: Mapping URLs to the Filesystem

URL Rewriting Guide

Virtual Hosts

Other Topics

Frequently Asked Questions

SiteMap

Tutorials

Other Notes

Maintained by the Apache HTTP Server Documentation Project.

Apache HTTP Server Version 1.3 Documentation

http://httpd.apache.org/docs/index.html (1 of 2) [12/05/2001 4:48:08 PM]

http://httpd.apache.org/docs/sitemap.html
http://httpd.apache.org/docs/mod/
http://www.apache.org/search.html
http://httpd.apache.org/docs/LICENSE
http://httpd.apache.org/docs/programs/
http://httpd.apache.org/docs/sitemap.html
http://httpd.apache.org/docs/misc/
http://httpd.apache.org/docs-project/

Apache HTTP Server

Apache HTTP Server Version 1.3 Documentation

http://httpd.apache.org/docs/index.html (2 of 2) [12/05/2001 4:48:08 PM]

Apache HTTP Server

Site Map

Apache HTTP Server Version 1.3 Documentation

Release Notes

Upgrading to 1.3 from 1.2■

New features with Apache 1.3■

❍

Using the Apache HTTP Server

Compiling and Installing Apache■

Starting Apache■

Stopping and Restarting Apache■

Configuration Files■

How Directory, Location and Files sections work■

Server-Wide Configuration■

Log Files■

Mapping URLs to Filesystem Locations■

Security Tips■

Dynamic Shared Object (DSO) support■

Apache Content Negotiation■

Custom error responses■

Setting which addresses and ports Apache uses■

Environment Variables in Apache■

Apache's Handler Use■

suEXEC Support■

Performance Hints■

URL Rewriting Guide■

❍

Apache Virtual Host documentation

Name-based Virtual Hosts■

IP-based Virtual Host Support■

Dynamically configured mass virtual hosting■

VirtualHost Examples■

An In-Depth Discussion of Virtual Host Matching■

File Descriptor Limits with Virtual Hosts■

Issues Regarding DNS and Apache■

❍

Apache Server Frequently Asked Questions❍

●

Site Map

http://httpd.apache.org/docs/sitemap.html (1 of 4) [12/05/2001 4:48:07 PM]

Guides, Tutorials, and HowTos

Authentication, Authorization, and Access Control■

Apache Tutorial: Dynamic Content with CGI■

Apache Tutorial: Introduction to Server Side Includes■

HOWTO documentation■

Apache Tutorials■

❍

Platform-specific Notes

Using Apache with Microsoft Windows■

Compiling Apache for Microsoft Windows■

Running Apache for Windows as a Service■

Using Apache with Cygwin■

The Apache EBCDIC Port■

The Apache TPF Port■

Installing Apache on TPF■

Using Apache with HP MPE/iX■

Using Apache with Novell NetWare■

Compiling Apache under UnixWare■

Running a High-Performance Web Server for BSD■

Performance Tuning Tips for Digital Unix■

Running a High-Performance Web Server on HPUX■

Hints on Running a High-Performance Web Server■

❍

Apache HTTP Server and Supporting Programs

Manual Page: httpd - Apache HTTP Server■

Manual Page: apxs - Apache HTTP Server■

Manual Page: ab - Apache HTTP Server■

Manual Page: apachectl - Apache HTTP Server■

Manual Page: dbmmanage - Apache HTTP Server■

Manual Page: htdigest - Apache HTTP Server■

Manual Page: htpasswd - Apache HTTP Server■

Manual Page: logresolve - Apache HTTP Server■

Manual Page: rotatelogs - Apache HTTP Server■

Manual Page: suexec - Apache HTTP Server■

Other Programs - Apache HTTP Server■

❍

Apache modules

Apache modules - By Type■

Apache directives■

Definitions of terms used to describe Apache directives■

Definitions of terms used to describe Apache modules■

Apache Core Features■

❍

Site Map

http://httpd.apache.org/docs/sitemap.html (2 of 4) [12/05/2001 4:48:07 PM]

Apache module mod_access■

Apache module mod_actions■

Apache module mod_alias■

Apache module mod_asis■

Apache module mod_auth■

Apache module mod_auth_anon.c■

Apache module mod_auth_db■

Apache module mod_auth_dbm■

Apache module mod_auth_digest■

Apache module mod_autoindex■

Apache module mod_cern_meta■

Apache module mod_cgi■

Apache module mod_digest■

Apache module mod_dir■

Apache module mod_env■

Apache module mod_example■

Apache module mod_expires■

Apache module mod_headers■

Apache module mod_imap■

Apache module mod_include■

Apache module mod_info■

Apache module mod_isapi■

Apache module mod_log_agent■

Apache module mod_log_config■

Apache module mod_log_referer■

Apache module mod_mime■

Apache module mod_mime_magic■

Apache module mod_mmap_static■

Apache module mod_negotiation■

Apache module mod_proxy■

Apache module mod_rewrite■

Apache module mod_setenvif■

Apache module mod_so■

Apache module mod_speling■

Apache module mod_status■

Apache module mod_unique_id■

Apache module mod_userdir■

Apache module mod_usertrack■

Apache module mod_vhost_alias■

Site Map

http://httpd.apache.org/docs/sitemap.html (3 of 4) [12/05/2001 4:48:07 PM]

Apache API notes❍

Older Documentation

PATH_INFO Changes in the CGI Environment■

Apache Keep-Alive Support■

Apache Multiple Log Files■

Server Pool Management■

Source Re-organisation■

Notes about Compatibility with NCSA's Server■

International Customized Server Error Messages■

Descriptors and Apache■

Connections in FIN_WAIT_2 and Apache■

Known Client Problems■

Why We Took PEM Out of Apache■

Configuring Multiple IP Addresses■

MS Windows Netscape 3.0b4 KeepAlive problem solved■

Reading Client Input in Apache 1.2■

❍

Apache HTTP Server

Site Map

http://httpd.apache.org/docs/sitemap.html (4 of 4) [12/05/2001 4:48:07 PM]

/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing Applications,
 * University of Illinois, Urbana-Champaign.
 */

http://www.apache.org/LICENSE.txt

http://www.apache.org/LICENSE.txt [12/05/2001 4:56:27 PM]

Apache HTTP Server

Upgrading to 1.3 from 1.2

In order to assist folks upgrading we are now going to maintain a document describing information critical to existing Apache users.
Note that it only lists differences between recent major releases, so for example, folks using Apache 1.1 or earlier will have to figure
out what changed up to Apache 1.2 before this document can be considered relevant. Old users could look at the src/CHANGES
file which tracks code changes.

These are intended to be brief notes, and you should be able to find more information in either the New Features document, or in the
src/CHANGES file.

Compile-Time Configuration Changes

The source code has been reorganized, which affects anyone with custom modules or modifications. But also, the Module
directive has been changed to the AddModule directive.

●

The Configuration variable EXTRA_LFLAGS has been renamed EXTRA_LDFLAGS.●

The -DMAXIMUM_DNS definition has been obsoleted by changes to mod_access enforcing double-reverse DNS lookups
when necessary.

●

The -DSERVER_SUBVERSION=\"string\" compile-time option has been replaced with the run-time API call
ap_add_version_component(). Compile-time modification of the server identity by the configuration scripts is no
longer supported.

●

mod_dir has been split into two pieces mod_autoindex, and mod_dir.●

mod_browser has been replaced by mod_setenvif.●

IRIX systems with untrusted users who can write CGIs which execute as the same uid as httpd should consider using
suexec, or adding -DUSE_FCNTL_SERIALIZED_ACCEPT to EXTRA_CFLAGS. This is slower, more information is
available on the performance tuning page. There is a mild denial of service attack possible with the default config, but the
default config is an order of magnitude faster.

●

mod_auth_msql has been removed from the distribution.●

The new Apache Autoconf-style Interface (APACI) was added to the top-level to provide a real out-of-the-box build and
installation procedure for the complete Apache package.

●

Run-Time Configuration Changes

There have been numerous changes to the default config files. Ensure that you compare your existing configuration files
with the new ones to ensure there aren't any undesired differences. In particular:

As of Apache 1.3.0, the current config files apply different Options and AllowOverride settings to various
directories than were used in 1.2.

❍

As of the release following Apache 1.3.3, the three config file templates have been merged into httpd.conf-dist and
the order of the directives changed.

❍

●

As of 1.3.2, mod_expires will add Expires headers to content that does not come from a file on disk, unless you are
using a modification time based setting. Previously, it would never add an Expires header unless content came from a file
on disk. This could result in Expires headers being added in places where they were not previously added.

●

Standalone FancyIndexing directives are now combined with the settings of any IndexOptions directive already in effect,
rather than replacing them.

●

AuthName strings will need to be quoted in .htaccess or server configuration files if they contain blank characters (like●

Upgrading to 1.3 from 1.2

http://httpd.apache.org/docs/upgrading_to_1_3.html (1 of 3) [12/05/2001 4:48:09 PM]

http://httpd.apache.org/docs/mod/mod_browser.html

spaces). For example, if you use an AuthName directive like this:

 AuthName This and That

you will need to change it to

 AuthName "This and That"

This change was made for consistency in the config language.

As of Apache 1.3.1, methods listed in <Limit> directives must be uppercase. Method names, such as GET, POST, and
PUT are defined as being case-sensitive. That is, a GET request is different from a get request. Prior to Apache 1.3.1, the
<Limit> directive parser incorrectly treated both of these as being the same. Apache's built-in method limit processing
currently only understands uppercase method names, so if you've used clauses such as "<Limit Get post>" in your
configuration files, you need to correct them to use uppercase names.

Unrecognized method names in the server configuration files will result in the server logging an error message and failing
to start. In .htaccess files, unknown methods will cause the server to log an error to its error log and return an 'Internal
Server Error' page to the client.

●

The default Apache ServerRoot directory changed from the NCSA-compatible /usr/local/etc/httpd/ to /usr/local/apache/.
This change covers only the default setting (and the documentation); it is of course possible to override it using the -d
ServerRoot and -f httpd.conf switches when starting apache.

●

Folks using HTTP/1.1-style virtual hosting will need to list the ip:port pairs that are supposed to have HTTP/1.1-style
virtual hosting via the NameVirtualHost directive (one directive per pair). Previously this support was given implicitly
on the "main server address". Now it has to be explicitly listed so as to avoid many problems that users had. Please see the
Apache Virtual Host documentation for further details on configuration.

●

The precedence of virtual hosts has been reversed (applies mainly to vhosts using HTTP/1.1 Host: headers, and the
ServerPath directive). Now the earlier vhosts in the file have precedence over the later vhosts.

●

HostnameLookups defaults to Off.●

REMOTE_HOST CGI variable changed. In Apache 1.2 and earlier, the REMOTE_HOST environment variable made
available to CGI scripts was set to either the full DNS name of the client, or else to the client's IP address if the name was
not known. This behavior differed from that specified by the CGI specification, which defines this variable as being NULL
if the name isn't known. In Apache 1.3, we have made this correction. REMOTE_ADDR always contains the client's IP
address, but REMOTE_HOST is only defined when the server has been able to determine the client's DNS name.

●

The undocumented mod_access syntax "allow user-agents" was removed. The replacement is the more general "allow
from env".

●

When using wildcards in pathnames (such as * and ?) they no longer match / (slash). That is, they more closely behave how
a UNIX shell behaves. This affects <Directory> directives, for example.

●

If no TransferLog directive is given then nothing will be logged. (Previously it would default to logs/access_log.)●

Apache now has configurable error logging levels, and the default eliminates some messages that earlier versions always
generated.

●

When booting, Apache will now detach itself from stdin, stdout, and stderr. stderr will not be detached until after the config
files have been read so you will be able to see initial error messages. After that all errors are logged in the error_log. This
makes it more convenient to start Apache via rsh, ssh, or crontabs.

●

<Files> sections previously could take a full pathname, and were matched against the full pathnames. This had some
inconsistencies, and was removed. To emulate this older behavior use a <Files> section nested inside a <Directory> section.

●

<Location> matching behavior with respect to slashes has changed. See the <Location> documentation for more info.●

Misc Changes

ServerType inetd has been deprecated. It still exists, but bugs are unlikely to be fixed.●

httpd_monitor has been deprecated. The replacement is to use mod_status and make a request to a URL such as
http://myhost/server-status?refresh=10.

●

Upgrading to 1.3 from 1.2

http://httpd.apache.org/docs/upgrading_to_1_3.html (2 of 3) [12/05/2001 4:48:09 PM]

http://httpd.apache.org/docs/vhosts/

Apache now provides an effectively unbuffered connection for CGI scripts. This means that data will be sent to the client as
soon as the CGI pauses or stops output; previously, Apache would buffer the output up to a fixed buffer size before sending,
which could result in the user viewing an empty page until the CGI finished or output a complete buffer. It is no longer
necessary to use an "nph-" CGI to get unbuffered output. Given that most CGIs are written in a language that by default
does buffering (e.g., perl) this shouldn't have a detrimental effect on performance.

"nph-" CGIs, which formerly provided a direct socket to the client without any server post-processing, were not fully
compatible with HTTP/1.1 or SSL support. As such they would have had to implement the transport details, such as
encryption or chunking, in order to work properly in certain situations. Now, the only difference between nph and non-nph
scripts is "non-parsed headers".

●

dbmmanage has been overhauled.●

Third Party Modules

The following changes between the 1.2 and 1.3 API may require slight changes in third party modules not maintained by Apache.

To avoid symbol clashes with third-party code compiled into the server, the general prefix `ap_' was globally applied to the
following classes of symbols: Apache provided general functions (e.g., ap_cpystrn), public API functions (e.g.,
palloc, bgets) and private functions which can't be made static (because of cross-object usage) but should be (e.g.,
new_connection). For backward source compatibility with Apache 1.2 a new header file named compat.h was
created which provides defines for the old symbol names. You'll either have to #include compat.h or update the API
symbols you use.

●

Be sure and examine the source code reorganization page to see whether any item there affects you.●

Use of SERVER_VERSION definition. If third-party modules reference the server version string using this symbol, they
should be corrected to obtain it by calling the new API routine const char *ap_get_server_version().

●

ap_construct_url prototype change. The second parameter was previously a server_rec, it has been changed to a
request_rec.

●

The table datatype has been made an opaque type. Code which assumes a table is the same as an array_header
will not compile. This is actually a change to enforce the API the way it was intended, all versions of Apache have had a
table_elts() function which is intended for code which needs to access the elements of a table. The changes required
for this are pretty easy, and work with all versions of Apache.

Suppose t is a table. Whenever code refers to t->elts, replace it with something like this:

 array_header *arr = table_elts(t);
 table_entry *elts = (table_entry *)arr->elts;

Whenever code refers to t->nelts use arr->nelts. Many examples can be found in the standard modules, search for
table_elts.

●

Apache HTTP Server

Upgrading to 1.3 from 1.2

http://httpd.apache.org/docs/upgrading_to_1_3.html (3 of 3) [12/05/2001 4:48:09 PM]

Apache HTTP Server

Overview of New Features in Apache 1.3

New features with this release, as extensions of the Apache functionality. Because the core code has changed so significantly, there
are certain liberties that earlier versions of Apache (and the NCSA daemon) took that recent Apache versions are pickier about -
please check the compatibility notes if you have any problems.

If you're upgrading from Apache 1.2, you may wish to read the upgrade notes.

Enhancements: Core | Performance | Configuration | Modules | API | Misc

Core Enhancements:

Dynamic Shared Object (DSO) support

Apache modules may now be loaded at runtime; this means that modules can be loaded into the server process space only
when necessary, thus overall memory usage by Apache will be significantly reduced. DSO currently is supported on
FreeBSD, OpenBSD, NetBSD, Linux, Solaris, SunOS, Digital UNIX, IRIX, HP/UX, UnixWare, NetWare, AIX,
ReliantUnix and generic SVR4 platforms.

Support for Windows NT/95

Apache now supports the Windows NT and Windows 2000 operating systems. While Apache may run on Windows 95, 98,
or ME, these consumer products are never recommended for production environments, and their use remains experimental.
All versions of Apache running on Windows prior to 1.3.15 should be considered beta quality releases.

Support for Cygwin

Apache now supports the Cygwin platform for the Windows NT and Windows 2000 operating systems. The Cygwin
versions should be considered as stable and reliable as the Windows native counterpart.

Support for NetWare 5.x

Apache now experimentally supports the NetWare 5.x operating systems.

Re-organized Sources

The source files for Apache have been re-organized. The main difference for Apache users is that the "Module" lines in
Configuration have been replaced with "AddModule" with a slightly different syntax. For module authors there are
some changes designed to make it easier for users to add their module.

Reliable Piped Logs

On almost all Unix architectures Apache now implements "reliable" piped logs in mod_log_config. Where reliable means
that if the logging child dies for whatever reason, Apache will recover and respawn it without having to restart the entire
server. Furthermore if the logging child becomes "stuck" and isn't reading its pipe frequently enough Apache will also
restart it. This opens up more opportunities for log rotation, hit filtering, real-time splitting of multiple vhosts into separate
logs, and asynchronous DNS resolving on the fly.

New features with Apache 1.3

http://httpd.apache.org/docs/new_features_1_3.html (1 of 8) [12/05/2001 4:48:13 PM]

Performance Improvements

IP-based virtual hosts are looked up via hash table.●

<Directory> parsing speedups.●

The critical path for static requests has fewer system calls. This generally helps all requests. (45 syscalls for a static request
in 1.2 versus 22 in 1.3 in a well tuned configuration).

●

ProxyReceiveBufferSize directive gives mod_proxy's outgoing connections larger network buffers, for increased
throughput.

●

The low level I/O routines use writev (where available) to issue multiple writes with a single system call. They also avoid
copying memory into buffers as much as possible. The result is less CPU time spent on transferring large files.

●

Static requests are served using mmap, which means bytes are only copied from the disk buffer to the network buffer
directly by the kernel. The program never copies bytes around, which reduces CPU time. (Only where available/tested.)

●

When presented with a load spike, the server quickly adapts by spawning children at faster rates.●

The code which dispatches modules was optimized to avoid repeatedly skipping over modules that don't implement certain
phases of the API. (This skipping showed up as 5% of the CPU time on profiles of a server with the default module mix.)

●

Revamp of the Unix scoreboard management code so that less time is spent counting children in various states. Previously a
scan was performed for each hit, now it is performed only once per second. This should be noticeable on servers running
with hundreds of children and high loads.

●

New serialization choices improve performance on Linux, and IRIX.●

mod_log_config can be compile-time configured to buffer writes.●

Replaced strncpy() with ap_cpystrn(), a routine which doesn't have to zero-fill the entire result. This has dramatic
effects on mod_include speed.

●

Additions to the internal "table" API (used for keeping lists of key/value string pairs) provide for up to 20% performance
improvement in many situations.

●

See the new performance documentation for more information.

Configuration Enhancements

Unified Server Configuration Files

(Apache 1.3.4) The contents of the three server configuration files (httpd.conf, srm.conf, and access.conf) have been merged
into a single httpd.conf file. The srm.conf and access.conf files are now empty except for comments directing the
Webmaster to look in httpd.conf. In addition, the merged httpd.conf file has been restructured to allow directives to appear
in a hopefully more intuitive and meaningful order.

Continuation Lines in config files

Directive lines in the server configuration files may now be split onto multiple lines by using the canonical Unix
continuation mechanism, namely a '\' as the last non-blank character on the line to indicate that the next line should be
concatenated.

Apache Autoconf-style Interface (APACI)

Until Apache 1.3 there was no real out-of-the-box batch-capable build and installation procedure for the complete Apache
package. This is now provided by a top-level configure script and a corresponding top-level Makefile.tmpl file.
The goal is to provide a GNU Autoconf-style frontend which is capable to both drive the old src/Configure stuff in
batch and additionally installs the package with a GNU-conforming directory layout. Any options from the old
configuration scheme are available plus a lot of new options for flexibly customizing Apache.
Note: The default installation layout has changed for Apache 1.3.4. See the files README.configure and INSTALL for
more information.

APache eXtenSion (APXS) support tool

Now that Apache provides full support for loading modules under runtime from dynamic shared object (DSO) files, a new
support tool apxs was created which provides off-source building, installing and activating of those DSO-based modules.
It completely hides the platform-dependent DSO-build commands from the user and provides an easy way to build modules

New features with Apache 1.3

http://httpd.apache.org/docs/new_features_1_3.html (2 of 8) [12/05/2001 4:48:13 PM]

outside the Apache source tree. To achieve this APACI installs the Apache C header files together with the apxs tool.

Default Apache directory path changed to /usr/local/apache/

The default directory for the Apache ServerRoot changed from the NCSA-compatible /usr/local/etc/httpd/ to
/usr/local/apache/. This change covers only the default setting (and the documentation); it is of course possible to
override it using the -d ServerRoot and -f httpd.conf switches when starting apache.

Improved HTTP/1.1-style Virtual Hosts

The new NameVirtualHost directive is used to list IP address:port pairs on which HTTP/1.1-style virtual hosting
occurs. This is vhosting based on the Host: header from the client. Previously this address was implicitly the same as the
"main address" of the machine, and this caused no end of problems for users, and was not powerful enough. Please see the
Apache Virtual Host documentation for further details on configuration.

Include directive

The Include directive includes other config files immediately at that point in parsing.

-S command line option for debugging vhost setup

If Apache is invoked with the -S command line option it will dump out information regarding how it parsed the
VirtualHost sections. This is useful for folks trying to debug their virtual host configuration.

Control of HTTP methods

<LimitExcept> and </LimitExcept> are used to enclose a group of access control directives which will then apply to any
HTTP access method not listed in the arguments; i.e., it is the opposite of a <Limit> section and can be used to control both
standard and nonstandard/unrecognized methods.

Module Enhancements

Improved mod_negotiation

The optional content negotiation (MultiViews) module has been completely overhauled for Apache 1.3.4, incorporating the
latest HTTP/1.1 revisions and the experimental Transparent Content Negotion features of RFC 2295 and RFC 2296.

NEW - Spelling correction module

This optional module corrects frequently occurring spelling and capitalization errors in document names requested from the
server.

NEW - Conditional setting of environment variables

The addition of SetEnvIf and SetEnvIfNoCase. These allow you to set environment variables for server and CGI use
based upon attributes of the request.

NEW - "Magic" MIME-typing

The optional mod_mime_magic has been added. It uses "magic numbers" and other hints from a file's contents to figure
out what the contents are. It then uses this information to set the file's media type, if it cannot be determined by the file's
extension.

NEW - Unique Request Identifiers

mod_unique_id can be included to generate a unique identifier that distinguishes a hit from every other hit. ("Unique" has
some restrictions on it.) The identifier is available in the environment variable UNIQUE_ID.

mod_proxy enhancements:

Easier and safer authentication for ftp proxy logins: When no ftp user name and/or password is specified in the
URL, but the destination ftp server requires one, Apache now returns a "[401] Authorization Required" status. This
status code usually makes the client browser pop up an "Enter user name and password" dialog, and the request is
retried with the given user authentification. That is slightly more secure than specifying the authentication
information as part of the request URL, where it could be logged in plaintext by older proxy servers.

❍

The new AllowCONNECT directive allows configuration of the port numbers to which the proxy CONNECT
method may connect. That allows proxying to https://some.server:8443/ which resulted in an error message prior to
Apache version 1.3.2.

❍

The proxy now supports the HTTP/1.1 "Via:" header as specified in RFC2068. The new ProxyVia directive❍

New features with Apache 1.3

http://httpd.apache.org/docs/new_features_1_3.html (3 of 8) [12/05/2001 4:48:13 PM]

http://httpd.apache.org/docs/vhosts/

allows switching "Via:" support off or on, or suppressing outgoing "Via:" header lines altogether for privacy
reasons.

The "Max-Forwards:" TRACE header specified in HTTP/1.1 is now supported. With it, you can trace the path of a
request along a chain of proxies (if they, too, support it).

❍

NoProxy and ProxyDomain directives added to proxy, useful for intranets.❍

New ProxyPassReverse directive. It lets Apache adjust the URL in the Location header on HTTP redirect
responses.

❍

Easier navigation in ftp server directory trees.❍

Enhanced mod_include string comparisons

The string-based server-side include (SSI) flow-control directives now include comparison for less-than (<),
less-than-or-equal (<=), greater-than (>), and greater-than-or-equal (>=). Previously comparisons could only be made for
equality or inequality.

ServerRoot relative auth filenames

Auth filenames for the various authentication modules are now treated as relative to the ServerRoot if they are not full
paths.

Enhancements to directory indexing:

Code split:The mod_dir module has been split in two, with mod_dir handling directory index files, and
mod_autoindex creating directory listings. Thus allowing folks to remove the indexing function from critical
servers.

❍

Sortable: Clicking on a column title will now sort the listing in order by the values in that column. This feature can
be disabled using the SuppressColumnSorting IndexOptions keyword.

❍

SuppressHTMLPreamble can be used if your README.html file includes its own HTML header.❍

The IndexOptions directive now allows the use of incremental prefixes (+/- to add/remove the respective
keyword feature, as was already possible for the Options directive) to its keyword arguments. Multiple
IndexOptions directives applying to the same directory will now be merged.

❍

IconHeight and IconWidth let you set height and width attributes to the tag in directory listings.❍

The new NameWidth keyword to the IndexOptions directive lets you set the number of columns for "fancy"
directory listings. If set to an '*' asterisk, the name width will be adjusted automatically.

❍

The FancyIndexing directive now correctly has the same impact as IndexOptions FancyIndexing without replacing
the effect of any existing IndexOptions directive.

❍

Starting with 1.3.15, the server will satisfy directory requests with the cache controls ETag and LastModified, if
IndexOptions includes the TrackModified directive. The server will not need to generate the listing if the client
determines the request has not changed, improving performance. Due to its experimental nature, this feature is not
enabled by default.

❍

Less Buffering of CGI Script Output

In previous versions of Apache, the output from CGI scripts would be internally buffered by the server, and wouldn't be
forwarded to the client until either the buffers were full or the CGI script completed. As of Apache 1.3, the buffer to the
client is flushed any time it contains something and the server is waiting for more information from the script. This allows
CGI script to provide partial status reports during long processing operations.

Regular Expression support for Alias and Redirect

New AliasMatch, ScriptAliasMatch, and RedirectMatch directives allow for the use of regular expression
matching. Additionally, new <DirectoryMatch>, <LocationMatch>, and <FilesMatch> sections provide a new
syntax for regular expression sectioning.

AddModuleInfo directive added to mod_info

Allows additional information to be listed along with a specified module.

Absence of any TransferLog disables logging

If no TransferLog directive is given then no log is written. This supports co-existence with other logging modules.

Ability to name logging formats

New features with Apache 1.3

http://httpd.apache.org/docs/new_features_1_3.html (4 of 8) [12/05/2001 4:48:13 PM]

The LogFormat directive has been enhanced to allow you to give nicknames to specific logging formats. You can then
use these nicknames in other LogFormat and CustomLog directives, rather than having to spell out the complete log
format string each time.

Conditional logging

mod_log_config now supports logging based upon environment variables. mod_log_referer and mod_log_agent are now
deprecated.

mod_cern_meta configurable per-directory

mod_cern_meta is now configurable on a per-directory basis.

New map types for RewriteMap directive

The new map types `Randomized Plain Text' and `Internal Function' were added to the RewriteMap directive of
mod_rewrite. They provide two new features: First, you now can randomly choose a sub-value from a value which was
looked-up in a rewriting map (which is useful when choosing between backend servers in a Reverse Proxy situation).
Second, you now can translate URL parts to fixed (upper or lower) case (which is useful when doing mass virtual hosting
by the help of mod_rewrite).

CIDR and Netmask access control

mod_access directives now support CIDR (Classless Inter-Domain Routing) style prefixes, and netmasks for greater control
over IP access lists.

API Additions and Changes

For all those module writers and code hackers:

child_init

A new phase for Apache's API is called once per "heavy-weight process," before any requests are handled. This allows the
module to set up anything that need to be done once per processes. For example, connections to databases.

child_exit

A new phase called once per "heavy-weight process," when it is terminating. Note that it can't be called in some fatal cases
(such as segfaults and kill -9). The child_init and child_exit functions are passed a pool whose lifetime is the
same as the lifetime of the child (modulo completely fatal events in which Apache has no hope of recovering). In contrast,
the module init function is passed a pool whose lifetime ends when the parent exits or restarts.

child_terminate

Used in the child to indicate the child should exit after finishing the current request.

register_other_child

See http_main.h. This is used in the parent to register a child for monitoring. The parent will report status to a supplied
callback function. This allows modules to create their own children which are monitored along with the httpd children.

piped_log

See http_log.h. This API provides the common code for implementing piped logs. In particular it implements a reliable
piped log on architectures supporting it (i.e., Unix at the moment).

scoreboard format changed

The scoreboard format is quite different. It is considered a "private" interface in general, so it's only mentioned here as an
FYI.

set_last_modified split into three

The old function set_last_modified performed multiple jobs including the setting of the Last-Modified header,
the ETag header, and processing conditional requests (such as IMS). These functions have been split into three functions:
set_last_modified, set_etag, and meets_conditions. The field mtime has been added to request_rec
to facilitate meets_conditions.

New error logging function: ap_log_error

All old logging functions are deprecated, we are in the process of replacing them with a single function called
ap_log_error. This is still a work in progress.

New features with Apache 1.3

http://httpd.apache.org/docs/new_features_1_3.html (5 of 8) [12/05/2001 4:48:13 PM]

set_file_slot for config parsing

The set_file_slot routine provides a standard routine that prepends ServerRoot to non-absolute paths.

post_read_request module API

This request phase occurs immediately after reading the request (headers), and immediately after creating an internal
redirect. It is most useful for setting environment variables to affect future phases.

psocket, and popendir

The psocket and pclosesocket functions allow for race-condition free socket creation with resource tracking.
Similarly popendir and pclosedir protect directory reading.

is_initial_req

Test if the request is the initial request (i.e., the one coming from the client).

kill_only_once

An option to ap_spawn_child functions which prevents Apache from aggressively trying to kill off the child.

alloc debugging code

Defining ALLOC_DEBUG provides a rudimentary memory debugger which can be used on live servers with low impact -- it
sets all allocated and freed memory bytes to 0xa5. Defining ALLOC_USE_MALLOC will cause the alloc code to use
malloc() and free() for each object. This is far more expensive and should only be used for testing with tools such as
Electric Fence and Purify. See main/alloc.c for more details.

ap_cpystrn

The new strncpy "lookalike", with slightly different semantics is much faster than strncpy because it doesn't have to
zero-fill the entire buffer.

table_addn, table_setn, table_mergen

These new functions do not call pstrdup on their arguments. This provides for big speedups. There is also some
debugging support to ensure code uses them properly. See src/CHANGES for more information.

construct_url

The function prototype for this changed from taking a server_rec * to taking a request_rec *.

get_server_name, get_server_port

These are wrappers which deal with the UseCanonicalName directive when retrieving the server name and port for a
request.

Change to prototype for ap_bspawn_child and ap_call_exec

Added a child_info * to spawn function (as passed to ap_bspawn_child) and to ap_call_exec to allow
children to work correctly on Win32. We also cleaned up the nomenclature a bit, replacing spawn_child_err with
simply ap_spawn_child and spawn_child_err_buff with simply ap_bspawn_child.

ap_add_version_component()

This API function allows for modules to add their own additional server tokens which are printed on the on the Server:
header line. Previous 1.3beta versions had used a SERVER_SUBVERSION compile-time #define to perform this
function. Whether the tokens are actually displayed is controlled by the new ServerTokens directive.

Miscellaneous Enhancements

Port to EBCDIC mainframe machine running BS2000/OSD

As a premiere, this version of Apache comes with a beta version of a port to a mainframe machine which uses the EBCDIC
character set as its native codeset (It is the SIEMENS family of mainframes running the BS2000/OSD operating system on
a IBM/390 compatible processor. This mainframe OS nowadays features a SVR4-like POSIX subsystem).

AccessFileName Enhancement

The AccessFileName directive can now take more than one filename. This lets sites serving pages from network file
systems and more than one Apache web server, configure access based on the server through which shared pages are being
served.

HostNameLookups now defaults to "Off"

New features with Apache 1.3

http://httpd.apache.org/docs/new_features_1_3.html (6 of 8) [12/05/2001 4:48:13 PM]

The HostNameLookups directive now defaults to "Off". This means that, unless explicitly turned on, the server will not
resolve IP addresses into names. This was done to spare the Internet from unnecessary DNS traffic.

Double-Reverse DNS enforced

The HostnameLookups directive now supports double-reverse DNS. (Known as PARANOID in the terminology of
tcp_wrappers.) An IP address passes a double-reverse DNS test if the forward map of the reverse map includes the original
IP. Regardless of the HostnameLookups setting, mod_access access lists using DNS names require all names to pass a
double-reverse DNS test. (Prior versions of Apache required a compile-time switch to enable double-reverse DNS.)

LogLevel and syslog support

Apache now has configurable error logging levels and supports error logging via syslogd(8).

Detaching from stdin/out/err

On boot Apache will now detach from stdin, stdout, and stderr. It does not detach from stderr until it has successfully read
the config files. So you will see errors in the config file. This should make it easier to start Apache via rsh or crontab.

Year-2000 Improvements

The default timefmt string used by mod_include has been modified to display the year using four digits rather than the
two-digit format used previously. The mod_autoindex module has also been modified to display years using four digits
in FancyIndexed directory listings.

Common routines Moving to a Separate Library

There are a number of functions and routines that have been developed for the Apache project that supplement or supersede
library routines that differ from one operating system to another. While most of these are used only by the Apache server
itself, some are referenced by supporting applications (such as htdigest), and these other applications would fail to build
because the routines were built only into the server. These routines are now being migrated to a separate subdirectory and
library so they can be used by other applications than just the server. See the src/ap/ subdirectory.

New ServerSignature directive

This directive optionally adds a line containing the server version and virtual host name to server-generated pages (error
documents, ftp directory listings, mod_info output etc.). This makes it easier for users to tell which server produced the
error message, especially in a proxy chain (often found in intranet environments).

New UseCanonicalName directive

This directive gives control over how Apache creates self-referential URLs. Previously Apache would always use the
ServerName and Port directives to construct a "canonical" name for the server. With UseCanonicalName off Apache
will use the hostname and port supplied by the client, if available.

SERVER_VERSION definition abstracted, and server build date added

In earlier versions, the Apache server version was available to modules through the #defined value for
SERVER_VERSION. In order to keep this value consistent when modules and the core server are compiled at different
times, this information is now available through the core API routine ap_get_server_version(). The use of the
SERVER_VERSION symbol is deprecated. Also, ap_get_server_built() returns a string representing the time the
core server was linked.

Including the operating system in the server identity

A new directive, ServerTokens, allows the Webmaster to change the value of the Server response header field which
is sent back to clients. The ServerTokens directive controls whether the server will include a non-specific note in the
server identity about the type of operating system on which the server is running as well as included module information.
As of Apache 1.3, this additional information is included by default.

Support for Netscape style SHA1 encrypted passwords

To facilitate migration or integration of BasicAuth password schemes where the password is encrypted using SHA1 (as
opposed to Apache's built in MD5 and/or the OS specific crypt(3) function) passwords prefixed with with {SHA1} are
taken as Base64 encoded SHA1 passwords. More information and some utilities to convert Netscape ldap/ldif entries can be
found in support/SHA1.

New features with Apache 1.3

http://httpd.apache.org/docs/new_features_1_3.html (7 of 8) [12/05/2001 4:48:13 PM]

Apache HTTP Server

New features with Apache 1.3

http://httpd.apache.org/docs/new_features_1_3.html (8 of 8) [12/05/2001 4:48:13 PM]

Apache HTTP Server

Compiling and Installing Apache 1.3

This document covers compilation and installation of Apache on Unix systems, using the manual build and install method. If you
wish to use the autoconf-style configure interface, you should instead read the INSTALL file in the root directory of the Apache
source distribution. For compiling and installation on specific platforms, see

Using Apache with Microsoft Windows●

Using Apache with Cygwin●

Using Apache with Novell Netware 5●

Using Apache with HP MPE/iX●

Compiling Apache under UnixWare●

Overview of the Apache TPF Port●

Downloading Apache

Information on the latest version of Apache can be found on the Apache web server at http://www.apache.org/. This will list the
current release, any more recent beta-test release, together with details of mirror web and anonymous ftp sites.

If you downloaded a binary distribution, skip to Installing Apache. Otherwise read the next section for how to compile the server.

Compiling Apache

Compiling Apache consists of three steps: Firstly select which Apache modules you want to include into the server. Secondly create
a configuration for your operating system. Thirdly compile the executable.

All configuration of Apache is performed in the src directory of the Apache distribution. Change into this directory.

Select modules to compile into Apache in the Configuration file. Uncomment lines corresponding to those optional
modules you wish to include (among the AddModule lines at the bottom of the file), or add new lines corresponding to
additional modules you have downloaded or written. (See API.html for preliminary docs on how to write Apache modules).
Advanced users can comment out some of the default modules if they are sure they will not need them (be careful though,
since many of the default modules are vital for the correct operation and security of the server).

You should also read the instructions in the Configuration file to see if you need to set any of the Rule lines.

1.

Configure Apache for your operating system. Normally you can just run the Configure script as given below. However if
this fails or you have any special requirements (e.g., to include an additional library required by an optional module) you
might need to edit one or more of the following options in the Configuration file: EXTRA_CFLAGS, LIBS,
LDFLAGS, INCLUDES.

Run the Configure script:

 % Configure
 Using 'Configuration' as config file
 + configured for <whatever> platform
 + setting C compiler to <whatever> *
 + setting C compiler optimization-level to <whatever> *

2.

Compiling and Installing Apache

http://httpd.apache.org/docs/install.html (1 of 3) [12/05/2001 4:48:14 PM]

http://www.apache.org/

 + Adding selected modules
 + doing sanity check on compiler and options
 Creating Makefile in support
 Creating Makefile in main
 Creating Makefile in os/unix
 Creating Makefile in modules/standard

(*: Depending on Configuration and your system, Configure might not print these lines. That's OK).

This generates a Makefile for use in stage 3. It also creates a Makefile in the support directory, for compilation of the
optional support programs.

(If you want to maintain multiple configurations, you can give an option to Configure to tell it to read an alternative
Configuration file, such as Configure -file Configuration.ai).

Type make.3.

The modules we place in the Apache distribution are the ones we have tested and are used regularly by various members of the
Apache development group. Additional modules contributed by members or third parties with specific needs or functions are
available at <http://www.apache.org/dist/httpd/contrib/modules/>. There are instructions on that page for linking these modules into
the core Apache code.

Installing Apache

You will have a binary file called httpd in the src directory. A binary distribution of Apache will supply this file.

The next step is to install the program and configure it. Apache is designed to be configured and run from the same set of directories
where it is compiled. If you want to run it from somewhere else, make a directory and copy the conf, logs and icons directories
into it. In either case you should read the security tips describing how to set the permissions on the server root directory.

The next step is to edit the configuration files for the server. This consists of setting up various directives in up to three central
configuration files. By default, these files are located in the conf directory and are called srm.conf, access.conf and
httpd.conf. To help you get started there are same files in the conf directory of the distribution, called srm.conf-dist,
access.conf-dist and httpd.conf-dist. Copy or rename these files to the names without the -dist. Then edit each of
the files. Read the comments in each file carefully. Failure to setup these files correctly could lead to your server not working or
being insecure. You should also have an additional file in the conf directory called mime.types. This file usually does not need
editing.

First edit httpd.conf. This sets up general attributes about the server: the port number, the user it runs as, etc. Next edit the
srm.conf file; this sets up the root of the document tree, special functions like server-parsed HTML or internal imagemap
parsing, etc. Finally, edit the access.conf file to at least set the base cases of access.

In addition to these three files, the server behavior can be configured on a directory-by-directory basis by using .htaccess files
in directories accessed by the server.

Set your system time properly!

Proper operation of a public web server requires accurate time keeping, since elements of the HTTP protocol are expressed as the
time of day. So, it's time to investigate setting up NTP or some other time synchronization system on your Unix box, or whatever
the equivalent on NT would be.

Compiling Support Programs

In addition to the main httpd server which is compiled and configured as above, Apache includes a number of support programs.
These are not compiled by default. The support programs are in the support directory of the distribution. To compile the support
programs, change into this directory and type

 make

Compiling and Installing Apache

http://httpd.apache.org/docs/install.html (2 of 3) [12/05/2001 4:48:14 PM]

http://www.apache.org/dist/httpd/contrib/modules/

Apache HTTP Server

Compiling and Installing Apache

http://httpd.apache.org/docs/install.html (3 of 3) [12/05/2001 4:48:14 PM]

Apache HTTP Server

Starting Apache

Starting Apache on Windows●

Starting Apache on Unix

Errors During Start-up❍

Starting at Boot-Time❍

Additional Information❍

●

Starting Apache On Windows

On Windows, Apache is normally run as a service on Windows NT, or as a console application on Windows 95. This does not apply
in its full extend for the Cygwin platform. For details, see running Apache for Windows.

Starting Apache on Unix

On Unix, the httpd program is run as a daemon which executes continuously in the background to handle requests. It is possible to
have Apache invoked by the Internet daemon inetd each time a connection to the HTTP service is made using the ServerType
directive, but this is not recommended.

If the Port specified in the configuration file is the default of 80 (or any other port below 1024), then it is necessary to have root
privileges in order to start Apache, so that it can bind to this privileged port. Once the server has started and completed a few
preliminary activities such as opening its log files, it will launch several child processes which do the work of listening for and
answering requests from clients. The main httpd process continues to run as the root user, but the child processes run as a less
privileged user. This is controlled by Apache's process creation directives.

The first thing that httpd does when it is invoked is to locate and read the configuration file httpd.conf. The location of this
file is set at compile-time, but it is possible to specify its location at run time using the -f command-line option as in

/usr/local/apache/bin/httpd -f /usr/local/apache/conf/httpd.conf

As an alternative to invoking the httpd binary directly, a shell script called apachectl is provided which can be used to control the
daemon process with simple commands such as apachectl start and apachectl stop.

If all goes well during startup, the server will detach from the terminal and the command prompt will return almost immediately.
This indicates that the server is up and running. You can then use your browser to connect to the server and view the test page in the
DocumentRoot directory and the local copy of the documentation linked from that page.

Errors During Start-up

If Apache suffers a fatal problem during startup, it will write a message describing the problem either to the console or to the
ErrorLog before exiting. One of the most common error messages is "Unable to bind to Port ...". This message is
usually caused by either:

Trying to start the server on a privileged port when not logged in as the root user; or●

Starting Apache

http://httpd.apache.org/docs/invoking.html (1 of 2) [12/05/2001 4:48:15 PM]

Trying to start the server when there is another instance of Apache or some other web server already bound to the same
port.

●

For further trouble-shooting instructions, consult the Apache FAQ.

Starting at Boot-Time

If you want your server to continue running after a system reboot, you should add a call to httpd or apachectl to your system
startup files (typically rc.local or a file in an rc.N directory). This will start Apache as root. Before doing this ensure that your
server is properly configured for security and access restrictions. The apachectl script is designed so that it can often be linked
directly as an init script, but be sure to check the exact requirements of your system.

Additional Information

Additional information about the command-line options of httpd and apachectl as well as other support programs included with the
server is available on the Server and Supporting Programs page. There is also documentation on all the modules included with the
Apache distribution and the directives that they provide.

Apache HTTP Server

Starting Apache

http://httpd.apache.org/docs/invoking.html (2 of 2) [12/05/2001 4:48:15 PM]

http://httpd.apache.org/docs/programs/
http://httpd.apache.org/docs/mod/

Apache HTTP Server

Stopping and Restarting Apache

This document covers stopping and restarting Apache on Unix and Cygwin only. Windows users should see Signalling Apache
when running.

You will notice many httpd executables running on your system, but you should not send signals to any of them except the parent,
whose pid is in the PidFile. That is to say you shouldn't ever need to send signals to any process except the parent. There are three
signals that you can send the parent: TERM, HUP, and USR1, which will be described in a moment.

To send a signal to the parent you should issue a command such as:

 kill -TERM `cat /usr/local/apache/logs/httpd.pid`

You can read about its progress by issuing:

 tail -f /usr/local/apache/logs/error_log

Modify those examples to match your ServerRoot and PidFile settings.

As of Apache 1.3 we provide a script called apachectl which can be used to start, stop, and restart Apache. It may need a little
customization for your system, see the comments at the top of the script.

TERM Signal: stop now

Sending the TERM signal to the parent causes it to immediately attempt to kill off all of its children. It may take it several seconds to
complete killing off its children. Then the parent itself exits. Any requests in progress are terminated, and no further requests are
served.

HUP Signal: restart now

Sending the HUP signal to the parent causes it to kill off its children like in TERM but the parent doesn't exit. It re-reads its
configuration files, and re-opens any log files. Then it spawns a new set of children and continues serving hits.

Users of the status module will notice that the server statistics are set to zero when a HUP is sent.

Note: If your configuration file has errors in it when you issue a restart then your parent will not restart, it will exit with an error.
See below for a method of avoiding this.

USR1 Signal: graceful restart

Note: prior to release 1.2b9 this code is quite unstable and shouldn't be used at all.

The USR1 signal causes the parent process to advise the children to exit after their current request (or to exit immediately if they're
not serving anything). The parent re-reads its configuration files and re-opens its log files. As each child dies off the parent replaces
it with a child from the new generation of the configuration, which begins serving new requests immediately.

This code is designed to always respect the MaxClients, MinSpareServers, and MaxSpareServers settings. Furthermore, it respects
StartServers in the following manner: if after one second at least StartServers new children have not been created, then create
enough to pick up the slack. This is to say that the code tries to maintain both the number of children appropriate for the current load

Stopping and Restarting Apache

http://httpd.apache.org/docs/stopping.html (1 of 2) [12/05/2001 4:48:16 PM]

on the server, and respect your wishes with the StartServers parameter.

Users of the status module will notice that the server statistics are not set to zero when a USR1 is sent. The code was written to both
minimize the time in which the server is unable to serve new requests (they will be queued up by the operating system, so they're
not lost in any event) and to respect your tuning parameters. In order to do this it has to keep the scoreboard used to keep track of
all children across generations.

The status module will also use a G to indicate those children which are still serving requests started before the graceful restart was
given.

At present there is no way for a log rotation script using USR1 to know for certain that all children writing the pre-restart log have
finished. We suggest that you use a suitable delay after sending the USR1 signal before you do anything with the old log. For
example if most of your hits take less than 10 minutes to complete for users on low bandwidth links then you could wait 15 minutes
before doing anything with the old log.

Note: If your configuration file has errors in it when you issue a restart then your parent will not restart, it will exit with an error. In
the case of graceful restarts it will also leave children running when it exits. (These are the children which are "gracefully exiting"
by handling their last request.) This will cause problems if you attempt to restart the server -- it will not be able to bind to its
listening ports. Before doing a restart, you can check the syntax of the configuration files with the -t command line argument (see
httpd). This still will not guarantee that the server will restart correctly. To check the semantics of the configuration files as well as
the syntax, you can try starting httpd as a non-root user. If there are no errors it will attempt to open its sockets and logs and fail
because it's not root (or because the currently running httpd already has those ports bound). If it fails for any other reason then it's
probably a config file error and the error should be fixed before issuing the graceful restart.

Appendix: signals and race conditions

Prior to Apache 1.2b9 there were several race conditions involving the restart and die signals (a simple description of race condition
is: a time-sensitive problem, as in if something happens at just the wrong time it won't behave as expected). For those architectures
that have the "right" feature set we have eliminated as many as we can. But it should be noted that there still do exist race conditions
on certain architectures.

Architectures that use an on disk ScoreBoardFile have the potential to corrupt their scoreboards. This can result in the "bind:
Address already in use" (after HUP) or "long lost child came home!" (after USR1). The former is a fatal error, while the latter just
causes the server to lose a scoreboard slot. So it might be advisable to use graceful restarts, with an occasional hard restart. These
problems are very difficult to work around, but fortunately most architectures do not require a scoreboard file. See the
ScoreBoardFile documentation for a architecture uses it.

NEXT and MACHTEN (68k only) have small race conditions which can cause a restart/die signal to be lost, but should not cause the
server to do anything otherwise problematic.

All architectures have a small race condition in each child involving the second and subsequent requests on a persistent HTTP
connection (KeepAlive). It may exit after reading the request line but before reading any of the request headers. There is a fix that
was discovered too late to make 1.2. In theory this isn't an issue because the KeepAlive client has to expect these events because of
network latencies and server timeouts. In practice it doesn't seem to affect anything either -- in a test case the server was restarted
twenty times per second and clients successfully browsed the site without getting broken images or empty documents.

Apache HTTP Server

Stopping and Restarting Apache

http://httpd.apache.org/docs/stopping.html (2 of 2) [12/05/2001 4:48:16 PM]

Apache HTTP Server

Configuration Files

Main Configuration Files●

Syntax of the Configuration Files●

Modules●

Scope of Directives●

.htaccess Files●

Main Configuration Files

Related Modules

mod_mime

Related Directives

AccessConfig
<IfDefine>
Include
ResourceConfig
TypesConfig

Apache is configured by placing directives in plain text configuration files. The main configuration file is usually called
httpd.conf. The location of this file is set at compile-time, but may be overridden with the -f command line flag. Some sites
also have srm.conf and access.conf files for historical reasons. In addition, other configuration files may be added using the
Include directive. Any directive may be placed in any of these configuration files. Changes to the main configuration files are
only recognized by Apache when it is started or restarted.

New with Apache 1.3.13 is a feature where if any configuration file is actually a directory, Apache will enter that directory and
parse any files (and subdirectories) found there as configuration files. One possible use for this would be to add VirtualHosts by
creating small configuration files for each host, and placing them in such a configuration directory. Thus, you can add or remove
VirtualHosts without editing any files at all, simply adding or deleting them. This makes automating such processes much easier.

The server also reads a file containing mime document types; the filename is set by the TypesConfig directive, and is
mime.types by default.

Syntax of the Configuration Files

Apache configuration files contain one directive per line. The back-slash "\" may be used as the last character on a line to indicate
that the directive continues onto the next line. There must be no other characters or white space between the back-slash and the end
of the line.

Directives in the configuration files are case-insensitive, but arguments to directives are often case sensitive. Lines which begin with
the hash character "#" are considered comments, and are ignored. Comments may not be included on a line after a configuration
directive. Blank lines and white space occurring before a directive are ignored, so you may indent directives for clarity.

Configuration Files

http://httpd.apache.org/docs/configuring.html (1 of 3) [12/05/2001 4:48:17 PM]

http://httpd.apache.org/info/three-config-files.html

You can check your configuration files for syntax errors without starting the server by using apachectl configtest or the
-t command line option.

Modules

Related Modules

mod_so

Related Directives

AddModule
ClearModuleList
<IfModule>
LoadModule

Apache is a modular server. This implies that only the most basic functionality is included in the core server. Extended features are
available through modules which can be loaded into Apache. By default, a base set of modules is included in the server at
compile-time. If the server is compiled to use dynamically loaded modules, then modules can be compiled separately and added at
any time using the LoadModule directive. Otherwise, Apache must be recompiled to add or remove modules. Configuration
directives may be included conditional on a presence of a particular module by enclosing them in an <IfModule> block.

To see which modules are currently compiled into the server, you can use the -l command line option.

Scope of Directives

Related Directives

<Directory>
<DirectoryMatch>
<Files>
<FilesMatch>
<Location>
<LocationMatch>
<VirtualHost>

Directives placed in the main configuration files apply to the entire server. If you wish to change the configuration for only a part of
the server, you can scope your directives by placing them in <Directory>, <DirectoryMatch>, <Files>,
<FilesMatch>, <Location>, and <LocationMatch> sections. These sections limit the application of the directives
which they enclose to particular filesystem locations or URLs. They can also be nested, allowing for very fine grained
configuration.

Apache has the capability to serve many different websites simultaneously. This is called Virtual Hosting. Directives can also be
scoped by placing them inside <VirtualHost> sections, so that they will only apply to requests for a particular website.

Although most directives can be placed in any of these sections, some directives do not make sense in some contexts. For example,
directives controlling process creation can only be placed in the main server context. To find which directives can be placed in
which sections, check the Context of the directive. For further information, we provide details on How Directory, Location and Files
sections work.

Configuration Files

http://httpd.apache.org/docs/configuring.html (2 of 3) [12/05/2001 4:48:17 PM]

http://httpd.apache.org/docs/vhosts/

.htaccess Files

Related Directives

AccessFileName
AllowOverride

Apache allows for decentralized management of configuration via special files placed inside the web tree. The special files are
usually called .htaccess, but any name can be specified in the AccessFileName directive. Directives placed in .htaccess
files apply to the directory where you place the file, and all sub-directories. The .htaccess files follow the same syntax as the
main configuration files. Since .htaccess files are read on every request, changes made in these files take immediate effect.

To find which directives can be placed in .htaccess files, check the Context of the directive. The server administrator further
controls what directives may be placed in .htaccess files by configuring the AllowOverride directive in the main
configuration files.

For more information on .htaccess files, see Ken Coar's tutorial on Using .htaccess Files with Apache.

Apache HTTP Server

Configuration Files

http://httpd.apache.org/docs/configuring.html (3 of 3) [12/05/2001 4:48:17 PM]

http://apache-server.com/tutorials/ATusing-htaccess.html

Apache HTTP Server

How Directory, Location and Files sections work

The sections <Directory>, <Location> and <Files> can contain directives which only apply to specified directories, URLs
or files respectively. Also htaccess files can be used inside a directory to apply directives to that directory. This document explains
how these different sections differ and how they relate to each other when Apache decides which directives apply for a particular
directory or request URL.

Directives allowed in the sections

Everything that is syntactically allowed in <Directory> is also allowed in <Location> (except a sub-<Files> section).
Semantically, however some things, most notably AllowOverride and the two options FollowSymLinks and
SymLinksIfOwnerMatch, make no sense in <Location>, <LocationMatch> or <DirectoryMatch>. The same for
<Files> -- syntactically everything is fine, but semantically some things are different.

How the sections are merged

The order of merging is:

<Directory> (except regular expressions) and .htaccess done simultaneously (with .htaccess, if allowed, overriding
<Directory>)

1.

<DirectoryMatch>, and <Directory> with regular expressions2.

<Files> and <FilesMatch> done simultaneously3.

<Location> and <LocationMatch> done simultaneously4.

Apart from <Directory>, each group is processed in the order that they appear in the configuration files. <Directory> (group
1 above) is processed in the order shortest directory component to longest. If multiple <Directory> sections apply to the same
directory they they are processed in the configuration file order. The configuration files are read in the order httpd.conf, srm.conf
and access.conf. Configurations included via the Include directive will be treated as if they were inside the including file at the
location of the Include directive.

Sections inside <VirtualHost> sections are applied after the corresponding sections outside the virtual host definition. This
allows virtual hosts to override the main server configuration. (Note: this only works correctly from 1.2.2 and 1.3a2 onwards.
Before those releases sections inside virtual hosts were applied before the main server).

Later sections override earlier ones.

Notes about using sections

The general guidelines are:

If you are attempting to match objects at the filesystem level then you must use <Directory> and/or <Files>.●

If you are attempting to match objects at the URL level then you must use <Location>●

But a notable exception is:

proxy control is done via <Directory>. This is a legacy mistake because the proxy existed prior to <Location>. A
future version of the config language should probably switch this to <Location>.

●

How Directory, Location and Files sections work

http://httpd.apache.org/docs/sections.html (1 of 2) [12/05/2001 4:48:18 PM]

Note about .htaccess parsing:

Modifying .htaccess parsing during Location doesn't do anything because .htaccess parsing has already occurred.●

<Location> and symbolic links:

It is not possible to use "Options FollowSymLinks" or "Options SymLinksIfOwnerMatch" inside a
<Location>, <LocationMatch> or <DirectoryMatch> section (the options are simply ignored). Using the
options in question is only possible inside a <Directory> section (or a .htaccess file).

●

<Files> and Options:

Apache won't check for it, but using an Options directive inside a <Files> section has no effect.●

Another note:

There is actually a <Location>/<LocationMatch> sequence performed just before the name translation phase (where
Aliases and DocumentRoots are used to map URLs to filenames). The results of this sequence are completely thrown
away after the translation has completed.

●

Apache HTTP Server

How Directory, Location and Files sections work

http://httpd.apache.org/docs/sections.html (2 of 2) [12/05/2001 4:48:18 PM]

Apache HTTP Server

Server-Wide Configuration

This document explains some of the directives provided by the core server which are used to configure the basic operations of the
server.

Server Identification●

File Locations●

Process Creation●

Network Configuration●

Limiting Resource Usage●

Server Identification

Related Directives

ServerName
ServerAdmin
ServerSignature
ServerTokens
UseCanonicalName

The ServerAdmin and ServerTokens directives control what information about the server will be presented in
server-generated documents such as error messages. The ServerTokens directive sets the value of the Server HTTP response
header field.

The ServerName and UseCanonicalName directives are used by the server to determine how to construct self-referential
URLs. For example, when a client requests a directory, but does not include the trailing slash in the directory name, Apache must
redirect the client to the full name including the trailing slash so that the client will correctly resolve relative references in the
document.

File Locations

Related Directives

CoreDumpDirectory
DocumentRoot
ErrorLog
Lockfile
PidFile
ScoreBoardFile
ServerRoot

Server-Wide Configuration

http://httpd.apache.org/docs/server-wide.html (1 of 4) [12/05/2001 4:48:20 PM]

These directives control the locations of the various files that Apache needs for proper operation. When the pathname used does not
begin with a slash "/", the files are located relative to the ServerRoot. Be careful about locating files in paths which are writable
by non-root users. See the security tips documentation for more details.

Process Creation

Related Directives

BS2000Account
Group
MaxClients
MaxRequestsPerChild
MaxSpareServers
MinSpareServers
ServerType
StartServers
ThreadsPerChild
User

When ServerType is set to its recommended value of Standalone, Apache 1.3 for Unix is a pre-forking web server. A single
control process is responsible for launching child processes which listen for connections and serve them when they arrive. Apache
always tries to maintain several spare or idle server processes, which stand ready to serve incoming requests. In this way, clients do
not need to wait for a new child processes to be forked before their requests can be served.

The StartServers, MinSpareServers, MaxSpareServers, and MaxServers regulate how the parent process creates
children to serve requests. In general, Apache is very self-regulating, so most sites do not need to adjust these directives from their
default values. Sites which need to serve more than 256 simultaneous requests may need to increase MaxClients, while sites with
limited memory may need to decrease MaxClients to keep the server from thrashing (swapping memory to disk and back). More
information about tuning process creation is provided in the performance hints documentation.

While the parent process is usually started as root under Unix in order to bind to port 80, the child processes are launched by
Apache as a less-privileged user. The User and Group directives are used to set the privileges of the Apache child processes. The
child processes must be able to read all the content that will be served, but should have as few privileges beyond that as possible. In
addition, unless suexec is used, these directives also set the privileges which will be inherited by CGI scripts.

MaxRequestsPerChild controls how frequently the server recycles processes by killing old ones and launching new ones.

Under Windows, Apache launches one control process and one child process. The child process creates multiple threads to serve
requests. The number of threads is controlled by the ThreadsPerChild directive.

Network Configuration

Server-Wide Configuration

http://httpd.apache.org/docs/server-wide.html (2 of 4) [12/05/2001 4:48:20 PM]

Related Directives

BindAddress
KeepAlive
KeepAliveTimeout
Listen
ListenBackLog
AcceptFilter
AcceptMutex
MaxKeepAliveRequests
Port
SendBufferSize
TimeOut

When Apache starts, it connects to some port and address on the local machine and waits for incoming requests. By default, it
listens to all addresses on the machine, and to the port as specified by the Port directive in the server configuration. However, it
can be told to listen to more than one port, to listen to only selected addresses, or a combination. This is often combined with the
Virtual Host feature which determines how Apache responds to different IP addresses, hostnames and ports.

There are two directives used to restrict or specify which addresses and ports Apache listens to. The BindAddress directive is
used to restrict the server to listening to a single IP address. The Listen directive can be used to specify multiple IP addresses
and/or Ports to which Apache will listen.

The ListenBackLog, SendBufferSize, and TimeOut directives are used to adjust how Apache interacts with the
network.AcceptFilter controls a BSD specific filter optimization. See the BSD section on performance hints documentation.
AcceptMutex controls which accept mutex method will be used. For an explanation of what this is and why it's needed, see the
performance tuning guide

The KeepAlive, KeepAliveTimeout, and MaxKeepAliveRequests directives are used to configure how Apache handles
persistent connections.

Limiting Resource Usage

Related Directives

LimitRequestBody
LimitRequestFields
LimitRequestFieldsize
LimitRequestLine
RLimitCPU
RLimitMEM
RLimitNPROC
ThreadStackSize

The LimitRequest* directives are used to place limits on the amount of resources Apache will use in reading requests from
clients. By limiting these values, some kinds of denial of service attacks can be mitigated.

The RLimit* directives are used to limit the amount of resources which can be used by processes forked off from the Apache
children. In particular, this will control resources used by CGI scripts and SSI exec commands.

The ThreadStackSize directive is used only on Netware to control the stack size.

Server-Wide Configuration

http://httpd.apache.org/docs/server-wide.html (3 of 4) [12/05/2001 4:48:20 PM]

http://httpd.apache.org/docs/vhosts/

Apache HTTP Server

Server-Wide Configuration

http://httpd.apache.org/docs/server-wide.html (4 of 4) [12/05/2001 4:48:20 PM]

Apache HTTP Server

Log Files

In order to effectively manage a web server, it is necessary to get feedback about the activity and performance of the server as well
as any problems that may be occuring. The Apache HTTP Server provides very comprehensive and flexible logging capabilities.
This document describes how to configure its logging capabilities, and how to understand what the logs contain.

Security Warning●

Error Log●

Access Log

Common Log Format❍

Combined Log Format❍

Multiple Access Logs❍

Conditional Logging❍

●

Log Rotation●

Piped Logs●

VirtualHosts●

Other Log Files

PID File❍

Script Log❍

Rewrite Log❍

●

Security Warning

Anyone who can write to the directory where Apache is writing a log file can almost certainly gain access to the uid that the server
is started as, which is normally root. Do NOT give people write access to the directory the logs are stored in without being aware of
the consequences; see the security tips document for details.

In addition, log files may contain information supplied directly by the client, without escaping. Therefore, it is possible for
malicious clients to insert control-characters in the log files, so care must be taken in dealing with raw logs.

Error Log

Related Directives

ErrorLog
LogLevel

The server error log, whose name and location is set by the ErrorLog directive, is the most important log file. This is the place

Log Files - Apache HTTP Server

http://httpd.apache.org/docs/logs.html (1 of 7) [12/05/2001 4:48:23 PM]

where Apache httpd will send diagnostic information and record any errors that it encounters in processing requests. It is the first
place to look when a problem occurs with starting the server or with the operation of the server, since it will often contain details of
what went wrong and how to fix it.

The error log is usually written to a file (typically error_log on unix systems and error.log on Windows and OS/2). On unix
systems it is also possible to have the server send errors to syslog or pipe them to a program.

The format of the error log is relatively free-form and descriptive. But there is certain information that is contained in most error log
entries. For example, here is a typical message.

[Wed Oct 11 14:32:52 2000] [error] [client 127.0.0.1] client denied by server
configuration: /export/home/live/ap/htdocs/test

The first item in the log entry is the date and time of the message. The second entry lists the severity of the error being reported. The
LogLevel directive is used to control the types of errors that are sent to the error log by restricting the severity level. The third entry
gives the IP address of the client that generated the error. Beyond that is the message itself, which in this case indicates that the
server has been configured to deny the client access. The server reports the file-system path (as opposed to the web path) of the
requested document.

A very wide variety of different messages can appear in the error log. Most look similar to the example above. The error log will
also contain debugging output from CGI scripts. Any information written to stderr by a CGI script will be copied directly to the
error log.

It is not possible to customize the error log by adding or removing information. However, error log entries dealing with particular
requests have corresponding entries in the access log. For example, the above example entry corresponds to an access log entry with
status code 403. Since it is possible to customize the access log, you can obtain more information about error conditions using that
log file.

During testing, it is often useful to continuously monitor the error log for any problems. On unix systems, you can accomplish this
using:

tail -f error_log

Access Log

Related Modules

mod_log_config

Related Directives

CustomLog
LogFormat
SetEnvIf

The server access log records all requests processed by the server. The location and content of the access log are controlled by the
CustomLog directive. The LogFormat directive can be used to simplify the selection of the contents of the logs. This section
describes how to configure the server to record information in the access log.

Of course, storing the information in the access log is only the start of log management. The next step is to analyze this information
to produce useful statistics. Log analysis in general is beyond the scope of this document, and not really part of the job of the web
server itself. For more information about this topic, and for applications which perform log analysis, check the Open Directory or
Yahoo.

Various versions of Apache httpd have used other modules and directives to control access logging, including mod_log_referer,
mod_log_agent, and the TransferLog directive. The CustomLog directive now subsumes the functionality of all the older
directives.

The format of the access log is highly configurable. The format is specified using a format string that looks much like a C-style
printf(1) format string. Some examples are presented in the next sections. For a complete list of the possible contents of the format
string, see the mod_log_config documentation.

Log Files - Apache HTTP Server

http://httpd.apache.org/docs/logs.html (2 of 7) [12/05/2001 4:48:23 PM]

http://dmoz.org/Computers/Software/Internet/Site_Management/Log_analysis/
http://dir.yahoo.com/Computers_and_Internet/Software/Internet/World_Wide_Web/Servers/Log_Analysis_Tools/

Common Log Format

A typical configuration for the access log might look as follows.

LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log common

This defines the nickname common and associates it with a particular log format string. The format string consists of percent
directives, each of which tell the server to log a particular piece of information. Literal characters may also be placed in the format
string and will be copied directly into the log output. The quote character (") must be escaped by placing a back-slash before it to
prevent it from being interpreted as the end of the format string. The format string may also contain the special control characters
"\n" for new-line and "\t" for tab.

The CustomLog directive sets up a new log file using the defined nickname. The filename for the access log is relative to the
ServerRoot unless it begins with a slash.

The above configuration will write log entries in a format known as the Common Log Format (CLF). This standard format can be
produced by many different web servers and read by many log analysis programs. The log file entries produced in CLF will look
something like this:

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0"
200 2326

Each part of this log entry is described below.

127.0.0.1 (%h)

This is the IP address of the client (remote host) which made the request to the server. If HostNameLookups is set to On,
then the server will try to determine the hostname and log it in place of the IP address. However, this configuration is not
recommended since it can significantly slow the server. Instead, it is best to use a log post-processor such as logresolve to
determine the hostnames. The IP address reported here is not necessarily the address of the machine at which the user is
sitting. If a proxy server exists between the user and the server, this address will be the address of the proxy, rather than the
originating machine.

- (%l)

The "hyphen" in the output indicates that the requested piece of information is not available. In this case, the information
that is not available is the RFC 1413 identity of the client determined by identd on the clients machine. This information
is highly unreliable and should almost never be used except on tightly controlled internal networks. Apache httpd will not
even attempt to determine this information unless IdentityCheck is set to On.

frank (%u)

This is the userid of the person requesting the document as determined by HTTP authentication. The same value is typically
provided to CGI scripts in the REMOTE_USER environment variable. If the status code for the request (see below) is 401,
then this value should not be trusted because the user is not yet authenticated. If the document is not password protected,
this entry will be "-" just like the previous one.

[10/Oct/2000:13:55:36 -0700] (%t)

The time that the server finished processing the request. The format is:

[day/month/year:hour:minute:second zone]
day = 2*digit
month = 3*letter
year = 4*digit
hour = 2*digit
minute = 2*digit
second = 2*digit
zone = (`+' | `-') 4*digit

It is possible to have the time displayed in another format by specifying %{format}t in the log format string, where
format is as in strftime(3) from the C standard library.

"GET /apache_pb.gif HTTP/1.0" (\"%r\")

The request line from the client is given in double quotes. The request line contains a great deal of useful information. First,
the method used by the client is GET. Second, the client requested the resource /apache_pb.gif, and third, the client
used the protocol HTTP/1.0. It is also possible to log one or more parts of the request line independently. For example, the

Log Files - Apache HTTP Server

http://httpd.apache.org/docs/logs.html (3 of 7) [12/05/2001 4:48:23 PM]

format string "%m %U%q %H" will log the method, path, query-string, and protocol, resulting in exactly the same output as
"%r".

200 (%>s)

This is the status code that the server sends back to the client. This information is very valuable, because it reveals whether
the request resulted in a successful response (codes beginning in 2), a redirection (codes beginning in 3), an error caused by
the client (codes beginning in 4), or an error in the server (codes beginning in 5). The full list of possible status codes can be
found in the HTTP specification (RFC2616 section 10).

2326 (%b)

The last entry indicates the size of the object returned to the client, not including the response headers. If no content was
returned to the client, this value will be "-". To log "0" for no content, use %B instead.

Combined Log Format

Another commonly used format string is called the Combined Log Format. It can be used as follows.

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""
combined
CustomLog log/acces_log combined

This format is exactly the same as the Common Log Format, with the addition of two more fields. Each of the additional fields uses
the percent-directive %{header}i, where header can be any HTTP request header. The access log under this format will look
like:

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0"
200 2326 "http://www.example.com/start.html" "Mozilla/4.08 [en] (Win98; I
;Nav)"

The additional fields are:

"http://www.example.com/start.html" (\"%{Referer}i\")

The "Referer" (sic) HTTP request header. This gives the site that the client reports having been referred from. (This should
be the page that links to or includes /apache_pb.gif).

"Mozilla/4.08 [en] (Win98; I ;Nav)" (\"%{User-agent}i\")

The User-Agent HTTP request header. This is the identifying information that the client browser reports about itself.

Multiple Access Logs

Multiple access logs can be created simply by specifying multiple CustomLog directives in the configuration file. For example,
the following directives will create three access logs. The first contains the basic CLF information, while the second and third
contain referer and browser information. The last two CustomLog lines show how to mimic the effects of the ReferLog and
AgentLog directives.

LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log common
CustomLog logs/referer_log "%{Referer}i -> %U"
CustomLog logs/agent_log "%{User-agent}i"

This example also shows that it is not necessary to define a nickname with the LogFormat directive. Instead, the log format can be
specified directly in the CustomLog directive.

Conditional Logging

There are times when it is convenient to exclude certain entries from the access logs based on characteristics of the client request.
This is easily accomplished with the help of environment variables. First, an environment variable must be set to indicate that the
request meets certain conditions. This is usually accomplished with SetEnvIf. Then the env= clause of the CustomLog directive is
used to include or exclude requests where the environment variable is set. Some examples:

Mark requests from the loop-back interface
SetEnvIf Remote_Addr "127\.0\.0\.1" dontlog
Mark requests for the robots.txt file

Log Files - Apache HTTP Server

http://httpd.apache.org/docs/logs.html (4 of 7) [12/05/2001 4:48:23 PM]

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

SetEnvIf Request_URI "^/robots\.txt$" dontlog
Log what remains
CustomLog logs/access_log common env=!dontlog

As another example, consider logging requests from english-speakers to one log file, and non-english speakers to a different log file.

SetEnvIf Accept-Language "en" english
CustomLog logs/english_log common env=english
CustomLog logs/non_english_log common env=!english

Although we have just shown that conditional logging is very powerful and flexibly, it is not the only way to control the contents of
the logs. Log files are more useful when they contain a complete record of server activity. It is often easier to simply post-process
the log files to remove requests that you do not want to consider.

Log Rotation

On even a moderately busy server, the quantity of information stored in the log files is very large. The access log file typically
grows 1 MB or more per 10,000 requests. It will consequently be necessary to periodically rotate the log files by moving or deleting
the existing logs. This cannot be done while the server is running, because Apache will continue writing to the old log file as long as
it holds the file open. Instead, the server must be restarted after the log files are moved or deleted so that it will open new log files.

By using a graceful restart, the server can be instructed to open new log files without losing any existing or pending connections
from clients. However, in order to accomplish this, the server must continue to write to the old log files while it finishes serving old
requests. It is therefore necessary to wait for some time after the restart before doing any processing on the log files. A typical
scenario that simply rotates the logs and compresses the old logs to save space is:

mv access_log access_log.old
mv error_log error_log.old
apachectl graceful
sleep 600
gzip access_log.old error_log.old

Another way to perform log rotation is using piped logs as discussed in the next section.

Piped Logs

Apache httpd is capable of writing error and access log files through a pipe to another process, rather than directly to a file. This
capability dramatically increases the flexibility of logging, without adding code to the main server. In order to write logs to a pipe,
simply replace the filename with the pipe character "|", followed by the name of the executable which should accept log entries on
its standard input. Apache will start the piped-log process when the server starts, and will restart it if it crashes while the server is
running. (This last feature is why we can refer to this technique as "reliable piped logging".)

Piped log processes are spawned by the parent Apache httpd process, and inherit the userid of that process. This means that piped
log programs usually run as root. It is therefore very important to keep the programs simple and secure.

Some simple examples using piped logs:

compressed logs
CustomLog "|/usr/bin/gzip -c >> /var/log/access_log.gz" common
almost-real-time name resolution
CustomLog "|/usr/local/apache/bin/logresolve >> /var/log/access_log" common

Notice that quotes are used to enclose the entire command that will be called for the pipe. Although these examples are for the
access log, the same technique can be used for the error log.

One important use of piped logs is to allow log rotation without having to restart the server. The Apache HTTP Server includes a
simple program called rotatelogs for this purpose. For example, to rotate the logs every 24 hours, you can use:

CustomLog "|/usr/local/apache/bin/rotatelogs /var/log/access_log 86400"

Log Files - Apache HTTP Server

http://httpd.apache.org/docs/logs.html (5 of 7) [12/05/2001 4:48:23 PM]

common

A similar, but much more flexible log rotation program called cronolog is available at an external site.

As with conditional logging, piped logs are a very powerful tool, but they should not be used where a simpler solution like off-line
post-processing is available.

Virtual Hosts

When running a server with many virtual hosts, there are several options for dealing with log files. First, it is possible to use logs
exactly as in a single-host server. Simply by placing the logging directives outside the <VirtualHost> sections in the main
server context, it is possible to log all requests in the same access log and error log. This technique does not allow for easy
collection of statistics on individual virtual hosts.

If CustomLog or ErrorLog directives are placed inside a <VirtualHost> section, all requests or errors for that virtual host
will be logged only to the specified file. Any virtual host which does not have logging directives will still have its requests sent to
the main server logs. This technique is very useful for a small number of virtual hosts, but if the number of hosts is very large, it can
be complicated to manage. In addition, it can often create problems with insufficient file descriptors.

For the access log, there is a very good compromise. By adding information on the virtual host to the log format string, it is possible
to log all hosts to the same log, and later split the log into individual files. For example, consider the following directives.

LogFormat "%v %l %u %t \"%r\" %>s %b" comonvhost
CustomLog logs/access_log comonvhost

The %v is used to log the name of the virtual host that is serving the request. Then a program like split-logfile can be used to
post-process the access log in order to split it into one file per virtual host.

Unfortunately, no similar technique is available for the error log, so you must choose between mixing all virtual hosts in the same
error log and using one error log per virtual host.

Other Log Files

Related Modules

mod_cgi
mod_rewrite

Related Directives

PidFile
RewriteLog
RewriteLogLevel
ScriptLog
ScriptLogLength
ScriptLogBuffer

PID File

On startup, Apache httpd saves the process id of the parent httpd process to the file logs/httpd.pid. This filename can be
changed with the PidFile directive. The process-id is for use by the administrator in restarting and terminating the daemon by
sending signals to the parent process; on Windows, use the -k command line option instead. For more information see the Stopping
and Restarting page.

Log Files - Apache HTTP Server

http://httpd.apache.org/docs/logs.html (6 of 7) [12/05/2001 4:48:23 PM]

http://www.ford-mason.co.uk/resources/cronolog/
http://httpd.apache.org/docs/vhosts/

Script Log

In order to aid in debugging, the ScriptLog directive allows you to record the input to and output from CGI scripts. This should only
be used in testing - not for live servers. More information is available in the mod_cgi documentation.

Rewrite Log

When using the powerful and complex features of mod_rewrite, it is almost always necessary to use the RewriteLog to help in
debugging. This log file produces a detailed analysis of how the rewriting engine transforms requests. The level of detail is
controlled by the RewriteLogLevel directive.

Apache HTTP Server

Log Files - Apache HTTP Server

http://httpd.apache.org/docs/logs.html (7 of 7) [12/05/2001 4:48:23 PM]

Apache HTTP Server

Mapping URLs to Filesystem Locations

This document explains how Apache uses the URL of a request to determine the filesystem location from which to serve a file.

DocumentRoot●

Files Outside the DocumentRoot●

User Directories●

URL Redirection●

Rewrite Engine●

File Not Found●

Related Modules

mod_alias
mod_rewrite
mod_userdir
mod_speling
mod_vhost_alias

Related Directives

Alias
AliasMatch
CheckSpelling
DocumentRoot
ErrorDocument
Options
Redirect
RedirectMatch
RewriteCond
RewriteRule
ScriptAlias
ScriptAliasMatch
UserDir

DocumentRoot

In deciding what file to serve for a given request, Apache's default behavior is to take the URL-Path for the request (the part of the
URL following the hostname and port) and add it to the end of the DocumentRoot specified in your configuration files. Therefore,
the files and directories underneath the DocumentRoot make up the basic document tree which will be visible from the web.

Apache is also capable of Virtual Hosting, where the server receives requests for more than one host. In this case, a different
DocumentRoot can be specified for each virtual host, or alternatively, the directives provided by the module mod_vhost_alias can
be used to dynamically determine the appropriate place from which to serve content based on the requested IP address or hostname.

Files Outside the DocumentRoot

There are frequently circumstances where it is necessary to allow web access to parts of the filesystem that are not strictly
underneath the DocumentRoot. Apache offers several different ways to accomplish this. On Unix systems, symbolic links can bring
other parts of the filesystem under the DocumentRoot. For security reasons, Apache will follow symbolic links only if the

Mapping URLs to Filesystem Locations - Apache HTTP Server

http://httpd.apache.org/docs/urlmapping.html (1 of 3) [12/05/2001 4:48:24 PM]

http://httpd.apache.org/docs/vhosts/

Options setting for the relevant directory includes FollowSymLinks or SymLinksIfOwnerMatch.

Alternatively, the Alias directive will map any part of the filesystem into the web space. For example, with

Alias /docs /var/web/

the URL http://www.example.com/docs/dir/file.html will be served from /var/web/dir/file.html. The
ScriptAlias directive works the same way, with the additional effect that all content located at the target path is treated as CGI
scripts.

For situations where you require additional flexibility, you can use the AliasMatch and ScriptAliasMatch directives to do powerful
regular-expression based matching and substitution. For example,

ScriptAliasMatch ^/~([^/]*)/cgi-bin/(.*) /home/$1/cgi-bin/$2

will map a request to http://example.com/~user/cgi-bin/script.cgi to the path
/home/user/cgi-bin/script.cgi and will treat the resulting file as a CGI script.

User Directories

Traditionally on Unix systems, the home directory of a particular user can be referred to as ~user/. The module mod_userdir
extends this idea to the web by allowing files under each user's home directory to be accessed using URLs such as the following.

http://www.example.com/~user/file.html

For security reasons, it is inappropriate to give direct access to a user's home directory from the web. Therefore, the UserDir
directive specifies a directory underneath the user's home directory where web files are located. Using the default setting of
Userdir public_html, the above URL maps to a file at a directory like /home/user/public_html/file.html
where /home/user/ is the user's home directory as specified in /etc/passwd.

There are also several other forms of the Userdir directive which you can use on systems where /etc/passwd does not contain
the location of the home directory.

Some people find the "~" symbol (which is often encoded on the web as %7e) to be awkward and prefer to use an alternate string to
represent user directories. This functionality is not supported by mod_userdir. However, if users' home directories are structured in a
regular way, then it is possible to use the AliasMatch directive to achieve the desired effect. For example, to make
http://www.example.com/upages/user/file.html map to /home/user/public_html/file.html, use the
following AliasMatch directive:

AliasMatch ^/upages/([^/]*)/?(.*) /home/$1/public_html/$2

URL Redirection

The configuration directives discussed in the above sections tell Apache to get content from a specific place in the filesystem and
return it to the client. Sometimes, it is desirable instead to inform the client that the requested content is located at a different URL,
and instruct the client to make a new request with the new URL. This is called redirection and is implemented by the Redirect
directive. For example, if the contents of the directory /foo/ under the DocumentRoot are moved to the new directory /bar/,
you can instruct clients to request the content at the new location as follows:

Redirect permanent /foo/ http://www.example.com/bar/

This will redirect any URL-Path starting in /foo/ to the same URL path on the www.example.com server with /bar/
substituted for /foo/. You can redirect clients to any server, not only the origin server.

Apache also provides a RedirectMatch directive for more complicated rewriting problems. For example, to redirect requests for the
site home page to a different site, but leave all other requests alone, use the following configuration:

RedirectMatch permanent ^/$ http://www.example.com/startpage.html

Alternatively, to temporarily redirect all pages on a site to one particular page, use the following:

RedirectMatch temp .* http://www.example.com/startpage.html

Mapping URLs to Filesystem Locations - Apache HTTP Server

http://httpd.apache.org/docs/urlmapping.html (2 of 3) [12/05/2001 4:48:24 PM]

Rewriting Engine

When even more powerful substitution is required, the rewriting engine provided by mod_rewrite can be useful. The directives
provided by this module use characteristics of the request such as browser type or source IP address in deciding from where to serve
content. In addition, mod_rewrite can use external database files or programs to determine how to handle a request. Many practical
examples employing mod_rewrite are discussed in the URL Rewriting Guide.

File Not Found

Inevitably, URLs will be requested for which no matching file can be found in the filesystem. This can happen for several reasons.
In some cases, it can be a result of moving documents from one location to another. In this case, it is best to use URL redirection to
inform clients of the new location of the resource. In this way, you can assure that old bookmarks and links will continue to work,
even though the resource is at a new location.

Another common cause of "File Not Found" errors is accidental mistyping of URLs, either directly in the browser, or in HTML
links. Apache provides the module mod_speling (sic) to help with this problem. When this module is activated, it will intercept
"File Not Found" errors and look for a resource with a similar filename. If one such file is found, mod_speling will send an HTTP
redirect to the client informing it of the correct location. If several "close" files are found, a list of available alternatives will be
presented to the client.

An especially useful feature of mod_speling, is that it will compare filenames without respect to case. This can help systems where
users are unaware of the case-sensitive nature of URLs and the unix filesystem. But using mod_speling for anything more than the
occasional URL correction can place additional load on the server, since each "incorrect" request is followed by a URL redirection
and a new request from the client.

If all attempts to locate the content fail, Apache returns an error page with HTTP status code 404 (file not found). The appearance of
this page is controlled with the ErrorDocument directive and can be customized in a flexible manner as discussed in the Custom
error responses and International Server Error Responses documents.

Apache HTTP Server

Mapping URLs to Filesystem Locations - Apache HTTP Server

http://httpd.apache.org/docs/urlmapping.html (3 of 3) [12/05/2001 4:48:24 PM]

Apache HTTP Server Version 1.3

Security Tips for Server Configuration

Permissions on ServerRoot Directories●

Server Side Includes●

Non Script Aliased CGI●

Script Aliased CGI●

CGI in General●

Protecting System Settings●

Protect Server Files by Default●

Some hints and tips on security issues in setting up a web server. Some of the suggestions will be general, others specific to Apache.

Permissions on ServerRoot Directories

In typical operation, Apache is started by the root user, and it switches to the user defined by the User directive to serve hits. As is
the case with any command that root executes, you must take care that it is protected from modification by non-root users. Not only
must the files themselves be writeable only by root, but so must the directories, and parents of all directories. For example, if you
choose to place ServerRoot in /usr/local/apache then it is suggested that you create that directory as root, with commands
like these:

 mkdir /usr/local/apache
 cd /usr/local/apache
 mkdir bin conf logs
 chown 0 . bin conf logs
 chgrp 0 . bin conf logs
 chmod 755 . bin conf logs

It is assumed that /, /usr, and /usr/local are only modifiable by root. When you install the httpd executable, you should ensure that it
is similarly protected:

 cp httpd /usr/local/apache/bin
 chown 0 /usr/local/apache/bin/httpd
 chgrp 0 /usr/local/apache/bin/httpd
 chmod 511 /usr/local/apache/bin/httpd

You can create an htdocs subdirectory which is modifiable by other users -- since root never executes any files out of there, and
shouldn't be creating files in there.

If you allow non-root users to modify any files that root either executes or writes on then you open your system to root
compromises. For example, someone could replace the httpd binary so that the next time you start it, it will execute some arbitrary
code. If the logs directory is writeable (by a non-root user), someone could replace a log file with a symlink to some other system
file, and then root might overwrite that file with arbitrary data. If the log files themselves are writeable (by a non-root user), then
someone may be able to overwrite the log itself with bogus data.

Apache HTTP Server: Security Tips

http://httpd.apache.org/docs/misc/security_tips.html (1 of 4) [12/05/2001 4:48:26 PM]

Server Side Includes

Server Side Includes (SSI) present a server administrator with several potential security risks.

The first risk is the increased load on the server. All SSI-enabled files have to be parsed by Apache, whether or not there are any SSI
directives included within the files. While this load increase is minor, in a shared server environment it can become significant.

SSI files also pose the same risks that are associated with CGI scripts in general. Using the "exec cmd" element, SSI-enabled files
can execute any CGI script or program under the permissions of the user and group Apache runs as, as configured in httpd.conf.
That should definitely give server administrators pause.

There are ways to enhance the security of SSI files while still taking advantage of the benefits they provide.

To isolate the damage a wayward SSI file can cause, a server administrator can enable suexec as described in the CGI in General
section.

Enabling SSI for files with .html or .htm extensions can be dangerous. This is especially true in a shared, or high traffic, server
environment. SSI-enabled files should have a separate extension, such as the conventional .shtml. This helps keep server load at a
minimum and allows for easier management of risk.

Another solution is to disable the ability to run scripts and programs from SSI pages. To do this replace Includes with
IncludesNOEXEC in the Options directive. Note that users may still use <--#include virtual="..." --> to execute CGI scripts if
these scripts are in directories desginated by a ScriptAlias directive.

Non Script Aliased CGI

Allowing users to execute CGI scripts in any directory should only be considered if;

You trust your users not to write scripts which will deliberately or accidentally expose your system to an attack.1.

You consider security at your site to be so feeble in other areas, as to make one more potential hole irrelevant.2.

You have no users, and nobody ever visits your server.3.

Script Aliased CGI

Limiting CGI to special directories gives the admin control over what goes into those directories. This is inevitably more secure
than non script aliased CGI, but only if users with write access to the directories are trusted or the admin is willing to test each
new CGI script/program for potential security holes.

Most sites choose this option over the non script aliased CGI approach.

CGI in General

Always remember that you must trust the writers of the CGI script/programs or your ability to spot potential security holes in CGI,
whether they were deliberate or accidental.

All the CGI scripts will run as the same user, so they have potential to conflict (accidentally or deliberately) with other scripts e.g.
User A hates User B, so he writes a script to trash User B's CGI database. One program which can be used to allow scripts to run as
different users is suEXEC which is included with Apache as of 1.2 and is called from special hooks in the Apache server code.
Another popular way of doing this is with CGIWrap.

Apache HTTP Server: Security Tips

http://httpd.apache.org/docs/misc/security_tips.html (2 of 4) [12/05/2001 4:48:26 PM]

http://wwwcgi.umr.edu/~cgiwrap/

Protecting System Settings

To run a really tight ship, you'll want to stop users from setting up .htaccess files which can override security features you've
configured. Here's one way to do it...

In the server configuration file, put

<Directory />
AllowOverride None
Options None
Allow from all
</Directory>

Then setup for specific directories

This stops all overrides, Includes and accesses in all directories apart from those named.

Protect Server Files by Default

One aspect of Apache which is occasionally misunderstood is the feature of default access. That is, unless you take steps to change
it, if the server can find its way to a file through normal URL mapping rules, it can serve it to clients.

For instance, consider the following example:

cd /; ln -s / public_html1.

Accessing http://localhost/~root/2.

This would allow clients to walk through the entire filesystem. To work around this, add the following block to your server's
configuration:

 <Directory />
 Order Deny,Allow
 Deny from all
 </Directory>

This will forbid default access to filesystem locations. Add appropriate <Directory> blocks to allow access only in those areas you
wish. For example,

 <Directory /usr/users/*/public_html>
 Order Deny,Allow
 Allow from all
 </Directory>
 <Directory /usr/local/httpd>
 Order Deny,Allow
 Allow from all
 </Directory>

Pay particular attention to the interactions of <Location> and <Directory> directives; for instance, even if <Directory /> denies
access, a <Location /> directive might overturn it.

Also be wary of playing games with the UserDir directive; setting it to something like "./" would have the same effect, for root, as
the first example above. If you are using Apache 1.3 or above, we strongly recommend that you include the following line in your
server configuration files:

UserDir disabled root

Please send any other useful security tips to The Apache Group by filling out a problem report. If you are confident you have found
a security bug in the Apache source code itself, please let us know.

Apache HTTP Server: Security Tips

http://httpd.apache.org/docs/misc/security_tips.html (3 of 4) [12/05/2001 4:48:26 PM]

http://bugs.apache.org/
http://httpd.apache.org/bug_report.html

Apache HTTP Server Version 1.3

Apache HTTP Server: Security Tips

http://httpd.apache.org/docs/misc/security_tips.html (4 of 4) [12/05/2001 4:48:26 PM]

http://httpd.apache.org/docs/misc/

Apache HTTP Server

Apache 1.3
Dynamic Shared Object (DSO)

Support

Originally written by
Ralf S. Engelschall <rse@apache.org>, April 1998

Background

On modern Unix derivatives there exists a nifty mechanism usually called dynamic linking/loading of Dynamic Shared
Objects (DSO) which provides a way to build a piece of program code in a special format for loading it at run-time into
the address space of an executable program.

This loading can usually be done in two ways: Automatically by a system program called ld.so when an executable
program is started or manually from within the executing program via a programmatic system interface to the Unix
loader through the system calls dlopen()/dlsym().

In the first way the DSO's are usually called shared libraries or DSO libraries and named libfoo.so or
libfoo.so.1.2. They reside in a system directory (usually /usr/lib) and the link to the executable program is
established at build-time by specifying -lfoo to the linker command. This hard-codes library references into the
executable program file so that at start-time the Unix loader is able to locate libfoo.so in /usr/lib, in paths
hard-coded via linker-options like -R or in paths configured via the environment variable LD_LIBRARY_PATH. It
then resolves any (yet unresolved) symbols in the executable program which are available in the DSO.

Symbols in the executable program are usually not referenced by the DSO (because it's a reusable library of general
code) and hence no further resolving has to be done. The executable program has no need to do anything on its own to
use the symbols from the DSO because the complete resolving is done by the Unix loader. (In fact, the code to invoke
ld.so is part of the run-time startup code which is linked into every executable program which has been bound
non-static). The advantage of dynamic loading of common library code is obvious: the library code needs to be stored
only once, in a system library like libc.so, saving disk space for every program.

In the second way the DSO's are usually called shared objects or DSO files and can be named with an arbitrary
extension (although the canonical name is foo.so). These files usually stay inside a program-specific directory and
there is no automatically established link to the executable program where they are used. Instead the executable
program manually loads the DSO at run-time into its address space via dlopen(). At this time no resolving of
symbols from the DSO for the executable program is done. But instead the Unix loader automatically resolves any (yet
unresolved) symbols in the DSO from the set of symbols exported by the executable program and its already loaded
DSO libraries (especially all symbols from the ubiquitous libc.so). This way the DSO gets knowledge of the
executable program's symbol set as if it had been statically linked with it in the first place.

Finally, to take advantage of the DSO's API the executable program has to resolve particular symbols from the DSO
via dlsym() for later use inside dispatch tables etc. In other words: The executable program has to manually resolve
every symbol it needs to be able to use it. The advantage of such a mechanism is that optional program parts need not
be loaded (and thus do not spend memory) until they are needed by the program in question. When required, these
program parts can be loaded dynamically to extend the base program's functionality.

Although this DSO mechanism sounds straightforward there is at least one difficult step here: The resolving of
symbols from the executable program for the DSO when using a DSO to extend a program (the second way). Why?
Because "reverse resolving" DSO symbols from the executable program's symbol set is against the library design
(where the library has no knowledge about the programs it is used by) and is neither available under all platforms nor
standardized. In practice the executable program's global symbols are often not re-exported and thus not available for

Apache 1.3 Dynamic Shared Object (DSO) support

http://httpd.apache.org/docs/dso.html (1 of 5) [12/05/2001 4:48:28 PM]

use in a DSO. Finding a way to force the linker to export all global symbols is the main problem one has to solve when
using DSO for extending a program at run-time.

Windows and NetWare provide similar facilities, although they are implemented somewhat differently than the
description of Unix DSO throughout this document. In particular, DSO modules (DLL's and NLM's, respectively) are
built quite differently than their Unix cousins. This document does not attempt to explore the topic of building DSO
modules on these platforms. The description of mod_so and its configuration, however, are similar.

Practical Usage

The shared library approach is the typical one, because it is what the DSO mechanism was designed for, hence it is
used for nearly all types of libraries the operating system provides. On the other hand using shared objects for
extending a program is not used by a lot of programs.

As of 1998 there are only a few software packages available which use the DSO mechanism to actually extend their
functionality at run-time: Perl 5 (via its XS mechanism and the DynaLoader module), Netscape Server, etc. Starting
with version 1.3, Apache joined the crew, because Apache already uses a module concept to extend its functionality
and internally uses a dispatch-list-based approach to link external modules into the Apache core functionality. So,
Apache is really predestined for using DSO to load its modules at run-time.

As of Apache 1.3, the configuration system supports two optional features for taking advantage of the modular DSO
approach: compilation of the Apache core program into a DSO library for shared usage and compilation of the Apache
modules into DSO files for explicit loading at run-time.

Implementation

The DSO support for loading individual Apache modules is based on a module named mod_so.c which has to be
statically compiled into the Apache core. It is the only module besides http_core.c which cannot be put into a
DSO itself (bootstrapping!). Practically all other distributed Apache modules then can then be placed into a DSO by
individually enabling the DSO build for them via configure's --enable-shared option (see top-level
INSTALL file) or by changing the AddModule command in your src/Configuration into a SharedModule
command (see src/INSTALL file). After a module is compiled into a DSO named mod_foo.so you can use
mod_so's LoadModule command in your httpd.conf file to load this module at server startup or restart.

To simplify this creation of DSO files for Apache modules (especially for third-party modules) a new support program
named apxs (APache eXtenSion) is available. It can be used to build DSO based modules outside of the Apache source
tree. The idea is simple: When installing Apache the configure's make install procedure installs the Apache C
header files and puts the platform-dependent compiler and linker flags for building DSO files into the apxs program.
This way the user can use apxs to compile his Apache module sources without the Apache distribution source tree
and without having to fiddle with the platform-dependent compiler and linker flags for DSO support.

To place the complete Apache core program into a DSO library (only required on some of the supported platforms to
force the linker to export the apache core symbols -- a prerequisite for the DSO modularization) the rule
SHARED_CORE has to be enabled via configure's --enable-rule=SHARED_CORE option (see top-level
INSTALL file) or by changing the Rule command in your Configuration file to Rule SHARED_CORE=yes
(see src/INSTALL file). The Apache core code is then placed into a DSO library named libhttpd.so. Because
one cannot link a DSO against static libraries on all platforms, an additional executable program named
libhttpd.ep is created which both binds this static code and provides a stub for the main() function. Finally the
httpd executable program itself is replaced by a bootstrapping code which automatically makes sure the Unix loader
is able to load and start libhttpd.ep by providing the LD_LIBRARY_PATH to libhttpd.so.

Supported Platforms

Apache's src/Configure script currently has only limited but adequate built-in knowledge on how to compile DSO
files, because as already mentioned this is heavily platform-dependent. Nevertheless all major Unix platforms are
supported. The definitive current state (May 1999) is this:

Out-of-the-box supported platforms:
(actually tested versions in parenthesis)

o FreeBSD (2.1.5, 2.2.x, 3.x, 4.x)

●

Apache 1.3 Dynamic Shared Object (DSO) support

http://httpd.apache.org/docs/dso.html (2 of 5) [12/05/2001 4:48:28 PM]

o OpenBSD (2.x)
o NetBSD (1.3.1)
o BSDI (3.x, 4.x)
o Linux (Debian/1.3.1, RedHat/4.2)
o Solaris (2.4, 2.5, 2.6, 2.7)
o SunOS (4.1.3)
o Digital UNIX (4.0)
o IRIX (5.3, 6.2)
o HP/UX (10.20)
o UnixWare (2.01, 2.1.2)
o SCO (5.0.4)
o AIX (3.2, 4.1.5, 4.2, 4.3)
o ReliantUNIX/SINIX (5.43)
o SVR4 (-)
o Mac OS X Server (1.0)
o Mac OS (10.0 preview 1)
o OpenStep/Mach (4.2)
o DGUX (??)
o NetWare (5.1)
o Windows (95, 98, NT 4.0, 2000)

Explicitly unsupported platforms:

o Ultrix (no dlopen-style interface under this platform)

●

Usage Summary

To give you an overview of the DSO features of Apache 1.3, here is a short and concise summary:

Placing the Apache core code (all the stuff which usually forms the httpd binary) into a DSO
libhttpd.so, an executable program libhttpd.ep and a bootstrapping executable program httpd
(Notice: this is only required on some of the supported platforms to force the linker to export the Apache core
symbols, which in turn is a prerequisite for the DSO modularization):

Build and install via configure (preferred):

$./configure --prefix=/path/to/install
 --enable-rule=SHARED_CORE ...
$ make install

❍

Build and install manually:

- Edit src/Configuration:
 << Rule SHARED_CORE=default
 >> Rule SHARED_CORE=yes
 << EXTRA_CFLAGS=
 >> EXTRA_CFLAGS= -DSHARED_CORE_DIR=\"/path/to/install/libexec\"
$ make
$ cp src/libhttpd.so* /path/to/install/libexec/
$ cp src/libhttpd.ep /path/to/install/libexec/
$ cp src/httpd /path/to/install/bin/

❍

1.

Build and install a distributed Apache module, say mod_foo.c, into its own DSO mod_foo.so:

Build and install via configure (preferred):

$./configure --prefix=/path/to/install
 --enable-shared=foo
$ make install

❍

2.

Apache 1.3 Dynamic Shared Object (DSO) support

http://httpd.apache.org/docs/dso.html (3 of 5) [12/05/2001 4:48:28 PM]

Build and install manually:

- Edit src/Configuration:
 << AddModule modules/xxxx/mod_foo.o
 >> SharedModule modules/xxxx/mod_foo.so
$ make
$ cp src/xxxx/mod_foo.so /path/to/install/libexec
- Edit /path/to/install/etc/httpd.conf
 >> LoadModule foo_module /path/to/install/libexec/mod_foo.so

❍

Build and install a third-party Apache module, say mod_foo.c, into its own DSO mod_foo.so

Build and install via configure (preferred):

$./configure --add-module=/path/to/3rdparty/mod_foo.c
 --enable-shared=foo
$ make install

❍

Build and install manually:

$ cp /path/to/3rdparty/mod_foo.c /path/to/apache-1.3/src/modules/extra/
- Edit src/Configuration:
 >> SharedModule modules/extra/mod_foo.so
$ make
$ cp src/xxxx/mod_foo.so /path/to/install/libexec
- Edit /path/to/install/etc/httpd.conf
 >> LoadModule foo_module /path/to/install/libexec/mod_foo.so

❍

3.

Build and install a third-party Apache module, say mod_foo.c, into its own DSO mod_foo.so outside of
the Apache source tree:

Build and install via apxs:

$ cd /path/to/3rdparty
$ apxs -c mod_foo.c
$ apxs -i -a -n foo mod_foo.so

❍

4.

Advantages & Disadvantages

The above DSO based features of Apache 1.3 have the following advantages:

The server package is more flexible at run-time because the actual server process can be assembled at run-time
via LoadModule httpd.conf configuration commands instead of Configuration AddModule
commands at build-time. For instance this way one is able to run different server instances (standard & SSL
version, minimalistic & powered up version [mod_perl, PHP3], etc.) with only one Apache installation.

●

The server package can be easily extended with third-party modules even after installation. This is at least a
great benefit for vendor package maintainers who can create a Apache core package and additional packages
containing extensions like PHP3, mod_perl, mod_fastcgi, etc.

●

Easier Apache module prototyping because with the DSO/apxs pair you can both work outside the Apache
source tree and only need an apxs -i command followed by an apachectl restart to bring a new
version of your currently developed module into the running Apache server.

●

DSO has the following disadvantages:

The DSO mechanism cannot be used on every platform because not all operating systems support dynamic
loading of code into the address space of a program.

●

Apache 1.3 Dynamic Shared Object (DSO) support

http://httpd.apache.org/docs/dso.html (4 of 5) [12/05/2001 4:48:28 PM]

The server is approximately 20% slower at startup time because of the symbol resolving overhead the Unix
loader now has to do.

●

The server is approximately 5% slower at execution time under some platforms because position independent
code (PIC) sometimes needs complicated assembler tricks for relative addressing which are not necessarily as
fast as absolute addressing.

●

Because DSO modules cannot be linked against other DSO-based libraries (ld -lfoo) on all platforms (for
instance a.out-based platforms usually don't provide this functionality while ELF-based platforms do) you
cannot use the DSO mechanism for all types of modules. Or in other words, modules compiled as DSO files
are restricted to only use symbols from the Apache core, from the C library (libc) and all other dynamic or
static libraries used by the Apache core, or from static library archives (libfoo.a) containing position
independent code. The only chances to use other code is to either make sure the Apache core itself already
contains a reference to it, loading the code yourself via dlopen() or enabling the SHARED_CHAIN rule
while building Apache when your platform supports linking DSO files against DSO libraries.

●

Under some platforms (many SVR4 systems) there is no way to force the linker to export all global symbols
for use in DSO's when linking the Apache httpd executable program. But without the visibility of the Apache
core symbols no standard Apache module could be used as a DSO. The only chance here is to use the
SHARED_CORE feature because this way the global symbols are forced to be exported. As a consequence the
Apache src/Configure script automatically enforces SHARED_CORE on these platforms when DSO
features are used in the Configuration file or on the configure command line.

●

Apache HTTP Server

Apache 1.3 Dynamic Shared Object (DSO) support

http://httpd.apache.org/docs/dso.html (5 of 5) [12/05/2001 4:48:28 PM]

Apache HTTP Server

Content Negotiation

Apache's support for content negotiation has been updated to meet the HTTP/1.1 specification. It can choose the best representation
of a resource based on the browser-supplied preferences for media type, languages, character set and encoding. It is also implements
a couple of features to give more intelligent handling of requests from browsers which send incomplete negotiation information.

Content negotiation is provided by the mod_negotiation module, which is compiled in by default.

About Content Negotiation

A resource may be available in several different representations. For example, it might be available in different languages or
different media types, or a combination. One way of selecting the most appropriate choice is to give the user an index page, and let
them select. However it is often possible for the server to choose automatically. This works because browsers can send as part of
each request information about what representations they prefer. For example, a browser could indicate that it would like to see
information in French, if possible, else English will do. Browsers indicate their preferences by headers in the request. To request
only French representations, the browser would send

 Accept-Language: fr

Note that this preference will only be applied when there is a choice of representations and they vary by language.

As an example of a more complex request, this browser has been configured to accept French and English, but prefer French, and to
accept various media types, preferring HTML over plain text or other text types, and preferring GIF or JPEG over other media
types, but also allowing any other media type as a last resort:

 Accept-Language: fr; q=1.0, en; q=0.5
 Accept: text/html; q=1.0, text/*; q=0.8, image/gif; q=0.6,
 image/jpeg; q=0.6, image/*; q=0.5, */*; q=0.1

Apache 1.2 supports 'server driven' content negotiation, as defined in the HTTP/1.1 specification. It fully supports the Accept,
Accept-Language, Accept-Charset and Accept-Encoding request headers. Apache 1.3.4 also supports 'transparent' content
negotiation, which is an experimental negotiation protocol defined in RFC 2295 and RFC 2296. It does not offer support for 'feature
negotiation' as defined in these RFCs.

A resource is a conceptual entity identified by a URI (RFC 2396). An HTTP server like Apache provides access to representations
of the resource(s) within its namespace, with each representation in the form of a sequence of bytes with a defined media type,
character set, encoding, etc. Each resource may be associated with zero, one, or more than one representation at any given time. If
multiple representations are available, the resource is referred to as negotiable and each of its representations is termed a variant.
The ways in which the variants for a negotiable resource vary are called the dimensions of negotiation.

Negotiation in Apache

In order to negotiate a resource, the server needs to be given information about each of the variants. This is done in one of two
ways:

Using a type map (i.e., a *.var file) which names the files containing the variants explicitly, or●

Using a 'MultiViews' search, where the server does an implicit filename pattern match and chooses from among the results.●

Apache Content Negotiation

http://httpd.apache.org/docs/content-negotiation.html (1 of 6) [12/05/2001 4:48:31 PM]

Using a type-map file

A type map is a document which is associated with the handler named type-map (or, for backwards-compatibility with older
Apache configurations, the mime type application/x-type-map). Note that to use this feature, you must have a handler set
in the configuration that defines a file suffix as type-map; this is best done with a

 AddHandler type-map .var

in the server configuration file. See the comments in the sample config file for more details.

Type map files have an entry for each available variant; these entries consist of contiguous HTTP-format header lines. Entries for
different variants are separated by blank lines. Blank lines are illegal within an entry. It is conventional to begin a map file with an
entry for the combined entity as a whole (although this is not required, and if present will be ignored). An example map file is:

 URI: foo

 URI: foo.en.html
 Content-type: text/html
 Content-language: en

 URI: foo.fr.de.html
 Content-type: text/html;charset=iso-8859-2
 Content-language: fr, de

If the variants have different source qualities, that may be indicated by the "qs" parameter to the media type, as in this picture
(available as jpeg, gif, or ASCII-art):

 URI: foo

 URI: foo.jpeg
 Content-type: image/jpeg; qs=0.8

 URI: foo.gif
 Content-type: image/gif; qs=0.5

 URI: foo.txt
 Content-type: text/plain; qs=0.01

qs values can vary in the range 0.000 to 1.000. Note that any variant with a qs value of 0.000 will never be chosen. Variants with no
'qs' parameter value are given a qs factor of 1.0. The qs parameter indicates the relative 'quality' of this variant compared to the other
available variants, independent of the client's capabilities. For example, a jpeg file is usually of higher source quality than an ascii
file if it is attempting to represent a photograph. However, if the resource being represented is an original ascii art, then an ascii
representation would have a higher source quality than a jpeg representation. A qs value is therefore specific to a given variant
depending on the nature of the resource it represents.

The full list of headers recognized is:

URI:

uri of the file containing the variant (of the given media type, encoded with the given content encoding). These are
interpreted as URLs relative to the map file; they must be on the same server (!), and they must refer to files to which the
client would be granted access if they were to be requested directly.

Content-Type:

media type --- charset, level and "qs" parameters may be given. These are often referred to as MIME types; typical media
types are image/gif, text/plain, or text/html; level=3.

Content-Language:

The languages of the variant, specified as an Internet standard language tag from RFC 1766 (e.g., en for English, kr for
Korean, etc.).

Content-Encoding:

If the file is compressed, or otherwise encoded, rather than containing the actual raw data, this says how that was done.

Apache Content Negotiation

http://httpd.apache.org/docs/content-negotiation.html (2 of 6) [12/05/2001 4:48:31 PM]

Apache only recognizes encodings that are defined by an AddEncoding directive. This normally includes the encodings
x-compress for compress'd files, and x-gzip for gzip'd files. The x- prefix is ignored for encoding comparisons.

Content-Length:

The size of the file. Specifying content lengths in the type-map allows the server to compare file sizes without checking the
actual files.

Description:

A human-readable textual description of the variant. If Apache cannot find any appropriate variant to return, it will return an
error response which lists all available variants instead. Such a variant list will include the human-readable variant
descriptions.

Multiviews

MultiViews is a per-directory option, meaning it can be set with an Options directive within a <Directory>,
<Location> or <Files> section in access.conf, or (if AllowOverride is properly set) in .htaccess files. Note that
Options All does not set MultiViews; you have to ask for it by name.

The effect of MultiViews is as follows: if the server receives a request for /some/dir/foo, if /some/dir has
MultiViews enabled, and /some/dir/foo does not exist, then the server reads the directory looking for files named foo.*, and
effectively fakes up a type map which names all those files, assigning them the same media types and content-encodings it would
have if the client had asked for one of them by name. It then chooses the best match to the client's requirements.

MultiViews may also apply to searches for the file named by the DirectoryIndex directive, if the server is trying to index a
directory. If the configuration files specify

 DirectoryIndex index

then the server will arbitrate between index.html and index.html3 if both are present. If neither are present, and
index.cgi is there, the server will run it.

If one of the files found when reading the directive is a CGI script, it's not obvious what should happen. The code gives that case
special treatment --- if the request was a POST, or a GET with QUERY_ARGS or PATH_INFO, the script is given an extremely
high quality rating, and generally invoked; otherwise it is given an extremely low quality rating, which generally causes one of the
other views (if any) to be retrieved.

The Negotiation Methods

After Apache has obtained a list of the variants for a given resource, either from a type-map file or from the filenames in the
directory, it invokes one of two methods to decide on the 'best' variant to return, if any. It is not necessary to know any of the details
of how negotiation actually takes place in order to use Apache's content negotiation features. However the rest of this document
explains the methods used for those interested.

There are two negotiation methods:

Server driven negotiation with the Apache algorithm is used in the normal case. The Apache algorithm is explained in
more detail below. When this algorithm is used, Apache can sometimes 'fiddle' the quality factor of a particular dimension
to achieve a better result. The ways Apache can fiddle quality factors is explained in more detail below.

1.

Transparent content negotiation is used when the browser specifically requests this through the mechanism defined in
RFC 2295. This negotiation method gives the browser full control over deciding on the 'best' variant, the result is therefore
dependent on the specific algorithms used by the browser. As part of the transparent negotiation process, the browser can
ask Apache to run the 'remote variant selection algorithm' defined in RFC 2296.

2.

Dimensions of Negotiation

Dimension Notes
Media Type Browser indicates preferences with the Accept header field. Each item can have an associated quality factor. Variant

description can also have a quality factor (the "qs" parameter).

Apache Content Negotiation

http://httpd.apache.org/docs/content-negotiation.html (3 of 6) [12/05/2001 4:48:31 PM]

Language Browser indicates preferences with the Accept-Language header field. Each item can have a quality factor. Variants
can be associated with none, one or more than one language.

Encoding Browser indicates preference with the Accept-Encoding header field. Each item can have a quality factor.
Charset Browser indicates preference with the Accept-Charset header field. Each item can have a quality factor. Variants can

indicate a charset as a parameter of the media type.

Apache Negotiation Algorithm

Apache can use the following algorithm to select the 'best' variant (if any) to return to the browser. This algorithm is not further
configurable. It operates as follows:

First, for each dimension of the negotiation, check the appropriate Accept* header field and assign a quality to each variant.
If the Accept* header for any dimension implies that this variant is not acceptable, eliminate it. If no variants remain, go to
step 4.

1.

Select the 'best' variant by a process of elimination. Each of the following tests is applied in order. Any variants not selected
at each test are eliminated. After each test, if only one variant remains, select it as the best match and proceed to step 3. If
more than one variant remains, move on to the next test.

Multiply the quality factor from the Accept header with the quality-of-source factor for this variant's media type,
and select the variants with the highest value.

1.

Select the variants with the highest language quality factor.2.

Select the variants with the best language match, using either the order of languages in the Accept-Language header
(if present), or else the order of languages in the LanguagePriority directive (if present).

3.

Select the variants with the highest 'level' media parameter (used to give the version of text/html media types).4.

Select variants with the best charset media parameters, as given on the Accept-Charset header line. Charset
ISO-8859-1 is acceptable unless explicitly excluded. Variants with a text/* media type but not explicitly
associated with a particular charset are assumed to be in ISO-8859-1.

5.

Select those variants which have associated charset media parameters that are not ISO-8859-1. If there are no such
variants, select all variants instead.

6.

Select the variants with the best encoding. If there are variants with an encoding that is acceptable to the user-agent,
select only these variants. Otherwise if there is a mix of encoded and non-encoded variants, select only the
unencoded variants. If either all variants are encoded or all variants are not encoded, select all variants.

7.

Select the variants with the smallest content length.8.

Select the first variant of those remaining. This will be either the first listed in the type-map file, or when variants
are read from the directory, the one whose file name comes first when sorted using ASCII code order.

9.

2.

The algorithm has now selected one 'best' variant, so return it as the response. The HTTP response header Vary is set to
indicate the dimensions of negotiation (browsers and caches can use this information when caching the resource). End.

3.

To get here means no variant was selected (because none are acceptable to the browser). Return a 406 status (meaning "No
acceptable representation") with a response body consisting of an HTML document listing the available variants. Also set
the HTTP Vary header to indicate the dimensions of variance.

4.

Fiddling with Quality Values

Apache sometimes changes the quality values from what would be expected by a strict interpretation of the Apache negotiation
algorithm above. This is to get a better result from the algorithm for browsers which do not send full or accurate information. Some
of the most popular browsers send Accept header information which would otherwise result in the selection of the wrong variant in
many cases. If a browser sends full and correct information these fiddles will not be applied.

Media Types and Wildcards

The Accept: request header indicates preferences for media types. It can also include 'wildcard' media types, such as "image/*" or
"*/*" where the * matches any string. So a request including:

 Accept: image/*, */*

Apache Content Negotiation

http://httpd.apache.org/docs/content-negotiation.html (4 of 6) [12/05/2001 4:48:31 PM]

would indicate that any type starting "image/" is acceptable, as is any other type (so the first "image/*" is redundant). Some
browsers routinely send wildcards in addition to explicit types they can handle. For example:

 Accept: text/html, text/plain, image/gif, image/jpeg, */*

The intention of this is to indicate that the explicitly listed types are preferred, but if a different representation is available, that is ok
too. However under the basic algorithm, as given above, the */* wildcard has exactly equal preference to all the other types, so they
are not being preferred. The browser should really have sent a request with a lower quality (preference) value for *.*, such as:

 Accept: text/html, text/plain, image/gif, image/jpeg, */*; q=0.01

The explicit types have no quality factor, so they default to a preference of 1.0 (the highest). The wildcard */* is given a low
preference of 0.01, so other types will only be returned if no variant matches an explicitly listed type.

If the Accept: header contains no q factors at all, Apache sets the q value of "*/*", if present, to 0.01 to emulate the desired
behavior. It also sets the q value of wildcards of the format "type/*" to 0.02 (so these are preferred over matches against "*/*". If
any media type on the Accept: header contains a q factor, these special values are not applied, so requests from browsers which send
the correct information to start with work as expected.

Variants with no Language

If some of the variants for a particular resource have a language attribute, and some do not, those variants with no language are
given a very low language quality factor of 0.001.

The reason for setting this language quality factor for variant with no language to a very low value is to allow for a default variant
which can be supplied if none of the other variants match the browser's language preferences. For example, consider the situation
with three variants:

foo.en.html, language en●

foo.fr.html, language en●

foo.html, no language●

The meaning of a variant with no language is that it is always acceptable to the browser. If the request Accept-Language header
includes either en or fr (or both) one of foo.en.html or foo.fr.html will be returned. If the browser does not list either en or fr as
acceptable, foo.html will be returned instead.

Extensions to Transparent Content Negotiation

Apache extends the transparent content negotiation protocol (RFC 2295) as follows. A new {encoding ..} element is used in
variant lists to label variants which are available with a specific content-encoding only. The implementation of the RVSA/1.0
algorithm (RFC 2296) is extended to recognize encoded variants in the list, and to use them as candidate variants whenever their
encodings are acceptable according to the Accept-Encoding request header. The RVSA/1.0 implementation does not round
computed quality factors to 5 decimal places before choosing the best variant.

Note on hyperlinks and naming conventions

If you are using language negotiation you can choose between different naming conventions, because files can have more than one
extension, and the order of the extensions is normally irrelevant (see mod_mime documentation for details).

A typical file has a MIME-type extension (e.g., html), maybe an encoding extension (e.g., gz), and of course a language extension
(e.g., en) when we have different language variants of this file.

Examples:

foo.en.html●

foo.html.en●

foo.en.html.gz●

Here some more examples of filenames together with valid and invalid hyperlinks:

Apache Content Negotiation

http://httpd.apache.org/docs/content-negotiation.html (5 of 6) [12/05/2001 4:48:31 PM]

Filename Valid hyperlink Invalid hyperlink

foo.html.en foo
foo.html -

foo.en.html foo foo.html

foo.html.en.gz foo
foo.html

foo.gz
foo.html.gz

foo.en.html.gz foo
foo.html
foo.html.gz
foo.gz

foo.gz.html.en
foo
foo.gz
foo.gz.html

foo.html

foo.html.gz.en
foo
foo.html
foo.html.gz

foo.gz

Looking at the table above you will notice that it is always possible to use the name without any extensions in an hyperlink (e.g.,
foo). The advantage is that you can hide the actual type of a document rsp. file and can change it later, e.g., from html to shtml or
cgi without changing any hyperlink references.

If you want to continue to use a MIME-type in your hyperlinks (e.g. foo.html) the language extension (including an encoding
extension if there is one) must be on the right hand side of the MIME-type extension (e.g., foo.html.en).

Note on Caching

When a cache stores a representation, it associates it with the request URL. The next time that URL is requested, the cache can use
the stored representation. But, if the resource is negotiable at the server, this might result in only the first requested variant being
cached and subsequent cache hits might return the wrong response. To prevent this, Apache normally marks all responses that are
returned after content negotiation as non-cacheable by HTTP/1.0 clients. Apache also supports the HTTP/1.1 protocol features to
allow caching of negotiated responses.

For requests which come from a HTTP/1.0 compliant client (either a browser or a cache), the directive CacheNegotiatedDocs
can be used to allow caching of responses which were subject to negotiation. This directive can be given in the server config or
virtual host, and takes no arguments. It has no effect on requests from HTTP/1.1 clients.

Apache HTTP Server

Apache Content Negotiation

http://httpd.apache.org/docs/content-negotiation.html (6 of 6) [12/05/2001 4:48:31 PM]

Apache HTTP Server

Custom error responses

Purpose

Additional functionality. Allows webmasters to configure the response of Apache to some error or problem.

Customizable responses can be defined to be activated in the event of a server detected error or problem.

e.g. if a script crashes and produces a "500 Server Error" response, then this response can be replaced with either some
friendlier text or by a redirection to another URL (local or external).

Old behavior

NCSA httpd 1.3 would return some boring old error/problem message which would often be meaningless to the user, and
would provide no means of logging the symptoms which caused it.

New behavior

The server can be asked to;

Display some other text, instead of the NCSA hard coded messages, or1.

redirect to a local URL, or2.

redirect to an external URL.3.

Redirecting to another URL can be useful, but only if some information can be passed which can then be used to explain
and/or log the error/problem more clearly.

To achieve this, Apache will define new CGI-like environment variables, e.g.

REDIRECT_HTTP_ACCEPT=*/*, image/gif, image/x-xbitmap, image/jpeg
REDIRECT_HTTP_USER_AGENT=Mozilla/1.1b2 (X11; I; HP-UX A.09.05 9000/712)
REDIRECT_PATH=.:/bin:/usr/local/bin:/etc
REDIRECT_QUERY_STRING=
REDIRECT_REMOTE_ADDR=121.345.78.123
REDIRECT_REMOTE_HOST=ooh.ahhh.com
REDIRECT_SERVER_NAME=crash.bang.edu
REDIRECT_SERVER_PORT=80
REDIRECT_SERVER_SOFTWARE=Apache/0.8.15
REDIRECT_URL=/cgi-bin/buggy.pl

note the REDIRECT_ prefix.

At least REDIRECT_URL and REDIRECT_QUERY_STRING will be passed to the new URL (assuming it's a cgi-script or
a cgi-include). The other variables will exist only if they existed prior to the error/problem. None of these will be set if your
ErrorDocument is an external redirect (i.e., anything starting with a scheme name like http:, even if it refers to the same
host as the server).

Configuration

Use of "ErrorDocument" is enabled for .htaccess files when the "FileInfo" override is allowed.

Here are some examples...

ErrorDocument 500 /cgi-bin/crash-recover
ErrorDocument 500 "Sorry, our script crashed. Oh dear
ErrorDocument 500 http://xxx/
ErrorDocument 404 /Lame_excuses/not_found.html

Custom error responses

http://httpd.apache.org/docs/custom-error.html (1 of 2) [12/05/2001 4:48:32 PM]

ErrorDocument 401 /Subscription/how_to_subscribe.html

The syntax is,

ErrorDocument <3-digit-code> action

where the action can be,

Text to be displayed. Prefix the text with a quote ("). Whatever follows the quote is displayed. Note: the (") prefix
isn't displayed.

1.

An external URL to redirect to.2.

A local URL to redirect to.3.

Custom error responses and redirects

Purpose

Apache's behavior to redirected URLs has been modified so that additional environment variables are available to a
script/server-include.

Old behavior

Standard CGI vars were made available to a script which has been redirected to. No indication of where the redirection
came from was provided.

New behavior

A new batch of environment variables will be initialized for use by a script which has been redirected to. Each new variable
will have the prefix REDIRECT_. REDIRECT_ environment variables are created from the CGI environment variables
which existed prior to the redirect, they are renamed with a REDIRECT_ prefix, i.e., HTTP_USER_AGENT becomes
REDIRECT_HTTP_USER_AGENT. In addition to these new variables, Apache will define REDIRECT_URL and
REDIRECT_STATUS to help the script trace its origin. Both the original URL and the URL being redirected to can be
logged in the access log.

If the ErrorDocument specifies a local redirect to a CGI script, the script should include a "Status:" header field in its output in order
to ensure the propagation all the way back to the client of the error condition that caused it to be invoked. For instance, a Perl
ErrorDocument script might include the following:

 :
 print "Content-type: text/html\n";
 printf "Status: %s Condition Intercepted\n", $ENV{"REDIRECT_STATUS"};
 :

If the script is dedicated to handling a particular error condition, such as 404 Not Found, it can use the specific code and error text
instead.

Apache HTTP Server

Custom error responses

http://httpd.apache.org/docs/custom-error.html (2 of 2) [12/05/2001 4:48:32 PM]

Apache HTTP Server

Setting which addresses and ports Apache uses

When Apache starts, it connects to some port and address on the local machine and waits for incoming requests. By default, it
listens to all addresses on the machine, and to the port as specified by the Port directive in the server configuration. However, it
can be told to listen to more the one port, or to listen to only selected addresses, or a combination. This is often combined with the
Virtual Host feature which determines how Apache responds to different IP addresses, hostnames and ports.

There are two directives used to restrict or specify which addresses and ports Apache listens to.

BindAddress is used to restrict the server to listening to a single address, and can be used to permit multiple Apache servers
on the same machine listening to different IP addresses.

●

Listen can be used to make a single Apache server listen to more than one address and/or port.●

BindAddress

Syntax: BindAddress [* | IP-address | hostname]
Default: BindAddress *
Context: server config
Status: Core

Makes the server bind to just the specified address. If the argument is * (an asterisk), the server binds to all interfaces currently
marked as up on the server. The port bound to is set with the Port directive. Only one BindAddress should be used.

Listen

Syntax: Listen [port | IP-address:port]
Default: none
Context: server config
Status: Core

Listen can be used instead of BindAddress and Port. It tells the server to accept incoming requests (to listen) on the
specified port or address-and-port combination. If the first format is used, with a port number only, the server listens on the given
port on all interfaces marked as up, instead of the port given by the Port directive. If an IP address is given as well as a port, the
server will listen on the given port and interface.

Multiple Listen directives may be used to specify a number of addresses and ports to listen to. The server will respond to requests
from any of the listed addresses and ports.

For example, to make the server accept connections on both port 80 and port 8000, use:

 Listen 80
 Listen 8000

To make the server accept connections on two specified interfaces and port numbers, use

 Listen 192.170.2.1:80
 Listen 192.170.2.5:8000

Setting which addresses and ports Apache uses

http://httpd.apache.org/docs/bind.html (1 of 2) [12/05/2001 4:48:33 PM]

How this works with Virtual Hosts

BindAddress and Listen do not implement Virtual Hosts. They tell the main Apache daemon process what addresses and ports
to bind and listen on. If no <VirtualHost> directives are used, the server will behave the same for all accepted requests. However,
<VirtualHost> can be used to specify a different behavior for one or more of the addresses and ports. To implement a VirtualHost,
the server must:

Be told to Listen to the desired address and port●

Have a <VirtualHost> section created for the specified address and port to set the behavior of this virtual host●

Note that if the <VirtualHost> is set for an address and port that the server is not listening to, it cannot be accessed.

See also

See also the documentation on Virtual Hosts, BindAddress directive, Port directive, DNS Issues and <VirtualHost> section.

Apache HTTP Server

Setting which addresses and ports Apache uses

http://httpd.apache.org/docs/bind.html (2 of 2) [12/05/2001 4:48:33 PM]

http://httpd.apache.org/docs/vhosts/

Apache HTTP Server

Environment Variables in Apache

The Apache HTTP Server provides a mechanism for storing information in named variables that are called environment variables.
This information can be used to control various operations such as logging or access control. The variables are also used as a
mechanism to communicate with external programs such as CGI scripts. This document discusses different ways to manipulate and
use these variables.

Although these variables are referred to as environment variables, they are not the same as the environment variables controlled by
the underlying operating system. Instead, these variables are stored and manipulated in an internal Apache structure. They only
become actual operating system environment variables when they are provided to CGI scripts and Server Side Include scripts. If
you wish to manipulate the operating system environment under which the server itself runs, you must use the standard environment
manipulation mechanisms provided by your operating system shell.

Setting Environment Variables●

Using Environment Variables●

Special Purpose Environment Variables●

Examples●

Setting Environment Variables

Related Modules

mod_env
mod_rewrite
mod_setenvif
mod_unique_id

Related Directives

BrowserMatch
BrowserMatchNoCase
PassEnv
RewriteRule
SetEnv
SetEnvIf
SetEnvIfNoCase
UnsetEnv

Basic Environment Manipulation

The most basic way to set an environment variable in Apache is using the unconditional SetEnv directive. Variables may also be
passed from the environment of the shell which started the server using the PassEnv directive.

Conditional Per-Request Settings

For additional flexibility, the directives provided by mod_setenvif allow environment variables to be set on a per-request basis,
conditional on characteristics of particular requests. For example, a variable could be set only when a specific browser (User-Agent)
is making a request, or only when a specific Referer [sic] header is found. Even more flexibility is available through the
mod_rewrite's RewriteRule which uses the [E=...] option to set environment variables.

Environment Variables in Apache

http://httpd.apache.org/docs/env.html (1 of 4) [12/05/2001 4:48:35 PM]

Unique Identifiers

Finally, mod_unique_id sets the environment variable UNIQUE_ID for each request to a value which is guaranteed to be unique
across "all" requests under very specific conditions.

Standard CGI Variables

In addition to all environment variables set within the Apache configuration and passed from the shell, CGI scripts and SSI pages
are provided with a set of environment variables containing meta-information about the request as required by the CGI
specification.

Some Caveats

It is not possible to override or change the standard CGI variables using the environment manipulation directives.●

When suexec is used to launch CGI scripts, the environment will be cleaned down to a set of safe variables before CGI
scripts are launched. The list of safe variables is defined at compile-time in suexec.c.

●

For portability reasons, the names of environment variables may contain only letters, numbers, and the underscore
character. In addition, the first character may not be a number. Characters which do not match this restriction will be
replaced by an underscore when passed to CGI scripts and SSI pages.

●

Using Environment Variables

Related Modules

mod_access
mod_cgi
mod_include
mod_log_config
mod_rewrite

Related Directives

Allow
CustomLog
Deny
LogFormat
RewriteCond
RewriteRule

CGI Scripts

One of the primary uses of environment variables is to communicate information to CGI scripts. As discussed above, the
environment passed to CGI scripts includes standard meta-information about the request in addition to any variables set within the
Apache configuration. For more details, see the CGI tutorial.

SSI Pages

Server-parsed (SSI) documents processed by mod_include's server-parsed handler can print environment variables using the
echo element, and can use environment variables in flow control elements to makes parts of a page conditional on characteristics
of a request. Apache also provides SSI pages with the standard CGI environment variables as discussed above. For more details, see
the SSI tutorial.

Access Control

Access to the server can be controlled based on the value of environment variables using the allow from env= and deny
from env= directives. In combination with SetEnvIf, this allows for flexible control of access to the server based on
characteristics of the client. For example, you can use these directives to deny access to a particular browser (User-Agent).

Environment Variables in Apache

http://httpd.apache.org/docs/env.html (2 of 4) [12/05/2001 4:48:35 PM]

Conditional Logging

Environment variables can be logged in the access log using the LogFormat option %e. In addition, the decision on whether or not
to log requests can be made based on the status of environment variables using the conditional form of the CustomLog directive.
In combination with SetEnvIf this allows for flexible control of which requests are logged. For example, you can choose not to
log requests for filenames ending in gif, or you can choose to only log requests from clients which are outside your subnet.

URL Rewriting

The %{ENV:...} form of TestString in the RewriteCond allows mod_rewrite's rewrite engine to make decisions conditional on
environment variables. Note that the variables accessible in mod_rewrite without the ENV: prefix are not actually environment
variables. Rather, they are variables special to mod_rewrite which cannot be accessed from other modules.

Special Purpose Environment Variables

Interoperability problems have led to the introduction of mechanisms to modify the way Apache behaves when talking to particular
clients. To make these mechanisms as flexible as possible, they are invoked by defining environment variables, typically with
BrowserMatch, though SetEnv and PassEnv could also be used, for example.

downgrade-1.0

This forces the request to be treated as a HTTP/1.0 request even if it was in a later dialect.

force-no-vary

This causes any Vary fields to be removed from the response header before it is sent back to the client. Some clients don't interpret
this field correctly (see the known client problems page); setting this variable can work around this problem. Setting this variable
also implies force-response-1.0.

force-response-1.0

This forces an HTTP/1.0 response when set. It was originally implemented as a result of a problem with AOL's proxies. Some
clients may not behave correctly when given an HTTP/1.1 response, and this can be used to interoperate with them.

nokeepalive

This disables KeepAlive when set.

Examples

Changing protocol behavior with misbehaving clients

We recommend that the following lines be included in httpd.conf to deal with known client problems.

#
The following directives modify normal HTTP response behavior.
The first directive disables keepalive for Netscape 2.x and browsers that
spoof it. There are known problems with these browser implementations.
The second directive is for Microsoft Internet Explorer 4.0b2

Environment Variables in Apache

http://httpd.apache.org/docs/env.html (3 of 4) [12/05/2001 4:48:35 PM]

http://httpd.apache.org/docs/mod/mod_browser.html#browsermatch

which has a broken HTTP/1.1 implementation and does not properly
support keepalive when it is used on 301 or 302 (redirect) responses.
#
BrowserMatch "Mozilla/2" nokeepalive
BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0

#
The following directive disables HTTP/1.1 responses to browsers which
are in violation of the HTTP/1.0 spec by not being able to grok a
basic 1.1 response.
#
BrowserMatch "RealPlayer 4\.0" force-response-1.0
BrowserMatch "Java/1\.0" force-response-1.0
BrowserMatch "JDK/1\.0" force-response-1.0

Do not log requests for images in the access log

This example keeps requests for images from appearing in the access log. It can be easily modified to prevent logging of particular
directories, or to prevent logging of requests coming from particular hosts.

 SetEnvIf Request_URI \.gif image-request
 SetEnvIf Request_URI \.jpg image-request
 SetEnvIf Request_URI \.png image-request
 CustomLog logs/access_log env=!image-request

Prevent "Image Theft"

This example shows how to keep people not on your server from using images on your server as inline-images on their pages. This
is not a recommended configuration, but it can work in limited circumstances. We assume that all your images are in a directory
called /web/images.

 SetEnvIf Referer "^http://www.example.com/" local_referal
 # Allow browsers that do not send Referer info
 SetEnvIf Referer "^$" local_referal
 <Directory /web/images>
 Order Deny,Allow
 Deny from all
 Allow from env=local_referal
 </Directory>

Note: spelling of 'referer' and 'referal' is intentional.

For more information about this technique, see the ApacheToday tutorial " Keeping Your Images from Adorning Other Sites".

Apache HTTP Server

Environment Variables in Apache

http://httpd.apache.org/docs/env.html (4 of 4) [12/05/2001 4:48:35 PM]

http://apachetoday.com/news_story.php3?ltsn=2000-06-14-002-01-PS

Apache HTTP Server

Apache's Handler Use

What is a Handler●

Examples●

Programmer's Note●

What is a Handler

Related Modules

mod_actions
mod_asis
mod_cgi
mod_imap
mod_info
mod_include
mod_mime
mod_negotiation
mod_status

Related Directives

Action
AddHandler
RemoveHandler
SetHandler

A "handler" is an internal Apache representation of the action to be performed when a file is called. Generally, files have implicit
handlers, based on the file type. Normally, all files are simply served by the server, but certain file types are "handled" separately.

Apache 1.1 adds the ability to use handlers explicitly. Based on either filename extensions or on location, handlers can be specified
without relation to file type. This is advantageous both because it is a more elegant solution, and because it also allows for both a
type and a handler to be associated with a file. (See also Files with Multiple Extensions.)

Handlers can either be built into the server or included in a module, or they can be added with the Action directive. The built-in
handlers in the standard distribution are as follows:

default-handler: Send the file using the default_handler(), which is the handler used by default to handle static
content. (core)

●

send-as-is: Send file with HTTP headers as is. (mod_asis)●

cgi-script: Treat the file as a CGI script. (mod_cgi)●

imap-file: Parse as an imagemap rule file. (mod_imap)●

server-info: Get the server's configuration information. (mod_info)●

server-parsed: Parse for server-side includes. (mod_include)●

server-status: Get the server's status report. (mod_status)●

type-map: Parse as a type map file for content negotiation. (mod_negotiation)●

Apache's Handler Use

http://httpd.apache.org/docs/handler.html (1 of 2) [12/05/2001 4:48:37 PM]

Examples

Modifying static content using a CGI script

The following directives will cause requests for files with the html extension to trigger the launch of the footer.pl CGI script.

 Action add-footer /cgi-bin/footer.pl
 AddHandler add-footer .html

Then the CGI script is responsible for sending the originally requested document (pointed to by the PATH_TRANSLATED
environment variable) and making whatever modifications or additions are desired.

Files with HTTP headers

The following directives will enable the send-as-is handler, which is used for files which contain their own HTTP headers. All
files in the /web/htdocs/asis/ directory will be processed by the send-as-is handler, regardless of their filename
extensions.

 <Directory /web/htdocs/asis>
 SetHandler send-as-is
 </Directory>

Programmer's Note

In order to implement the handler features, an addition has been made to the Apache API that you may wish to make use of.
Specifically, a new record has been added to the request_rec structure:

 char *handler

If you wish to have your module engage a handler, you need only to set r->handler to the name of the handler at any time prior
to the invoke_handler stage of the request. Handlers are implemented as they were before, albeit using the handler name
instead of a content type. While it is not necessary, the naming convention for handlers is to use a dash-separated word, with no
slashes, so as to not invade the media type name-space.

Apache HTTP Server

Apache's Handler Use

http://httpd.apache.org/docs/handler.html (2 of 2) [12/05/2001 4:48:37 PM]

Apache HTTP Server

Apache suEXEC Support

CONTENTS1.

What is suEXEC?2.

Before we begin.3.

suEXEC Security Model.4.

Configuring & Installing suEXEC5.

Enabling & Disabling suEXEC6.

Using suEXEC7.

Debugging suEXEC8.

Beware the Jabberwock: Warnings & Examples9.

What is suEXEC?

The suEXEC feature -- introduced in Apache 1.2 -- provides Apache users the ability to run CGI and SSI programs under user IDs
different from the user ID of the calling web-server. Normally, when a CGI or SSI program executes, it runs as the same user who is
running the web server.

Used properly, this feature can reduce considerably the security risks involved with allowing users to develop and run private CGI
or SSI programs. However, if suEXEC is improperly configured, it can cause any number of problems and possibly create new
holes in your computer's security. If you aren't familiar with managing setuid root programs and the security issues they present, we
highly recommend that you not consider using suEXEC.

BACK TO CONTENTS

Before we begin.

Before jumping head-first into this document, you should be aware of the assumptions made on the part of the Apache Group and
this document.

First, it is assumed that you are using a UNIX derivate operating system that is capable of setuid and setgid operations. All
command examples are given in this regard. Other platforms, if they are capable of supporting suEXEC, may differ in their
configuration.

Second, it is assumed you are familiar with some basic concepts of your computer's security and its administration. This involves an
understanding of setuid/setgid operations and the various effects they may have on your system and its level of security.

Third, it is assumed that you are using an unmodified version of suEXEC code. All code for suEXEC has been carefully scrutinized
and tested by the developers as well as numerous beta testers. Every precaution has been taken to ensure a simple yet solidly safe
base of code. Altering this code can cause unexpected problems and new security risks. It is highly recommended you not alter the
suEXEC code unless you are well versed in the particulars of security programming and are willing to share your work with the
Apache Group for consideration.

Fourth, and last, it has been the decision of the Apache Group to NOT make suEXEC part of the default installation of Apache. To
this end, suEXEC configuration requires of the administrator careful attention to details. After due consideration has been given to
the various settings for suEXEC, the administrator may install suEXEC through normal installation methods. The values for these

Apache suEXEC Support

http://httpd.apache.org/docs/suexec.html (1 of 5) [12/05/2001 4:48:39 PM]

settings need to be carefully determined and specified by the administrator to properly maintain system security during the use of
suEXEC functionality. It is through this detailed process that the Apache Group hopes to limit suEXEC installation only to those
who are careful and determined enough to use it.

Still with us? Yes? Good. Let's move on!

BACK TO CONTENTS

suEXEC Security Model

Before we begin configuring and installing suEXEC, we will first discuss the security model you are about to implement. By doing
so, you may better understand what exactly is going on inside suEXEC and what precautions are taken to ensure your system's
security.

suEXEC is based on a setuid "wrapper" program that is called by the main Apache web server. This wrapper is called when an
HTTP request is made for a CGI or SSI program that the administrator has designated to run as a userid other than that of the main
server. When such a request is made, Apache provides the suEXEC wrapper with the program's name and the user and group IDs
under which the program is to execute.

The wrapper then employs the following process to determine success or failure -- if any one of these conditions fail, the program
logs the failure and exits with an error, otherwise it will continue:

Was the wrapper called with the proper number of arguments?

The wrapper will only execute if it is given the proper number of arguments. The proper argument format is
known to the Apache web server. If the wrapper is not receiving the proper number of arguments, it is
either being hacked, or there is something wrong with the suEXEC portion of your Apache binary.

1.

Is the user executing this wrapper a valid user of this system?

This is to ensure that the user executing the wrapper is truly a user of the system.

2.

Is this valid user allowed to run the wrapper?

Is this user the user allowed to run this wrapper? Only one user (the Apache user) is allowed to execute this
program.

3.

Does the target program have an unsafe hierarchical reference?

Does the target program contain a leading '/' or have a '..' backreference? These are not allowed; the target
program must reside within the Apache webspace.

4.

Is the target user name valid?

Does the target user exist?

5.

Is the target group name valid?

Does the target group exist?

6.

Is the target user NOT superuser?

Presently, suEXEC does not allow 'root' to execute CGI/SSI programs.

7.

Is the target userid ABOVE the minimum ID number?

The minimum user ID number is specified during configuration. This allows you to set the lowest possible
userid that will be allowed to execute CGI/SSI programs. This is useful to block out "system" accounts.

8.

Is the target group NOT the superuser group?

Presently, suEXEC does not allow the 'root' group to execute CGI/SSI programs.

9.

Is the target groupid ABOVE the minimum ID number?

The minimum group ID number is specified during configuration. This allows you to set the lowest
possible groupid that will be allowed to execute CGI/SSI programs. This is useful to block out "system"
groups.

10.

Can the wrapper successfully become the target user and group?

Here is where the program becomes the target user and group via setuid and setgid calls. The group access
list is also initialized with all of the groups of which the user is a member.

11.

Does the directory in which the program resides exist?12.

Apache suEXEC Support

http://httpd.apache.org/docs/suexec.html (2 of 5) [12/05/2001 4:48:39 PM]

If it doesn't exist, it can't very well contain files.

Is the directory within the Apache webspace?

If the request is for a regular portion of the server, is the requested directory within the server's document
root? If the request is for a UserDir, is the requested directory within the user's document root?

13.

Is the directory NOT writable by anyone else?

We don't want to open up the directory to others; only the owner user may be able to alter this directories
contents.

14.

Does the target program exist?

If it doesn't exists, it can't very well be executed.

15.

Is the target program NOT writable by anyone else?

We don't want to give anyone other than the owner the ability to change the program.

16.

Is the target program NOT setuid or setgid?

We do not want to execute programs that will then change our UID/GID again.

17.

Is the target user/group the same as the program's user/group?

Is the user the owner of the file?

18.

Can we successfully clean the process environment to ensure safe operations?

suEXEC cleans the process' environment by establishing a safe execution PATH (defined during
configuration), as well as only passing through those variables whose names are listed in the safe
environment list (also created during configuration).

19.

Can we successfully become the target program and execute?

Here is where suEXEC ends and the target program begins.

20.

This is the standard operation of the the suEXEC wrapper's security model. It is somewhat stringent and can impose new limitations
and guidelines for CGI/SSI design, but it was developed carefully step-by-step with security in mind.

For more information as to how this security model can limit your possibilities in regards to server configuration, as well as what
security risks can be avoided with a proper suEXEC setup, see the "Beware the Jabberwock" section of this document.

BACK TO CONTENTS

Configuring & Installing suEXEC

Here's where we begin the fun. If you use Apache 1.2 or prefer to configure Apache 1.3 with the "src/Configure" script you
have to edit the suEXEC header file and install the binary in its proper location manually. This procedure is described in an extra
document. The following sections describe the configuration and installation for Apache 1.3 with the AutoConf-style interface
(APACI).

APACI's suEXEC configuration options

--enable-suexec

This option enables the suEXEC feature which is never installed or activated by default. At least one --suexec-xxxxx option
has to be provided together with the --enable-suexec option to let APACI accept your request for using the suEXEC feature.

--suexec-caller=UID

The username under which Apache normally runs. This is the only user allowed to execute this program.

--suexec-docroot=DIR

Define as the DocumentRoot set for Apache. This will be the only hierarchy (aside from UserDirs) that can be used for
suEXEC behavior. The default directory is the --datadir value with the suffix "/htdocs", e.g. if you configure with
"--datadir=/home/apache" the directory "/home/apache/htdocs" is used as document root for the suEXEC wrapper.

--suexec-logfile=FILE

This defines the filename to which all suEXEC transactions and errors are logged (useful for auditing and debugging
purposes). By default the logfile is named "suexec_log" and located in your standard logfile directory (--logfiledir).

Apache suEXEC Support

http://httpd.apache.org/docs/suexec.html (3 of 5) [12/05/2001 4:48:39 PM]

http://httpd.apache.org/docs/suexec_1_2.html
http://httpd.apache.org/docs/suexec_1_2.html

--suexec-userdir=DIR

Define to be the subdirectory under users' home directories where suEXEC access should be allowed. All executables under
this directory will be executable by suEXEC as the user so they should be "safe" programs. If you are using a "simple"
UserDir directive (ie. one without a "*" in it) this should be set to the same value. suEXEC will not work properly in cases
where the UserDir directive points to a location that is not the same as the user's home directory as referenced in the passwd
file. Default value is "public_html".
If you have virtual hosts with a different UserDir for each, you will need to define them to all reside in one parent directory;
then name that parent directory here. If this is not defined properly, "~userdir" cgi requests will not work!

--suexec-uidmin=UID

Define this as the lowest UID allowed to be a target user for suEXEC. For most systems, 500 or 100 is common. Default
value is 100.

--suexec-gidmin=GID

Define this as the lowest GID allowed to be a target group for suEXEC. For most systems, 100 is common and therefore
used as default value.

--suexec-safepath=PATH

Define a safe PATH environment to pass to CGI executables. Default value is "/usr/local/bin:/usr/bin:/bin".

Checking your suEXEC setup
Before you compile and install the suEXEC wrapper you can check the configuration with the --layout option.
Example output:

 suEXEC setup:
 suexec binary: /usr/local/apache/sbin/suexec
 document root: /usr/local/apache/share/htdocs
 userdir suffix: public_html
 logfile: /usr/local/apache/var/log/suexec_log
 safe path: /usr/local/bin:/usr/bin:/bin
 caller ID: www
 minimum user ID: 100
 minimum group ID: 100

Compiling and installing the suEXEC wrapper
If you have enabled the suEXEC feature with the --enable-suexec option the suexec binary (together with Apache itself) is
automatically built if you execute the command "make".
After all components have been built you can execute the command "make install" to install them. The binary image "suexec" is
installed in the directory defined by the --sbindir option. Default location is "/usr/local/apache/sbin/suexec".
Please note that you need root privileges for the installation step. In order for the wrapper to set the user ID, it must be installed as
owner root and must have the setuserid execution bit set for file modes.

BACK TO CONTENTS

Enabling & Disabling suEXEC

Upon startup of Apache, it looks for the file "suexec" in the "sbin" directory (default is "/usr/local/apache/sbin/suexec"). If Apache
finds a properly configured suEXEC wrapper, it will print the following message to the error log:

 [notice] suEXEC mechanism enabled (wrapper: /path/to/suexec)

If you don't see this message at server startup, the server is most likely not finding the wrapper program where it expects it, or the
executable is not installed setuid root.
If you want to enable the suEXEC mechanism for the first time and an Apache server is already running you must kill and restart
Apache. Restarting it with a simple HUP or USR1 signal will not be enough.
If you want to disable suEXEC you should kill and restart Apache after you have removed the "suexec" file.

BACK TO CONTENTS

Apache suEXEC Support

http://httpd.apache.org/docs/suexec.html (4 of 5) [12/05/2001 4:48:39 PM]

Using suEXEC

Virtual Hosts:
One way to use the suEXEC wrapper is through the User and Group directives in VirtualHost definitions. By setting these directives
to values different from the main server user ID, all requests for CGI resources will be executed as the User and Group defined for
that <VirtualHost>. If only one or neither of these directives are specified for a <VirtualHost> then the main server userid
is assumed.

User directories:
The suEXEC wrapper can also be used to execute CGI programs as the user to which the request is being directed. This is
accomplished by using the "~" character prefixing the user ID for whom execution is desired. The only requirement needed for this
feature to work is for CGI execution to be enabled for the user and that the script must meet the scrutiny of the security checks
above.

BACK TO CONTENTS

Debugging suEXEC

The suEXEC wrapper will write log information to the file defined with the --suexec-logfile option as indicated above. If you feel
you have configured and installed the wrapper properly, have a look at this log and the error_log for the server to see where you
may have gone astray.

BACK TO CONTENTS

Beware the Jabberwock: Warnings & Examples

NOTE! This section may not be complete. For the latest revision of this section of the documentation, see the Apache Group's
Online Documentation version.

There are a few points of interest regarding the wrapper that can cause limitations on server setup. Please review these before
submitting any "bugs" regarding suEXEC.

suEXEC Points Of Interest●

Hierarchy limitations

For security and efficiency reasons, all suexec requests must remain within either a top-level document root
for virtual host requests, or one top-level personal document root for userdir requests. For example, if you
have four VirtualHosts configured, you would need to structure all of your VHosts' document roots off of
one main Apache document hierarchy to take advantage of suEXEC for VirtualHosts. (Example
forthcoming.)

●

suEXEC's PATH environment variable

This can be a dangerous thing to change. Make certain every path you include in this define is a trusted
directory. You don't want to open people up to having someone from across the world running a trojan
horse on them.

●

Altering the suEXEC code

Again, this can cause Big Trouble if you try this without knowing what you are doing. Stay away from it if
at all possible.

●

BACK TO CONTENTS

Apache HTTP Server

Apache suEXEC Support

http://httpd.apache.org/docs/suexec.html (5 of 5) [12/05/2001 4:48:39 PM]

http://www.apache.org/docs/suexec.html

Apache HTTP Server Version 1.3

Apache Performance Notes

Author: Dean Gaudet

Introduction●

Hardware and Operating System Issues●

Run-Time Configuration Issues●

Compile-Time Configuration Issues●

Appendixes

Detailed Analysis of a Trace❍

Patches Available❍

The Pre-Forking Model❍

●

Introduction

Apache is a general webserver, which is designed to be correct first, and fast second. Even so, its performance is quite satisfactory. Most
sites have less than 10Mbits of outgoing bandwidth, which Apache can fill using only a low end Pentium-based webserver. In practice
sites with more bandwidth require more than one machine to fill the bandwidth due to other constraints (such as CGI or database
transaction overhead). For these reasons the development focus has been mostly on correctness and configurability.

Unfortunately many folks overlook these facts and cite raw performance numbers as if they are some indication of the quality of a web
server product. There is a bare minimum performance that is acceptable, beyond that extra speed only caters to a much smaller segment of
the market. But in order to avoid this hurdle to the acceptance of Apache in some markets, effort was put into Apache 1.3 to bring
performance up to a point where the difference with other high-end webservers is minimal.

Finally there are the folks who just plain want to see how fast something can go. The author falls into this category. The rest of this
document is dedicated to these folks who want to squeeze every last bit of performance out of Apache's current model, and want to
understand why it does some things which slow it down.

Note that this is tailored towards Apache 1.3 on Unix. Some of it applies to Apache on NT. Apache on NT has not been tuned for
performance yet; in fact it probably performs very poorly because NT performance requires a different programming model.

Hardware and Operating System Issues

The single biggest hardware issue affecting webserver performance is RAM. A webserver should never ever have to swap, swapping
increases the latency of each request beyond a point that users consider "fast enough". This causes users to hit stop and reload, further
increasing the load. You can, and should, control the MaxClients setting so that your server does not spawn so many children it starts
swapping.

Beyond that the rest is mundane: get a fast enough CPU, a fast enough network card, and fast enough disks, where "fast enough" is
something that needs to be determined by experimentation.

Operating system choice is largely a matter of local concerns. But a general guideline is to always apply the latest vendor TCP/IP patches.
HTTP serving completely breaks many of the assumptions built into Unix kernels up through 1994 and even 1995. Good choices include
recent FreeBSD, and Linux.

Apache Performance Notes

http://httpd.apache.org/docs/misc/perf-tuning.html (1 of 10) [12/05/2001 4:48:44 PM]

Run-Time Configuration Issues

HostnameLookups

Prior to Apache 1.3, HostnameLookups defaulted to On. This adds latency to every request because it requires a DNS lookup to
complete before the request is finished. In Apache 1.3 this setting defaults to Off. However (1.3 or later), if you use any Allow from
domain or Deny from domain directives then you will pay for a double reverse DNS lookup (a reverse, followed by a forward to
make sure that the reverse is not being spoofed). So for the highest performance avoid using these directives (it's fine to use IP addresses
rather than domain names).

Note that it's possible to scope the directives, such as within a <Location /server-status> section. In this case the DNS lookups
are only performed on requests matching the criteria. Here's an example which disables lookups except for .html and .cgi files:

HostnameLookups off
<Files ~ "\.(html|cgi)$">
 HostnameLookups on
</Files>

But even still, if you just need DNS names in some CGIs you could consider doing the gethostbyname call in the specific CGIs that
need it.

Similarly, if you need to have hostname information in your server logs in order to generate reports of this information, you can
postprocess your log file with logresolve, so that these lookups can be done without making the client wait. It is recommended that you do
this postprocessing, and any other statistical analysis of the log file, somewhere other than your production web server machine, in order
that this activity does not adversely affect server performance.

FollowSymLinks and SymLinksIfOwnerMatch

Wherever in your URL-space you do not have an Options FollowSymLinks, or you do have an Options
SymLinksIfOwnerMatch Apache will have to issue extra system calls to check up on symlinks. One extra call per filename
component. For example, if you had:

DocumentRoot /www/htdocs
<Directory />
 Options SymLinksIfOwnerMatch
</Directory>

and a request is made for the URI /index.html. Then Apache will perform lstat(2) on /www, /www/htdocs, and
/www/htdocs/index.html. The results of these lstats are never cached, so they will occur on every single request. If you really
desire the symlinks security checking you can do something like this:

DocumentRoot /www/htdocs
<Directory />
 Options FollowSymLinks
</Directory>
<Directory /www/htdocs>
 Options -FollowSymLinks +SymLinksIfOwnerMatch
</Directory>

This at least avoids the extra checks for the DocumentRoot path. Note that you'll need to add similar sections if you have any Alias
or RewriteRule paths outside of your document root. For highest performance, and no symlink protection, set FollowSymLinks
everywhere, and never set SymLinksIfOwnerMatch.

AllowOverride

Wherever in your URL-space you allow overrides (typically .htaccess files) Apache will attempt to open .htaccess for each
filename component. For example,

DocumentRoot /www/htdocs
<Directory />
 AllowOverride all
</Directory>

and a request is made for the URI /index.html. Then Apache will attempt to open /.htaccess, /www/.htaccess, and

Apache Performance Notes

http://httpd.apache.org/docs/misc/perf-tuning.html (2 of 10) [12/05/2001 4:48:44 PM]

/www/htdocs/.htaccess. The solutions are similar to the previous case of Options FollowSymLinks. For highest
performance use AllowOverride None everywhere in your filesystem.

Negotiation

If at all possible, avoid content-negotiation if you're really interested in every last ounce of performance. In practice the benefits of
negotiation outweigh the performance penalties. There's one case where you can speed up the server. Instead of using a wildcard such as:

DirectoryIndex index

Use a complete list of options:

DirectoryIndex index.cgi index.pl index.shtml index.html

where you list the most common choice first.

Process Creation

Prior to Apache 1.3 the MinSpareServers, MaxSpareServers, and StartServers settings all had drastic effects on benchmark
results. In particular, Apache required a "ramp-up" period in order to reach a number of children sufficient to serve the load being applied.
After the initial spawning of StartServers children, only one child per second would be created to satisfy the MinSpareServers
setting. So a server being accessed by 100 simultaneous clients, using the default StartServers of 5 would take on the order 95
seconds to spawn enough children to handle the load. This works fine in practice on real-life servers, because they aren't restarted
frequently. But does really poorly on benchmarks which might only run for ten minutes.

The one-per-second rule was implemented in an effort to avoid swamping the machine with the startup of new children. If the machine is
busy spawning children it can't service requests. But it has such a drastic effect on the perceived performance of Apache that it had to be
replaced. As of Apache 1.3, the code will relax the one-per-second rule. It will spawn one, wait a second, then spawn two, wait a second,
then spawn four, and it will continue exponentially until it is spawning 32 children per second. It will stop whenever it satisfies the
MinSpareServers setting.

This appears to be responsive enough that it's almost unnecessary to twiddle the MinSpareServers, MaxSpareServers and
StartServers knobs. When more than 4 children are spawned per second, a message will be emitted to the ErrorLog. If you see a
lot of these errors then consider tuning these settings. Use the mod_status output as a guide.

Related to process creation is process death induced by the MaxRequestsPerChild setting. By default this is 0, which means that
there is no limit to the number of requests handled per child. If your configuration currently has this set to some very low number, such as
30, you may want to bump this up significantly. If you are running SunOS or an old version of Solaris, limit this to 10000 or so because of
memory leaks.

When keep-alives are in use, children will be kept busy doing nothing waiting for more requests on the already open connection. The
default KeepAliveTimeout of 15 seconds attempts to minimize this effect. The tradeoff here is between network bandwidth and
server resources. In no event should you raise this above about 60 seconds, as most of the benefits are lost.

Compile-Time Configuration Issues

mod_status and ExtendedStatus On

If you include mod_status and you also set ExtendedStatus On when building and running Apache, then on every request
Apache will perform two calls to gettimeofday(2) (or times(2) depending on your operating system), and (pre-1.3) several extra
calls to time(2). This is all done so that the status report contains timing indications. For highest performance, set ExtendedStatus
off (which is the default).

accept Serialization - multiple sockets

This discusses a shortcoming in the Unix socket API. Suppose your web server uses multiple Listen statements to listen on either
multiple ports or multiple addresses. In order to test each socket to see if a connection is ready Apache uses select(2). select(2)
indicates that a socket has zero or at least one connection waiting on it. Apache's model includes multiple children, and all the idle ones
test for new connections at the same time. A naive implementation looks something like this (these examples do not match the code,
they're contrived for pedagogical purposes):

Apache Performance Notes

http://httpd.apache.org/docs/misc/perf-tuning.html (3 of 10) [12/05/2001 4:48:44 PM]

http://www.research.digital.com/wrl/techreports/abstracts/95.4.html

 for (;;) {
 for (;;) {
 fd_set accept_fds;

 FD_ZERO (&accept_fds);
 for (i = first_socket; i <= last_socket; ++i) {
 FD_SET (i, &accept_fds);
 }
 rc = select (last_socket+1, &accept_fds, NULL, NULL, NULL);
 if (rc < 1) continue;
 new_connection = -1;
 for (i = first_socket; i <= last_socket; ++i) {
 if (FD_ISSET (i, &accept_fds)) {
 new_connection = accept (i, NULL, NULL);
 if (new_connection != -1) break;
 }
 }
 if (new_connection != -1) break;
 }
 process the new_connection;
 }

But this naive implementation has a serious starvation problem. Recall that multiple children execute this loop at the same time, and so
multiple children will block at select when they are in between requests. All those blocked children will awaken and return from
select when a single request appears on any socket (the number of children which awaken varies depending on the operating system
and timing issues). They will all then fall down into the loop and try to accept the connection. But only one will succeed (assuming
there's still only one connection ready), the rest will be blocked in accept. This effectively locks those children into serving requests
from that one socket and no other sockets, and they'll be stuck there until enough new requests appear on that socket to wake them all up.
This starvation problem was first documented in PR#467. There are at least two solutions.

One solution is to make the sockets non-blocking. In this case the accept won't block the children, and they will be allowed to continue
immediately. But this wastes CPU time. Suppose you have ten idle children in select, and one connection arrives. Then nine of those
children will wake up, try to accept the connection, fail, and loop back into select, accomplishing nothing. Meanwhile none of those
children are servicing requests that occurred on other sockets until they get back up to the select again. Overall this solution does not
seem very fruitful unless you have as many idle CPUs (in a multiprocessor box) as you have idle children, not a very likely situation.

Another solution, the one used by Apache, is to serialize entry into the inner loop. The loop looks like this (differences highlighted):

 for (;;) {
 accept_mutex_on ();
 for (;;) {
 fd_set accept_fds;

 FD_ZERO (&accept_fds);
 for (i = first_socket; i <= last_socket; ++i) {
 FD_SET (i, &accept_fds);
 }
 rc = select (last_socket+1, &accept_fds, NULL, NULL, NULL);
 if (rc < 1) continue;
 new_connection = -1;
 for (i = first_socket; i <= last_socket; ++i) {
 if (FD_ISSET (i, &accept_fds)) {
 new_connection = accept (i, NULL, NULL);
 if (new_connection != -1) break;
 }
 }
 if (new_connection != -1) break;
 }
 accept_mutex_off ();
 process the new_connection;
 }

The functions accept_mutex_on and accept_mutex_off implement a mutual exclusion semaphore. Only one child can have the
mutex at any time. There are several choices for implementing these mutexes. The choice is defined in src/conf.h (pre-1.3) or
src/include/ap_config.h (1.3 or later). Some architectures do not have any locking choice made, on these architectures it is

Apache Performance Notes

http://httpd.apache.org/docs/misc/perf-tuning.html (4 of 10) [12/05/2001 4:48:44 PM]

http://bugs.apache.org/index/full/467

unsafe to use multiple Listen directives.

HAVE_FLOCK_SERIALIZED_ACCEPT

This method uses the flock(2) system call to lock a lock file (located by the LockFile directive).

HAVE_FCNTL_SERIALIZED_ACCEPT

This method uses the fcntl(2) system call to lock a lock file (located by the LockFile directive).

HAVE_SYSVSEM_SERIALIZED_ACCEPT

(1.3 or later) This method uses SysV-style semaphores to implement the mutex. Unfortunately SysV-style semaphores have some
bad side-effects. One is that it's possible Apache will die without cleaning up the semaphore (see the ipcs(8) man page). The
other is that the semaphore API allows for a denial of service attack by any CGIs running under the same uid as the webserver
(i.e., all CGIs, unless you use something like suexec or cgiwrapper). For these reasons this method is not used on any architecture
except IRIX (where the previous two are prohibitively expensive on most IRIX boxes).

HAVE_USLOCK_SERIALIZED_ACCEPT

(1.3 or later) This method is only available on IRIX, and uses usconfig(2) to create a mutex. While this method avoids the
hassles of SysV-style semaphores, it is not the default for IRIX. This is because on single processor IRIX boxes (5.3 or 6.2) the
uslock code is two orders of magnitude slower than the SysV-semaphore code. On multi-processor IRIX boxes the uslock code is
an order of magnitude faster than the SysV-semaphore code. Kind of a messed up situation. So if you're using a multiprocessor
IRIX box then you should rebuild your webserver with -DHAVE_USLOCK_SERIALIZED_ACCEPT on the EXTRA_CFLAGS.

HAVE_PTHREAD_SERIALIZED_ACCEPT

(1.3 or later) This method uses POSIX mutexes and should work on any architecture implementing the full POSIX threads
specification, however appears to only work on Solaris (2.5 or later), and even then only in certain configurations. If you
experiment with this you should watch out for your server hanging and not responding. Static content only servers may work just
fine.

If your system has another method of serialization which isn't in the above list then it may be worthwhile adding code for it (and
submitting a patch back to Apache). The above HAVE_METHOD_SERIALIZED_ACCEPT defines specify which method is available and
works on the platform (you can have more than one); USE_METHOD_SERIALIZED_ACCEPT is used to specify the default method (see
the AcceptMutex directive).

Another solution that has been considered but never implemented is to partially serialize the loop -- that is, let in a certain number of
processes. This would only be of interest on multiprocessor boxes where it's possible multiple children could run simultaneously, and the
serialization actually doesn't take advantage of the full bandwidth. This is a possible area of future investigation, but priority remains low
because highly parallel web servers are not the norm.

Ideally you should run servers without multiple Listen statements if you want the highest performance. But read on.

accept Serialization - single socket

The above is fine and dandy for multiple socket servers, but what about single socket servers? In theory they shouldn't experience any of
these same problems because all children can just block in accept(2) until a connection arrives, and no starvation results. In practice
this hides almost the same "spinning" behavior discussed above in the non-blocking solution. The way that most TCP stacks are
implemented, the kernel actually wakes up all processes blocked in accept when a single connection arrives. One of those processes
gets the connection and returns to user-space, the rest spin in the kernel and go back to sleep when they discover there's no connection for
them. This spinning is hidden from the user-land code, but it's there nonetheless. This can result in the same load-spiking wasteful
behavior that a non-blocking solution to the multiple sockets case can.

For this reason we have found that many architectures behave more "nicely" if we serialize even the single socket case. So this is actually
the default in almost all cases. Crude experiments under Linux (2.0.30 on a dual Pentium pro 166 w/128Mb RAM) have shown that the
serialization of the single socket case causes less than a 3% decrease in requests per second over unserialized single-socket. But
unserialized single-socket showed an extra 100ms latency on each request. This latency is probably a wash on long haul lines, and only an
issue on LANs. If you want to override the single socket serialization you can define SINGLE_LISTEN_UNSERIALIZED_ACCEPT
and then single-socket servers will not serialize at all.

Lingering Close

As discussed in draft-ietf-http-connection-00.txt section 8, in order for an HTTP server to reliably implement the protocol it needs to
shutdown each direction of the communication independently (recall that a TCP connection is bi-directional, each half is independent of
the other). This fact is often overlooked by other servers, but is correctly implemented in Apache as of 1.2.

When this feature was added to Apache it caused a flurry of problems on various versions of Unix because of a shortsightedness. The
TCP specification does not state that the FIN_WAIT_2 state has a timeout, but it doesn't prohibit it. On systems without the timeout,

Apache Performance Notes

http://httpd.apache.org/docs/misc/perf-tuning.html (5 of 10) [12/05/2001 4:48:44 PM]

http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-connection-00.txt

Apache 1.2 induces many sockets stuck forever in the FIN_WAIT_2 state. In many cases this can be avoided by simply upgrading to the
latest TCP/IP patches supplied by the vendor. In cases where the vendor has never released patches (i.e., SunOS4 -- although folks with a
source license can patch it themselves) we have decided to disable this feature.

There are two ways of accomplishing this. One is the socket option SO_LINGER. But as fate would have it, this has never been
implemented properly in most TCP/IP stacks. Even on those stacks with a proper implementation (i.e., Linux 2.0.31) this method proves
to be more expensive (cputime) than the next solution.

For the most part, Apache implements this in a function called lingering_close (in http_main.c). The function looks roughly
like this:

 void lingering_close (int s)
 {
 char junk_buffer[2048];

 /* shutdown the sending side */
 shutdown (s, 1);

 signal (SIGALRM, lingering_death);
 alarm (30);

 for (;;) {
 select (s for reading, 2 second timeout);
 if (error) break;
 if (s is ready for reading) {
 if (read (s, junk_buffer, sizeof (junk_buffer)) <= 0) {
 break;
 }
 /* just toss away whatever is read */
 }
 }

 close (s);
 }

This naturally adds some expense at the end of a connection, but it is required for a reliable implementation. As HTTP/1.1 becomes more
prevalent, and all connections are persistent, this expense will be amortized over more requests. If you want to play with fire and disable
this feature you can define NO_LINGCLOSE, but this is not recommended at all. In particular, as HTTP/1.1 pipelined persistent
connections come into use lingering_close is an absolute necessity (and pipelined connections are faster, so you want to support
them).

Scoreboard File

Apache's parent and children communicate with each other through something called the scoreboard. Ideally this should be implemented
in shared memory. For those operating systems that we either have access to, or have been given detailed ports for, it typically is
implemented using shared memory. The rest default to using an on-disk file. The on-disk file is not only slow, but it is unreliable (and less
featured). Peruse the src/main/conf.h file for your architecture and look for either USE_MMAP_SCOREBOARD or
USE_SHMGET_SCOREBOARD. Defining one of those two (as well as their companions HAVE_MMAP and HAVE_SHMGET respectively)
enables the supplied shared memory code. If your system has another type of shared memory, edit the file src/main/http_main.c
and add the hooks necessary to use it in Apache. (Send us back a patch too please.)

Historical note: The Linux port of Apache didn't start to use shared memory until version 1.2 of Apache. This oversight resulted in really
poor and unreliable behavior of earlier versions of Apache on Linux.

DYNAMIC_MODULE_LIMIT

If you have no intention of using dynamically loaded modules (you probably don't if you're reading this and tuning your server for every
last ounce of performance) then you should add -DDYNAMIC_MODULE_LIMIT=0 when building your server. This will save RAM that's
allocated only for supporting dynamically loaded modules.

Apache Performance Notes

http://httpd.apache.org/docs/misc/perf-tuning.html (6 of 10) [12/05/2001 4:48:45 PM]

http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html

Appendix: Detailed Analysis of a Trace

Here is a system call trace of Apache 1.3 running on Linux. The run-time configuration file is essentially the default plus:

<Directory />
 AllowOverride none
 Options FollowSymLinks
</Directory>

The file being requested is a static 6K file of no particular content. Traces of non-static requests or requests with content negotiation look
wildly different (and quite ugly in some cases). First the entire trace, then we'll examine details. (This was generated by the strace
program, other similar programs include truss, ktrace, and par.)

accept(15, {sin_family=AF_INET, sin_port=htons(22283),
sin_addr=inet_addr("127.0.0.1")}, [16]) = 3
flock(18, LOCK_UN) = 0
sigaction(SIGUSR1, {SIG_IGN}, {0x8059954, [], SA_INTERRUPT}) = 0
getsockname(3, {sin_family=AF_INET, sin_port=htons(8080),
sin_addr=inet_addr("127.0.0.1")}, [16]) = 0
setsockopt(3, IPPROTO_TCP1, [1], 4) = 0
read(3, "GET /6k HTTP/1.0\r\nUser-Agent: "..., 4096) = 60
sigaction(SIGUSR1, {SIG_IGN}, {SIG_IGN}) = 0
time(NULL) = 873959960
gettimeofday({873959960, 404935}, NULL) = 0
stat("/home/dgaudet/ap/apachen/htdocs/6k", {st_mode=S_IFREG|0644, st_size=6144, ...}) =
0
open("/home/dgaudet/ap/apachen/htdocs/6k", O_RDONLY) = 4
mmap(0, 6144, PROT_READ, MAP_PRIVATE, 4, 0) = 0x400ee000
writev(3, [{"HTTP/1.1 200 OK\r\nDate: Thu, 11"..., 245},
{"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 6144}], 2) = 6389
close(4) = 0
time(NULL) = 873959960
write(17, "127.0.0.1 - - [10/Sep/1997:23:39"..., 71) = 71
gettimeofday({873959960, 417742}, NULL) = 0
times({tms_utime=5, tms_stime=0, tms_cutime=0, tms_cstime=0}) = 446747
shutdown(3, 1 /* send */) = 0
oldselect(4, [3], NULL, [3], {2, 0}) = 1 (in [3], left {2, 0})
read(3, "", 2048) = 0
close(3) = 0
sigaction(SIGUSR1, {0x8059954, [], SA_INTERRUPT}, {SIG_IGN}) = 0
munmap(0x400ee000, 6144) = 0
flock(18, LOCK_EX) = 0

Notice the accept serialization:

flock(18, LOCK_UN) = 0
...
flock(18, LOCK_EX) = 0

These two calls can be removed by defining SINGLE_LISTEN_UNSERIALIZED_ACCEPT as described earlier.

Notice the SIGUSR1 manipulation:

sigaction(SIGUSR1, {SIG_IGN}, {0x8059954, [], SA_INTERRUPT}) = 0
...
sigaction(SIGUSR1, {SIG_IGN}, {SIG_IGN}) = 0
...
sigaction(SIGUSR1, {0x8059954, [], SA_INTERRUPT}, {SIG_IGN}) = 0

This is caused by the implementation of graceful restarts. When the parent receives a SIGUSR1 it sends a SIGUSR1 to all of its children
(and it also increments a "generation counter" in shared memory). Any children that are idle (between connections) will immediately die
off when they receive the signal. Any children that are in keep-alive connections, but are in between requests will die off immediately.
But any children that have a connection and are still waiting for the first request will not die off immediately.

To see why this is necessary, consider how a browser reacts to a closed connection. If the connection was a keep-alive connection and the

Apache Performance Notes

http://httpd.apache.org/docs/misc/perf-tuning.html (7 of 10) [12/05/2001 4:48:45 PM]

request being serviced was not the first request then the browser will quietly reissue the request on a new connection. It has to do this
because the server is always free to close a keep-alive connection in between requests (i.e., due to a timeout or because of a maximum
number of requests). But, if the connection is closed before the first response has been received the typical browser will display a
"document contains no data" dialogue (or a broken image icon). This is done on the assumption that the server is broken in some way (or
maybe too overloaded to respond at all). So Apache tries to avoid ever deliberately closing the connection before it has sent a single
response. This is the cause of those SIGUSR1 manipulations.

Note that it is theoretically possible to eliminate all three of these calls. But in rough tests the gain proved to be almost unnoticeable.

In order to implement virtual hosts, Apache needs to know the local socket address used to accept the connection:

getsockname(3, {sin_family=AF_INET, sin_port=htons(8080),
sin_addr=inet_addr("127.0.0.1")}, [16]) = 0

It is possible to eliminate this call in many situations (such as when there are no virtual hosts, or when Listen directives are used which
do not have wildcard addresses). But no effort has yet been made to do these optimizations.

Apache turns off the Nagle algorithm:

setsockopt(3, IPPROTO_TCP1, [1], 4) = 0

because of problems described in a paper by John Heidemann.

Notice the two time calls:

time(NULL) = 873959960
...
time(NULL) = 873959960

One of these occurs at the beginning of the request, and the other occurs as a result of writing the log. At least one of these is required to
properly implement the HTTP protocol. The second occurs because the Common Log Format dictates that the log record include a
timestamp of the end of the request. A custom logging module could eliminate one of the calls. Or you can use a method which moves the
time into shared memory, see the patches section below.

As described earlier, ExtendedStatus On causes two gettimeofday calls and a call to times:

gettimeofday({873959960, 404935}, NULL) = 0
...
gettimeofday({873959960, 417742}, NULL) = 0
times({tms_utime=5, tms_stime=0, tms_cutime=0, tms_cstime=0}) = 446747

These can be removed by setting ExtendedStatus Off (which is the default).

It might seem odd to call stat:

stat("/home/dgaudet/ap/apachen/htdocs/6k", {st_mode=S_IFREG|0644, st_size=6144, ...}) =
0

This is part of the algorithm which calculates the PATH_INFO for use by CGIs. In fact if the request had been for the URI
/cgi-bin/printenv/foobar then there would be two calls to stat. The first for
/home/dgaudet/ap/apachen/cgi-bin/printenv/foobar which does not exist, and the second for
/home/dgaudet/ap/apachen/cgi-bin/printenv, which does exist. Regardless, at least one stat call is necessary when
serving static files because the file size and modification times are used to generate HTTP headers (such as Content-Length,
Last-Modified) and implement protocol features (such as If-Modified-Since). A somewhat more clever server could avoid the
stat when serving non-static files, however doing so in Apache is very difficult given the modular structure.

All static files are served using mmap:

mmap(0, 6144, PROT_READ, MAP_PRIVATE, 4, 0) = 0x400ee000
...
munmap(0x400ee000, 6144) = 0

On some architectures it's slower to mmap small files than it is to simply read them. The define MMAP_THRESHOLD can be set to the
minimum size required before using mmap. By default it's set to 0 (except on SunOS4 where experimentation has shown 8192 to be a
better value). Using a tool such as lmbench you can determine the optimal setting for your environment.

Apache Performance Notes

http://httpd.apache.org/docs/misc/perf-tuning.html (8 of 10) [12/05/2001 4:48:45 PM]

http://www.isi.edu/~johnh/PAPERS/Heidemann97a.html
http://www.bitmover.com/lmbench/

You may also wish to experiment with MMAP_SEGMENT_SIZE (default 32768) which determines the maximum number of bytes that
will be written at a time from mmap()d files. Apache only resets the client's Timeout in between write()s. So setting this large may lock
out low bandwidth clients unless you also increase the Timeout.

It may even be the case that mmap isn't used on your architecture; if so then defining USE_MMAP_FILES and HAVE_MMAP might work
(if it works then report back to us).

Apache does its best to avoid copying bytes around in memory. The first write of any request typically is turned into a writev which
combines both the headers and the first hunk of data:

writev(3, [{"HTTP/1.1 200 OK\r\nDate: Thu, 11"..., 245},
{"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 6144}], 2) = 6389

When doing HTTP/1.1 chunked encoding Apache will generate up to four element writevs. The goal is to push the byte copying into
the kernel, where it typically has to happen anyhow (to assemble network packets). On testing, various Unixes (BSDI 2.x, Solaris 2.5,
Linux 2.0.31+) properly combine the elements into network packets. Pre-2.0.31 Linux will not combine, and will create a packet for each
element, so upgrading is a good idea. Defining NO_WRITEV will disable this combining, but result in very poor chunked encoding
performance.

The log write:

write(17, "127.0.0.1 - - [10/Sep/1997:23:39"..., 71) = 71

can be deferred by defining BUFFERED_LOGS. In this case up to PIPE_BUF bytes (a POSIX defined constant) of log entries are
buffered before writing. At no time does it split a log entry across a PIPE_BUF boundary because those writes may not be atomic. (i.e.,
entries from multiple children could become mixed together). The code does its best to flush this buffer when a child dies.

The lingering close code causes four system calls:

shutdown(3, 1 /* send */) = 0
oldselect(4, [3], NULL, [3], {2, 0}) = 1 (in [3], left {2, 0})
read(3, "", 2048) = 0
close(3) = 0

which were described earlier.

Let's apply some of these optimizations: -DSINGLE_LISTEN_UNSERIALIZED_ACCEPT -DBUFFERED_LOGS and
ExtendedStatus Off. Here's the final trace:

accept(15, {sin_family=AF_INET, sin_port=htons(22286),
sin_addr=inet_addr("127.0.0.1")}, [16]) = 3
sigaction(SIGUSR1, {SIG_IGN}, {0x8058c98, [], SA_INTERRUPT}) = 0
getsockname(3, {sin_family=AF_INET, sin_port=htons(8080),
sin_addr=inet_addr("127.0.0.1")}, [16]) = 0
setsockopt(3, IPPROTO_TCP1, [1], 4) = 0
read(3, "GET /6k HTTP/1.0\r\nUser-Agent: "..., 4096) = 60
sigaction(SIGUSR1, {SIG_IGN}, {SIG_IGN}) = 0
time(NULL) = 873961916
stat("/home/dgaudet/ap/apachen/htdocs/6k", {st_mode=S_IFREG|0644, st_size=6144, ...}) =
0
open("/home/dgaudet/ap/apachen/htdocs/6k", O_RDONLY) = 4
mmap(0, 6144, PROT_READ, MAP_PRIVATE, 4, 0) = 0x400e3000
writev(3, [{"HTTP/1.1 200 OK\r\nDate: Thu, 11"..., 245},
{"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 6144}], 2) = 6389
close(4) = 0
time(NULL) = 873961916
shutdown(3, 1 /* send */) = 0
oldselect(4, [3], NULL, [3], {2, 0}) = 1 (in [3], left {2, 0})
read(3, "", 2048) = 0
close(3) = 0
sigaction(SIGUSR1, {0x8058c98, [], SA_INTERRUPT}, {SIG_IGN}) = 0
munmap(0x400e3000, 6144) = 0

That's 19 system calls, of which 4 remain relatively easy to remove, but don't seem worth the effort.

Apache Performance Notes

http://httpd.apache.org/docs/misc/perf-tuning.html (9 of 10) [12/05/2001 4:48:45 PM]

Appendix: Patches Available

There are several performance patches available for 1.3. Although they may not apply cleanly to the current version, it shouldn't be
difficult for someone with a little C knowledge to update them. In particular:

A patch to remove all time(2) system calls.●

A patch to remove various system calls from mod_include, these calls are used by few sites but required for backwards
compatibility.

●

A patch which integrates the above two plus a few other speedups at the cost of removing some functionality.●

Appendix: The Pre-Forking Model

Apache (on Unix) is a pre-forking model server. The parent process is responsible only for forking child processes, it does not serve any
requests or service any network sockets. The child processes actually process connections, they serve multiple connections (one at a time)
before dying. The parent spawns new or kills off old children in response to changes in the load on the server (it does so by monitoring a
scoreboard which the children keep up to date).

This model for servers offers a robustness that other models do not. In particular, the parent code is very simple, and with a high degree of
confidence the parent will continue to do its job without error. The children are complex, and when you add in third party code via
modules, you risk segmentation faults and other forms of corruption. Even should such a thing happen, it only affects one connection and
the server continues serving requests. The parent quickly replaces the dead child.

Pre-forking is also very portable across dialects of Unix. Historically this has been an important goal for Apache, and it continues to
remain so.

The pre-forking model comes under criticism for various performance aspects. Of particular concern are the overhead of forking a
process, the overhead of context switches between processes, and the memory overhead of having multiple processes. Furthermore it does
not offer as many opportunities for data-caching between requests (such as a pool of mmapped files). Various other models exist and
extensive analysis can be found in the papers of the JAWS project. In practice all of these costs vary drastically depending on the
operating system.

Apache's core code is already multithread aware, and Apache version 1.3 is multithreaded on NT. There have been at least two other
experimental implementations of threaded Apache, one using the 1.3 code base on DCE, and one using a custom user-level threads
package and the 1.0 code base; neither is publicly available. There is also an experimental port of Apache 1.3 to Netscape's Portable Run
Time, which is available (but you're encouraged to join the new-httpd mailing list if you intend to use it). Part of our redesign for version
2.0 of Apache will include abstractions of the server model so that we can continue to support the pre-forking model, and also support
various threaded models.

Apache HTTP Server Version 1.3

Apache Performance Notes

http://httpd.apache.org/docs/misc/perf-tuning.html (10 of 10) [12/05/2001 4:48:45 PM]

http://www.arctic.org/~dgaudet/apache/1.3/
http://www.arctic.org/~dgaudet/apache/1.3/shared_time.patch
http://www.arctic.org/~dgaudet/apache/1.3/mod_include_speedups.patch
http://www.arctic.org/~dgaudet/apache/1.3/top_fuel.patch
http://www.cs.wustl.edu/~jxh/research/research.html
http://www.mozilla.org/docs/refList/refNSPR/
http://www.mozilla.org/docs/refList/refNSPR/
http://www.arctic.org/~dgaudet/apache/2.0/
http://dev.apache.org/mailing-lists
http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Apache 1.3
URL Rewriting Guide

Originally written by
Ralf S. Engelschall <rse@apache.org>

December 1997

This document supplements the mod_rewrite reference documentation. It describes how one can use Apache's mod_rewrite to
solve typical URL-based problems webmasters are usually confronted with in practice. I give detailed descriptions on how to
solve each problem by configuring URL rewriting rulesets.

Introduction to mod_rewrite

The Apache module mod_rewrite is a killer one, i.e. it is a really sophisticated module which provides a powerful way to do URL
manipulations. With it you can nearly do all types of URL manipulations you ever dreamed about. The price you have to pay is
to accept complexity, because mod_rewrite's major drawback is that it is not easy to understand and use for the beginner. And
even Apache experts sometimes discover new aspects where mod_rewrite can help.

In other words: With mod_rewrite you either shoot yourself in the foot the first time and never use it again or love it for the rest
of your life because of its power. This paper tries to give you a few initial success events to avoid the first case by presenting
already invented solutions to you.

Practical Solutions

Here come a lot of practical solutions I've either invented myself or collected from other peoples solutions in the past. Feel free
to learn the black magic of URL rewriting from these examples.

ATTENTION: Depending on your server-configuration it can be necessary to slightly change the examples for your situation,
e.g. adding the [PT] flag when additionally using mod_alias and mod_userdir, etc. Or rewriting a ruleset to fit in .htaccess
context instead of per-server context. Always try to understand what a particular ruleset really does before you use it. It avoid
problems.

URL Layout

Canonical URLs

Description:

On some webservers there are more than one URL for a resource. Usually there are canonical URLs (which should be
actually used and distributed) and those which are just shortcuts, internal ones, etc. Independent which URL the user
supplied with the request he should finally see the canonical one only.

Solution:

We do an external HTTP redirect for all non-canonical URLs to fix them in the location view of the Browser and for all
subsequent requests. In the example ruleset below we replace /~user by the canonical /u/user and fix a missing
trailing slash for /u/user.

RewriteRule ^/~([^/]+)/?(.*) /u/$1/$2 [R]
RewriteRule ^/([uge])/([^/]+)$ /$1/$2/ [R]

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (1 of 23) [12/05/2001 4:48:55 PM]

Canonical Hostnames

Description:

...

Solution:

RewriteCond %{HTTP_HOST} !^fully\.qualified\.domain\.name [NC]
RewriteCond %{HTTP_HOST} !^$
RewriteCond %{SERVER_PORT} !^80$
RewriteRule ^/(.*) http://fully.qualified.domain.name:%{SERVER_PORT}/$1 [L,R]
RewriteCond %{HTTP_HOST} !^fully\.qualified\.domain\.name [NC]
RewriteCond %{HTTP_HOST} !^$
RewriteRule ^/(.*) http://fully.qualified.domain.name/$1 [L,R]

Moved DocumentRoot

Description:

Usually the DocumentRoot of the webserver directly relates to the URL ``/''. But often this data is not really of top-level
priority, it is perhaps just one entity of a lot of data pools. For instance at our Intranet sites there are /e/www/ (the
homepage for WWW), /e/sww/ (the homepage for the Intranet) etc. Now because the data of the DocumentRoot stays
at /e/www/ we had to make sure that all inlined images and other stuff inside this data pool work for subsequent
requests.

Solution:

We just redirect the URL / to /e/www/. While is seems trivial it is actually trivial with mod_rewrite, only. Because the
typical old mechanisms of URL Aliases (as provides by mod_alias and friends) only used prefix matching. With this you
cannot do such a redirection because the DocumentRoot is a prefix of all URLs. With mod_rewrite it is really trivial:

RewriteEngine on
RewriteRule ^/$ /e/www/ [R]

Trailing Slash Problem

Description:

Every webmaster can sing a song about the problem of the trailing slash on URLs referencing directories. If they are
missing, the server dumps an error, because if you say /~quux/foo instead of /~quux/foo/ then the server
searches for a file named foo. And because this file is a directory it complains. Actually is tries to fix it themself in most
of the cases, but sometimes this mechanism need to be emulated by you. For instance after you have done a lot of
complicated URL rewritings to CGI scripts etc.

Solution:

The solution to this subtle problem is to let the server add the trailing slash automatically. To do this correctly we have to
use an external redirect, so the browser correctly requests subsequent images etc. If we only did a internal rewrite, this
would only work for the directory page, but would go wrong when any images are included into this page with relative
URLs, because the browser would request an in-lined object. For instance, a request for image.gif in
/~quux/foo/index.html would become /~quux/image.gif without the external redirect!

So, to do this trick we write:

RewriteEngine on
RewriteBase /~quux/
RewriteRule ^foo$ foo/ [R]

The crazy and lazy can even do the following in the top-level .htaccess file of their homedir. But notice that this
creates some processing overhead.

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (2 of 23) [12/05/2001 4:48:55 PM]

RewriteEngine on
RewriteBase /~quux/
RewriteCond %{REQUEST_FILENAME} -d
RewriteRule ^(.+[^/])$ $1/ [R]

Webcluster through Homogeneous URL Layout

Description:

We want to create a homogenous and consistent URL layout over all WWW servers on a Intranet webcluster, i.e. all
URLs (per definition server local and thus server dependent!) become actually server independed! What we want is to
give the WWW namespace a consistent server-independend layout: no URL should have to include any physically
correct target server. The cluster itself should drive us automatically to the physical target host.

Solution:

First, the knowledge of the target servers come from (distributed) external maps which contain information where our
users, groups and entities stay. The have the form

user1 server_of_user1
user2 server_of_user2
: :

We put them into files map.xxx-to-host. Second we need to instruct all servers to redirect URLs of the forms

/u/user/anypath
/g/group/anypath
/e/entity/anypath

to

http://physical-host/u/user/anypath
http://physical-host/g/group/anypath
http://physical-host/e/entity/anypath

when the URL is not locally valid to a server. The following ruleset does this for us by the help of the map files
(assuming that server0 is a default server which will be used if a user has no entry in the map):

RewriteEngine on

RewriteMap user-to-host txt:/path/to/map.user-to-host
RewriteMap group-to-host txt:/path/to/map.group-to-host
RewriteMap entity-to-host txt:/path/to/map.entity-to-host

RewriteRule ^/u/([^/]+)/?(.*) http://${user-to-host:$1|server0}/u/$1/$2
RewriteRule ^/g/([^/]+)/?(.*) http://${group-to-host:$1|server0}/g/$1/$2
RewriteRule ^/e/([^/]+)/?(.*) http://${entity-to-host:$1|server0}/e/$1/$2

RewriteRule ^/([uge])/([^/]+)/?$ /$1/$2/.www/
RewriteRule ^/([uge])/([^/]+)/([^.]+.+) /$1/$2/.www/$3\

Move Homedirs to Different Webserver

Description:

A lot of webmaster aksed for a solution to the following situation: They wanted to redirect just all homedirs on a
webserver to another webserver. They usually need such things when establishing a newer webserver which will replace
the old one over time.

Solution:

The solution is trivial with mod_rewrite. On the old webserver we just redirect all /~user/anypath URLs to
http://newserver/~user/anypath.

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (3 of 23) [12/05/2001 4:48:55 PM]

RewriteEngine on
RewriteRule ^/~(.+) http://newserver/~$1 [R,L]

Structured Homedirs

Description:

Some sites with thousend of users usually use a structured homedir layout, i.e. each homedir is in a subdirectory which
begins for instance with the first character of the username. So, /~foo/anypath is
/home/f/foo/.www/anypath while /~bar/anypath is /home/b/bar/.www/anypath.

Solution:

We use the following ruleset to expand the tilde URLs into exactly the above layout.

RewriteEngine on
RewriteRule ^/~(([a-z])[a-z0-9]+)(.*) /home/$2/$1/.www$3

Filesystem Reorganisation

Description:

This really is a hardcore example: a killer application which heavily uses per-directory RewriteRules to get a smooth
look and feel on the Web while its data structure is never touched or adjusted. Background: net.sw is my archive of
freely available Unix software packages, which I started to collect in 1992. It is both my hobby and job to to this,
because while I'm studying computer science I have also worked for many years as a system and network administrator
in my spare time. Every week I need some sort of software so I created a deep hierarchy of directories where I stored the
packages:

drwxrwxr-x 2 netsw users 512 Aug 3 18:39 Audio/
drwxrwxr-x 2 netsw users 512 Jul 9 14:37 Benchmark/
drwxrwxr-x 12 netsw users 512 Jul 9 00:34 Crypto/
drwxrwxr-x 5 netsw users 512 Jul 9 00:41 Database/
drwxrwxr-x 4 netsw users 512 Jul 30 19:25 Dicts/
drwxrwxr-x 10 netsw users 512 Jul 9 01:54 Graphic/
drwxrwxr-x 5 netsw users 512 Jul 9 01:58 Hackers/
drwxrwxr-x 8 netsw users 512 Jul 9 03:19 InfoSys/
drwxrwxr-x 3 netsw users 512 Jul 9 03:21 Math/
drwxrwxr-x 3 netsw users 512 Jul 9 03:24 Misc/
drwxrwxr-x 9 netsw users 512 Aug 1 16:33 Network/
drwxrwxr-x 2 netsw users 512 Jul 9 05:53 Office/
drwxrwxr-x 7 netsw users 512 Jul 9 09:24 SoftEng/
drwxrwxr-x 7 netsw users 512 Jul 9 12:17 System/
drwxrwxr-x 12 netsw users 512 Aug 3 20:15 Typesetting/
drwxrwxr-x 10 netsw users 512 Jul 9 14:08 X11/

In July 1996 I decided to make this archive public to the world via a nice Web interface. "Nice" means that I wanted to
offer an interface where you can browse directly through the archive hierarchy. And "nice" means that I didn't wanted to
change anything inside this hierarchy - not even by putting some CGI scripts at the top of it. Why? Because the above
structure should be later accessible via FTP as well, and I didn't want any Web or CGI stuff to be there.

Solution:

The solution has two parts: The first is a set of CGI scripts which create all the pages at all directory levels on-the-fly. I
put them under /e/netsw/.www/ as follows:

-rw-r--r-- 1 netsw users 1318 Aug 1 18:10 .wwwacl
drwxr-xr-x 18 netsw users 512 Aug 5 15:51 DATA/
-rw-rw-rw- 1 netsw users 372982 Aug 5 16:35 LOGFILE
-rw-r--r-- 1 netsw users 659 Aug 4 09:27 TODO
-rw-r--r-- 1 netsw users 5697 Aug 1 18:01 netsw-about.html
-rwxr-xr-x 1 netsw users 579 Aug 2 10:33 netsw-access.pl
-rwxr-xr-x 1 netsw users 1532 Aug 1 17:35 netsw-changes.cgi
-rwxr-xr-x 1 netsw users 2866 Aug 5 14:49 netsw-home.cgi
drwxr-xr-x 2 netsw users 512 Jul 8 23:47 netsw-img/

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (4 of 23) [12/05/2001 4:48:55 PM]

-rwxr-xr-x 1 netsw users 24050 Aug 5 15:49 netsw-lsdir.cgi
-rwxr-xr-x 1 netsw users 1589 Aug 3 18:43 netsw-search.cgi
-rwxr-xr-x 1 netsw users 1885 Aug 1 17:41 netsw-tree.cgi
-rw-r--r-- 1 netsw users 234 Jul 30 16:35 netsw-unlimit.lst

The DATA/ subdirectory holds the above directory structure, i.e. the real net.sw stuff and gets automatically updated via
rdist from time to time. The second part of the problem remains: how to link these two structures together into one
smooth-looking URL tree? We want to hide the DATA/ directory from the user while running the appropriate CGI
scripts for the various URLs. Here is the solution: first I put the following into the per-directory configuration file in the
Document Root of the server to rewrite the announced URL /net.sw/ to the internal path /e/netsw:

RewriteRule ^net.sw$ net.sw/ [R]
RewriteRule ^net.sw/(.*)$ e/netsw/$1

The first rule is for requests which miss the trailing slash! The second rule does the real thing. And then comes the killer
configuration which stays in the per-directory config file /e/netsw/.www/.wwwacl:

Options ExecCGI FollowSymLinks Includes MultiViews

RewriteEngine on

we are reached via /net.sw/ prefix
RewriteBase /net.sw/

first we rewrite the root dir to
the handling cgi script
RewriteRule ^$ netsw-home.cgi [L]
RewriteRule ^index\.html$ netsw-home.cgi [L]

strip out the subdirs when
the browser requests us from perdir pages
RewriteRule ^.+/(netsw-[^/]+/.+)$ $1 [L]

and now break the rewriting for local files
RewriteRule ^netsw-home\.cgi.* - [L]
RewriteRule ^netsw-changes\.cgi.* - [L]
RewriteRule ^netsw-search\.cgi.* - [L]
RewriteRule ^netsw-tree\.cgi$ - [L]
RewriteRule ^netsw-about\.html$ - [L]
RewriteRule ^netsw-img/.*$ - [L]

anything else is a subdir which gets handled
by another cgi script
RewriteRule !^netsw-lsdir\.cgi.* - [C]
RewriteRule (.*) netsw-lsdir.cgi/$1

Some hints for interpretation:

Notice the L (last) flag and no substitution field ('-') in the forth part1.

Notice the ! (not) character and the C (chain) flag at the first rule in the last part2.

Notice the catch-all pattern in the last rule3.

NCSA imagemap to Apache mod_imap

Description:

When switching from the NCSA webserver to the more modern Apache webserver a lot of people want a smooth
transition. So they want pages which use their old NCSA imagemap program to work under Apache with the modern
mod_imap. The problem is that there are a lot of hyperlinks around which reference the imagemap program via
/cgi-bin/imagemap/path/to/page.map. Under Apache this has to read just /path/to/page.map.

Solution:

We use a global rule to remove the prefix on-the-fly for all requests:

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (5 of 23) [12/05/2001 4:48:55 PM]

RewriteEngine on
RewriteRule ^/cgi-bin/imagemap(.*) $1 [PT]

Search pages in more than one directory

Description:

Sometimes it is neccessary to let the webserver search for pages in more than one directory. Here MultiViews or other
techniques cannot help.

Solution:

We program a explicit ruleset which searches for the files in the directories.

RewriteEngine on

first try to find it in custom/...
...and if found stop and be happy:
RewriteCond /your/docroot/dir1/%{REQUEST_FILENAME} -f
RewriteRule ^(.+) /your/docroot/dir1/$1 [L]

second try to find it in pub/...
...and if found stop and be happy:
RewriteCond /your/docroot/dir2/%{REQUEST_FILENAME} -f
RewriteRule ^(.+) /your/docroot/dir2/$1 [L]

else go on for other Alias or ScriptAlias directives,
etc.
RewriteRule ^(.+) - [PT]

Set Environment Variables According To URL Parts

Description:

Perhaps you want to keep status information between requests and use the URL to encode it. But you don't want to use a
CGI wrapper for all pages just to strip out this information.

Solution:

We use a rewrite rule to strip out the status information and remember it via an environment variable which can be later
dereferenced from within XSSI or CGI. This way a URL /foo/S=java/bar/ gets translated to /foo/bar/ and the
environment variable named STATUS is set to the value "java".

RewriteEngine on
RewriteRule ^(.*)/S=([^/]+)/(.*) $1/$3 [E=STATUS:$2]

Virtual User Hosts

Description:

Assume that you want to provide www.username.host.domain.com for the homepage of username via just DNS
A records to the same machine and without any virtualhosts on this machine.

Solution:

For HTTP/1.0 requests there is no solution, but for HTTP/1.1 requests which contain a Host: HTTP header we can use
the following ruleset to rewrite http://www.username.host.com/anypath internally to
/home/username/anypath:

RewriteEngine on
RewriteCond %{HTTP_HOST} ^www\.[^.]+\.host\.com$
RewriteRule ^(.+) %{HTTP_HOST}$1 [C]
RewriteRule ^www\.([^.]+)\.host\.com(.*) /home/$1$2

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (6 of 23) [12/05/2001 4:48:55 PM]

Redirect Homedirs For Foreigners

Description:

We want to redirect homedir URLs to another webserver www.somewhere.com when the requesting user does not
stay in the local domain ourdomain.com. This is sometimes used in virtual host contexts.

Solution:

Just a rewrite condition:

RewriteEngine on
RewriteCond %{REMOTE_HOST} !^.+\.ourdomain\.com$
RewriteRule ^(/~.+) http://www.somewhere.com/$1 [R,L]

Redirect Failing URLs To Other Webserver

Description:

A typical FAQ about URL rewriting is how to redirect failing requests on webserver A to webserver B. Usually this is
done via ErrorDocument CGI-scripts in Perl, but there is also a mod_rewrite solution. But notice that this is less
performant than using a ErrorDocument CGI-script!

Solution:

The first solution has the best performance but less flexibility and is less error safe:

RewriteEngine on
RewriteCond /your/docroot/%{REQUEST_FILENAME} !-f
RewriteRule ^(.+) http://webserverB.dom/$1

The problem here is that this will only work for pages inside the DocumentRoot. While you can add more Conditions
(for instance to also handle homedirs, etc.) there is better variant:

RewriteEngine on
RewriteCond %{REQUEST_URI} !-U
RewriteRule ^(.+) http://webserverB.dom/$1

This uses the URL look-ahead feature of mod_rewrite. The result is that this will work for all types of URLs and is a safe
way. But it does a performance impact on the webserver, because for every request there is one more internal subrequest.
So, if your webserver runs on a powerful CPU, use this one. If it is a slow machine, use the first approach or better a
ErrorDocument CGI-script.

Extended Redirection

Description:

Sometimes we need more control (concerning the character escaping mechanism) of URLs on redirects. Usually the
Apache kernels URL escape function also escapes anchors, i.e. URLs like "url#anchor". You cannot use this directly on
redirects with mod_rewrite because the uri_escape() function of Apache would also escape the hash character. How can
we redirect to such a URL?

Solution:

We have to use a kludge by the use of a NPH-CGI script which does the redirect itself. Because here no escaping is done
(NPH=non-parseable headers). First we introduce a new URL scheme xredirect: by the following per-server
config-line (should be one of the last rewrite rules):

RewriteRule ^xredirect:(.+) /path/to/nph-xredirect.cgi/$1 \
 [T=application/x-httpd-cgi,L]

This forces all URLs prefixed with xredirect: to be piped through the nph-xredirect.cgi program. And this
program just looks like:

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (7 of 23) [12/05/2001 4:48:55 PM]

#!/path/to/perl
##
nph-xredirect.cgi -- NPH/CGI script for extended redirects
Copyright (c) 1997 Ralf S. Engelschall, All Rights Reserved.
##

$| = 1;
$url = $ENV{'PATH_INFO'};

print "HTTP/1.0 302 Moved Temporarily\n";
print "Server: $ENV{'SERVER_SOFTWARE'}\n";
print "Location: $url\n";
print "Content-type: text/html\n";
print "\n";
print "<html>\n";
print "<head>\n";
print "<title>302 Moved Temporarily (EXTENDED)</title>\n";
print "</head>\n";
print "<body>\n";
print "<h1>Moved Temporarily (EXTENDED)</h1>\n";
print "The document has moved here.<p>\n";
print "</body>\n";
print "</html>\n";

##EOF##

This provides you with the functionality to do redirects to all URL schemes, i.e. including the one which are not directly
accepted by mod_rewrite. For instance you can now also redirect to news:newsgroup via

RewriteRule ^anyurl xredirect:news:newsgroup

Notice: You have not to put [R] or [R,L] to the above rule because the xredirect: need to be expanded later by our
special "pipe through" rule above.

Archive Access Multiplexer

Description:

Do you know the great CPAN (Comprehensive Perl Archive Network) under http://www.perl.com/CPAN? This does a
redirect to one of several FTP servers around the world which carry a CPAN mirror and is approximately near the
location of the requesting client. Actually this can be called an FTP access multiplexing service. While CPAN runs via
CGI scripts, how can a similar approach implemented via mod_rewrite?

Solution:

First we notice that from version 3.0.0 mod_rewrite can also use the "ftp:" scheme on redirects. And second, the location
approximation can be done by a rewritemap over the top-level domain of the client. With a tricky chained ruleset we can
use this top-level domain as a key to our multiplexing map.

RewriteEngine on
RewriteMap multiplex txt:/path/to/map.cxan
RewriteRule ^/CxAN/(.*) %{REMOTE_HOST}::$1 [C]
RewriteRule ^.+\.([a-zA-Z]+)::(.*)$ ${multiplex:$1|ftp.default.dom}$2 [R,L]

##
map.cxan -- Multiplexing Map for CxAN
##

de ftp://ftp.cxan.de/CxAN/
uk ftp://ftp.cxan.uk/CxAN/
com ftp://ftp.cxan.com/CxAN/
 :
##EOF##

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (8 of 23) [12/05/2001 4:48:55 PM]

http://www.perl.com/CPAN

Time-Dependend Rewriting

Description:

When tricks like time-dependend content should happen a lot of webmasters still use CGI scripts which do for instance
redirects to specialized pages. How can it be done via mod_rewrite?

Solution:

There are a lot of variables named TIME_xxx for rewrite conditions. In conjunction with the special lexicographic
comparison patterns <STRING, >STRING and =STRING we can do time-dependend redirects:

RewriteEngine on
RewriteCond %{TIME_HOUR}%{TIME_MIN} >0700
RewriteCond %{TIME_HOUR}%{TIME_MIN} <1900
RewriteRule ^foo\.html$ foo.day.html
RewriteRule ^foo\.html$ foo.night.html

This provides the content of foo.day.html under the URL foo.html from 07:00-19:00 and at the remaining time
the contents of foo.night.html. Just a nice feature for a homepage...

Backward Compatibility for YYYY to XXXX migration

Description:

How can we make URLs backward compatible (still existing virtually) after migrating document.YYYY to
document.XXXX, e.g. after translating a bunch of .html files to .phtml?

Solution:

We just rewrite the name to its basename and test for existence of the new extension. If it exists, we take that name, else
we rewrite the URL to its original state.

backward compatibility ruleset for
rewriting document.html to document.phtml
when and only when document.phtml exists
but no longer document.html
RewriteEngine on
RewriteBase /~quux/
parse out basename, but remember the fact
RewriteRule ^(.*)\.html$ $1 [C,E=WasHTML:yes]
rewrite to document.phtml if exists
RewriteCond %{REQUEST_FILENAME}.phtml -f
RewriteRule ^(.*)$ $1.phtml [S=1]
else reverse the previous basename cutout
RewriteCond %{ENV:WasHTML} ^yes$
RewriteRule ^(.*)$ $1.html

Content Handling

From Old to New (intern)

Description:

Assume we have recently renamed the page bar.html to foo.html and now want to provide the old URL for
backward compatibility. Actually we want that users of the old URL even not recognize that the pages was renamed.

Solution:

We rewrite the old URL to the new one internally via the following rule:

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (9 of 23) [12/05/2001 4:48:55 PM]

RewriteEngine on
RewriteBase /~quux/
RewriteRule ^foo\.html$ bar.html

From Old to New (extern)

Description:

Assume again that we have recently renamed the page bar.html to foo.html and now want to provide the old URL
for backward compatibility. But this time we want that the users of the old URL get hinted to the new one, i.e. their
browsers Location field should change, too.

Solution:

We force a HTTP redirect to the new URL which leads to a change of the browsers and thus the users view:

RewriteEngine on
RewriteBase /~quux/
RewriteRule ^foo\.html$ bar.html [R]

Browser Dependend Content

Description:

At least for important top-level pages it is sometimes necesarry to provide the optimum of browser dependend content,
i.e. one has to provide a maximum version for the latest Netscape variants, a minimum version for the Lynx browsers
and a average feature version for all others.

Solution:

We cannot use content negotiation because the browsers do not provide their type in that form. Instead we have to act on
the HTTP header "User-Agent". The following condig does the following: If the HTTP header "User-Agent" begins with
"Mozilla/3", the page foo.html is rewritten to foo.NS.html and and the rewriting stops. If the browser is "Lynx"
or "Mozilla" of version 1 or 2 the URL becomes foo.20.html. All other browsers receive page foo.32.html. This
is done by the following ruleset:

RewriteCond %{HTTP_USER_AGENT} ^Mozilla/3.*
RewriteRule ^foo\.html$ foo.NS.html [L]

RewriteCond %{HTTP_USER_AGENT} ^Lynx/.* [OR]
RewriteCond %{HTTP_USER_AGENT} ^Mozilla/[12].*
RewriteRule ^foo\.html$ foo.20.html [L]

RewriteRule ^foo\.html$ foo.32.html [L]

Dynamic Mirror

Description:

Assume there are nice webpages on remote hosts we want to bring into our namespace. For FTP servers we would use
the mirror program which actually maintains an explicit up-to-date copy of the remote data on the local machine. For a
webserver we could use the program webcopy which acts similar via HTTP. But both techniques have one major
drawback: The local copy is always just as up-to-date as often we run the program. It would be much better if the mirror
is not a static one we have to establish explicitly. Instead we want a dynamic mirror with data which gets updated
automatically when there is need (updated data on the remote host).

Solution:

To provide this feature we map the remote webpage or even the complete remote webarea to our namespace by the use
of the Proxy Throughput feature (flag [P]):

RewriteEngine on
RewriteBase /~quux/
RewriteRule ^hotsheet/(.*)$ http://www.tstimpreso.com/hotsheet/$1 [P]

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (10 of 23) [12/05/2001 4:48:55 PM]

RewriteEngine on
RewriteBase /~quux/
RewriteRule ^usa-news\.html$ http://www.quux-corp.com/news/index.html [P]

Reverse Dynamic Mirror

Description:

...

Solution:

RewriteEngine on
RewriteCond /mirror/of/remotesite/$1 -U
RewriteRule ^http://www\.remotesite\.com/(.*)$ /mirror/of/remotesite/$1

Retrieve Missing Data from Intranet

Description:

This is a tricky way of virtually running a corporates (external) Internet webserver (www.quux-corp.dom), while
actually keeping and maintaining its data on a (internal) Intranet webserver (www2.quux-corp.dom) which is
protected by a firewall. The trick is that on the external webserver we retrieve the requested data on-the-fly from the
internal one.

Solution:

First, we have to make sure that our firewall still protects the internal webserver and that only the external webserver is
allowed to retrieve data from it. For a packet-filtering firewall we could for instance configure a firewall ruleset like the
following:

ALLOW Host www.quux-corp.dom Port >1024 --> Host www2.quux-corp.dom Port 80
DENY Host * Port * --> Host www2.quux-corp.dom Port 80

Just adjust it to your actual configuration syntax. Now we can establish the mod_rewrite rules which request the missing
data in the background through the proxy throughput feature:

RewriteRule ^/~([^/]+)/?(.*) /home/$1/.www/$2
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^/home/([^/]+)/.www/?(.*) http://www2.quux-corp.dom/~$1/pub/$2 [P]

Load Balancing

Description:

Suppose we want to load balance the traffic to www.foo.com over www[0-5].foo.com (a total of 6 servers). How
can this be done?

Solution:

There are a lot of possible solutions for this problem. We will discuss first a commonly known DNS-based variant and
then the special one with mod_rewrite:

DNS Round-Robin

The simplest method for load-balancing is to use the DNS round-robin feature of BIND. Here you just configure
www[0-9].foo.com as usual in your DNS with A(address) records, e.g.

1.

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (11 of 23) [12/05/2001 4:48:55 PM]

www0 IN A 1.2.3.1
www1 IN A 1.2.3.2
www2 IN A 1.2.3.3
www3 IN A 1.2.3.4
www4 IN A 1.2.3.5
www5 IN A 1.2.3.6

Then you additionally add the following entry:

www IN CNAME www0.foo.com.
 IN CNAME www1.foo.com.
 IN CNAME www2.foo.com.
 IN CNAME www3.foo.com.
 IN CNAME www4.foo.com.
 IN CNAME www5.foo.com.
 IN CNAME www6.foo.com.

Notice that this seems wrong, but is actually an intended feature of BIND and can be used in this way. However,
now when www.foo.com gets resolved, BIND gives out www0-www6 - but in a slightly permutated/rotated
order every time. This way the clients are spread over the various servers. But notice that this not a perfect load
balancing scheme, because DNS resolve information gets cached by the other nameservers on the net, so once a
client has resolved www.foo.com to a particular wwwN.foo.com, all subsequent requests also go to this
particular name wwwN.foo.com. But the final result is ok, because the total sum of the requests are really
spread over the various webservers.

DNS Load-Balancing

A sophisticated DNS-based method for load-balancing is to use the program lbnamed which can be found at
http://www.stanford.edu/~schemers/docs/lbnamed/lbnamed.html. It is a Perl 5 program in conjunction with
auxilliary tools which provides a real load-balancing for DNS.

2.

Proxy Throughput Round-Robin

In this variant we use mod_rewrite and its proxy throughput feature. First we dedicate www0.foo.com to be
actually www.foo.com by using a single

www IN CNAME www0.foo.com.

entry in the DNS. Then we convert www0.foo.com to a proxy-only server, i.e. we configure this machine so
all arriving URLs are just pushed through the internal proxy to one of the 5 other servers (www1-www5). To
accomplish this we first establish a ruleset which contacts a load balancing script lb.pl for all URLs.

RewriteEngine on
RewriteMap lb prg:/path/to/lb.pl
RewriteRule ^/(.+)$ ${lb:$1} [P,L]

Then we write lb.pl:

3.

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (12 of 23) [12/05/2001 4:48:55 PM]

http://www.stanford.edu/~schemers/docs/lbnamed/lbnamed.html

#!/path/to/perl
##
lb.pl -- load balancing script
##

$| = 1;

$name = "www"; # the hostname base
$first = 1; # the first server (not 0 here, because 0 is myself)
$last = 5; # the last server in the round-robin
$domain = "foo.dom"; # the domainname

$cnt = 0;
while (<STDIN>) {
 $cnt = (($cnt+1) % ($last+1-$first));
 $server = sprintf("%s%d.%s", $name, $cnt+$first, $domain);
 print "http://$server/$_";
}

##EOF##

A last notice: Why is this useful? Seems like www0.foo.com still is overloaded? The answer is yes, it is
overloaded, but with plain proxy throughput requests, only! All SSI, CGI, ePerl, etc. processing is completely
done on the other machines. This is the essential point.

Hardware/TCP Round-Robin

There is a hardware solution available, too. Cisco has a beast called LocalDirector which does a load balancing
at the TCP/IP level. Actually this is some sort of a circuit level gateway in front of a webcluster. If you have
enough money and really need a solution with high performance, use this one.

4.

Reverse Proxy

Description:

...

Solution:

##
apache-rproxy.conf -- Apache configuration for Reverse Proxy Usage
##

server type
ServerType standalone
Port 8000
MinSpareServers 16
StartServers 16
MaxSpareServers 16
MaxClients 16
MaxRequestsPerChild 100

server operation parameters
KeepAlive on
MaxKeepAliveRequests 100
KeepAliveTimeout 15
Timeout 400
IdentityCheck off
HostnameLookups off

paths to runtime files
PidFile /path/to/apache-rproxy.pid
LockFile /path/to/apache-rproxy.lock
ErrorLog /path/to/apache-rproxy.elog
CustomLog /path/to/apache-rproxy.dlog "%{%v/%T}t %h -> %{SERVER}e URL: %U"

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (13 of 23) [12/05/2001 4:48:55 PM]

unused paths
ServerRoot /tmp
DocumentRoot /tmp
CacheRoot /tmp
RewriteLog /dev/null
TransferLog /dev/null
TypesConfig /dev/null
AccessConfig /dev/null
ResourceConfig /dev/null

speed up and secure processing
<Directory />
Options -FollowSymLinks -SymLinksIfOwnerMatch
AllowOverwrite None
</Directory>

the status page for monitoring the reverse proxy
<Location /rproxy-status>
SetHandler server-status
</Location>

enable the URL rewriting engine
RewriteEngine on
RewriteLogLevel 0

define a rewriting map with value-lists where
mod_rewrite randomly chooses a particular value
RewriteMap server rnd:/path/to/apache-rproxy.conf-servers

make sure the status page is handled locally
and make sure no one uses our proxy except ourself
RewriteRule ^/apache-rproxy-status.* - [L]
RewriteRule ^(http|ftp)://.* - [F]

now choose the possible servers for particular URL types
RewriteRule ^/(.*\.(cgi|shtml))$ to://${server:dynamic}/$1 [S=1]
RewriteRule ^/(.*)$ to://${server:static}/$1

and delegate the generated URL by passing it
through the proxy module
RewriteRule ^to://([^/]+)/(.*) http://$1/$2 [E=SERVER:$1,P,L]

and make really sure all other stuff is forbidden
when it should survive the above rules...
RewriteRule .* - [F]

enable the Proxy module without caching
ProxyRequests on
NoCache *

setup URL reverse mapping for redirect reponses
ProxyPassReverse / http://www1.foo.dom/
ProxyPassReverse / http://www2.foo.dom/
ProxyPassReverse / http://www3.foo.dom/
ProxyPassReverse / http://www4.foo.dom/
ProxyPassReverse / http://www5.foo.dom/
ProxyPassReverse / http://www6.foo.dom/

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (14 of 23) [12/05/2001 4:48:55 PM]

##
apache-rproxy.conf-servers -- Apache/mod_rewrite selection table
##

list of backend servers which serve static
pages (HTML files and Images, etc.)
static www1.foo.dom|www2.foo.dom|www3.foo.dom|www4.foo.dom

list of backend servers which serve dynamically
generated page (CGI programs or mod_perl scripts)
dynamic www5.foo.dom|www6.foo.dom

New MIME-type, New Service

Description:

On the net there are a lot of nifty CGI programs. But their usage is usually boring, so a lot of webmaster don't use them.
Even Apache's Action handler feature for MIME-types is only appropriate when the CGI programs don't need special
URLs (actually PATH_INFO and QUERY_STRINGS) as their input. First, let us configure a new file type with
extension .scgi (for secure CGI) which will be processed by the popular cgiwrap program. The problem here is that
for instance we use a Homogeneous URL Layout (see above) a file inside the user homedirs has the URL
/u/user/foo/bar.scgi. But cgiwrap needs the URL in the form /~user/foo/bar.scgi/. The following
rule solves the problem:

RewriteRule ^/[uge]/([^/]+)/\.www/(.+)\.scgi(.*) ...
... /internal/cgi/user/cgiwrap/~$1/$2.scgi$3 [NS,T=application/x-http-cgi]

Or assume we have some more nifty programs: wwwlog (which displays the access.log for a URL subtree and
wwwidx (which runs Glimpse on a URL subtree). We have to provide the URL area to these programs so they know on
which area they have to act on. But usually this ugly, because they are all the times still requested from that areas, i.e.
typically we would run the swwidx program from within /u/user/foo/ via hyperlink to

/internal/cgi/user/swwidx?i=/u/user/foo/

which is ugly. Because we have to hard-code both the location of the area and the location of the CGI inside the
hyperlink. When we have to reorganise or area, we spend a lot of time changing the various hyperlinks.

Solution:

The solution here is to provide a special new URL format which automatically leads to the proper CGI invocation. We
configure the following:

RewriteRule ^/([uge])/([^/]+)(/?.*)/* /internal/cgi/user/wwwidx?i=/$1/$2$3/
RewriteRule ^/([uge])/([^/]+)(/?.*):log /internal/cgi/user/wwwlog?f=/$1/$2$3

Now the hyperlink to search at /u/user/foo/ reads only

HREF="*"

which internally gets automatically transformed to

/internal/cgi/user/wwwidx?i=/u/user/foo/

The same approach leads to an invocation for the access log CGI program when the hyperlink :log gets used.

From Static to Dynamic

Description:

How can we transform a static page foo.html into a dynamic variant foo.cgi in a seemless way, i.e. without notice
by the browser/user.

Solution:

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (15 of 23) [12/05/2001 4:48:55 PM]

We just rewrite the URL to the CGI-script and force the correct MIME-type so it gets really run as a CGI-script. This
way a request to /~quux/foo.html internally leads to the invokation of /~quux/foo.cgi.

RewriteEngine on
RewriteBase /~quux/
RewriteRule ^foo\.html$ foo.cgi [T=application/x-httpd-cgi]

On-the-fly Content-Regeneration

Description:

Here comes a really esoteric feature: Dynamically generated but statically served pages, i.e. pages should be delivered as
pure static pages (read from the filesystem and just passed through), but they have to be generated dynamically by the
webserver if missing. This way you can have CGI-generated pages which are statically served unless one (or a cronjob)
removes the static contents. Then the contents gets refreshed.

Solution:

This is done via the following ruleset:

RewriteCond %{REQUEST_FILENAME} !-s
RewriteRule ^page\.html$ page.cgi [T=application/x-httpd-cgi,L]

Here a request to page.html leads to a internal run of a corresponding page.cgi if page.html is still missing or
has filesize null. The trick here is that page.cgi is a usual CGI script which (additionally to its STDOUT) writes its
output to the file page.html. Once it was run, the server sends out the data of page.html. When the webmaster
wants to force a refresh the contents, he just removes page.html (usually done by a cronjob).

Document With Autorefresh

Description:

Wouldn't it be nice while creating a complex webpage if the webbrowser would automatically refresh the page every
time we write a new version from within our editor? Impossible?

Solution:

No! We just combine the MIME multipart feature, the webserver NPH feature and the URL manipulation power of
mod_rewrite. First, we establish a new URL feature: Adding just :refresh to any URL causes this to be refreshed
every time it gets updated on the filesystem.

RewriteRule ^(/[uge]/[^/]+/?.*):refresh /internal/cgi/apache/nph-refresh?f=$1

Now when we reference the URL

/u/foo/bar/page.html:refresh

this leads to the internal invocation of the URL

/internal/cgi/apache/nph-refresh?f=/u/foo/bar/page.html

The only missing part is the NPH-CGI script. Although one would usually say "left as an exercise to the reader" ;-) I will
provide this, too.

#!/sw/bin/perl
##
nph-refresh -- NPH/CGI script for auto refreshing pages
Copyright (c) 1997 Ralf S. Engelschall, All Rights Reserved.
##
$| = 1;

split the QUERY_STRING variable
@pairs = split(/&/, $ENV{'QUERY_STRING'});
foreach $pair (@pairs) {

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (16 of 23) [12/05/2001 4:48:55 PM]

 ($name, $value) = split(/=/, $pair);
 $name =~ tr/A-Z/a-z/;
 $name = 'QS_' . $name;
 $value =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C", hex($1))/eg;
 eval "\$$name = \"$value\"";
}
$QS_s = 1 if ($QS_s eq '');
$QS_n = 3600 if ($QS_n eq '');
if ($QS_f eq '') {
 print "HTTP/1.0 200 OK\n";
 print "Content-type: text/html\n\n";
 print "ERROR: No file given\n";
 exit(0);
}
if (! -f $QS_f) {
 print "HTTP/1.0 200 OK\n";
 print "Content-type: text/html\n\n";
 print "ERROR: File $QS_f not found\n";
 exit(0);
}

sub print_http_headers_multipart_begin {
 print "HTTP/1.0 200 OK\n";
 $bound = "ThisRandomString12345";
 print "Content-type: multipart/x-mixed-replace;boundary=$bound\n";
 &print_http_headers_multipart_next;
}

sub print_http_headers_multipart_next {
 print "\n--$bound\n";
}

sub print_http_headers_multipart_end {
 print "\n--$bound--\n";
}

sub displayhtml {
 local($buffer) = @_;
 $len = length($buffer);
 print "Content-type: text/html\n";
 print "Content-length: $len\n\n";
 print $buffer;
}

sub readfile {
 local($file) = @_;
 local(*FP, $size, $buffer, $bytes);
 ($x, $x, $x, $x, $x, $x, $x, $size) = stat($file);
 $size = sprintf("%d", $size);
 open(FP, "<$file");
 $bytes = sysread(FP, $buffer, $size);
 close(FP);
 return $buffer;
}

$buffer = &readfile($QS_f);
&print_http_headers_multipart_begin;
&displayhtml($buffer);

sub mystat {
 local($file) = $_[0];
 local($time);

 ($x, $x, $x, $x, $x, $x, $x, $x, $x, $mtime) = stat($file);
 return $mtime;
}

$mtimeL = &mystat($QS_f);

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (17 of 23) [12/05/2001 4:48:55 PM]

$mtime = $mtime;
for ($n = 0; $n < $QS_n; $n++) {
 while (1) {
 $mtime = &mystat($QS_f);
 if ($mtime ne $mtimeL) {
 $mtimeL = $mtime;
 sleep(2);
 $buffer = &readfile($QS_f);
 &print_http_headers_multipart_next;
 &displayhtml($buffer);
 sleep(5);
 $mtimeL = &mystat($QS_f);
 last;
 }
 sleep($QS_s);
 }
}

&print_http_headers_multipart_end;

exit(0);

##EOF##

Mass Virtual Hosting

Description:

The <VirtualHost> feature of Apache is nice and works great when you just have a few dozens virtual hosts. But
when you are an ISP and have hundreds of virtual hosts to provide this feature is not the best choice.

Solution:

To provide this feature we map the remote webpage or even the complete remote webarea to our namespace by the use
of the Proxy Throughput feature (flag [P]):

##
vhost.map

www.vhost1.dom:80 /path/to/docroot/vhost1
www.vhost2.dom:80 /path/to/docroot/vhost2
 :
www.vhostN.dom:80 /path/to/docroot/vhostN

##
httpd.conf
##
 :
use the canonical hostname on redirects, etc.
UseCanonicalName on

 :
add the virtual host in front of the CLF-format
CustomLog /path/to/access_log "%{VHOST}e %h %l %u %t \"%r\" %>s %b"
 :

enable the rewriting engine in the main server
RewriteEngine on

define two maps: one for fixing the URL and one which defines
the available virtual hosts with their corresponding
DocumentRoot.
RewriteMap lowercase int:tolower
RewriteMap vhost txt:/path/to/vhost.map

Now do the actual virtual host mapping

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (18 of 23) [12/05/2001 4:48:55 PM]

via a huge and complicated single rule:
#
1. make sure we don't map for common locations
RewriteCond %{REQUEST_URI} !^/commonurl1/.*
RewriteCond %{REQUEST_URI} !^/commonurl2/.*
 :
RewriteCond %{REQUEST_URI} !^/commonurlN/.*
#
2. make sure we have a Host header, because
currently our approach only supports
virtual hosting through this header
RewriteCond %{HTTP_HOST} !^$
#
3. lowercase the hostname
RewriteCond ${lowercase:%{HTTP_HOST}|NONE} ^(.+)$
#
4. lookup this hostname in vhost.map and
remember it only when it is a path
(and not "NONE" from above)
RewriteCond ${vhost:%1} ^(/.*)$
#
5. finally we can map the URL to its docroot location
and remember the virtual host for logging puposes
RewriteRule ^/(.*)$ %1/$1 [E=VHOST:${lowercase:%{HTTP_HOST}}]
 :

Access Restriction

Blocking of Robots

Description:

How can we block a really annoying robot from retrieving pages of a specific webarea? A /robots.txt file
containing entries of the "Robot Exclusion Protocol" is typically not enough to get rid of such a robot.

Solution:

We use a ruleset which forbids the URLs of the webarea /~quux/foo/arc/ (perhaps a very deep directory indexed
area where the robot traversal would create big server load). We have to make sure that we forbid access only to the
particular robot, i.e. just forbidding the host where the robot runs is not enough. This would block users from this host,
too. We accomplish this by also matching the User-Agent HTTP header information.

RewriteCond %{HTTP_USER_AGENT} ^NameOfBadRobot.*
RewriteCond %{REMOTE_ADDR} ^123\.45\.67\.[8-9]$
RewriteRule ^/~quux/foo/arc/.+ - [F]

Blocked Inline-Images

Description:

Assume we have under http://www.quux-corp.de/~quux/ some pages with inlined GIF graphics. These graphics are nice,
so others directly incorporate them via hyperlinks to their pages. We don't like this practice because it adds useless traffic
to our server.

Solution:

While we cannot 100% protect the images from inclusion, we can at least restrict the cases where the browser sends a
HTTP Referer header.

RewriteCond %{HTTP_REFERER} !^$
RewriteCond %{HTTP_REFERER} !^http://www.quux-corp.de/~quux/.*$ [NC]
RewriteRule .*\.gif$ - [F]

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (19 of 23) [12/05/2001 4:48:55 PM]

RewriteCond %{HTTP_REFERER} !^$
RewriteCond %{HTTP_REFERER} !.*/foo-with-gif\.html$
RewriteRule ^inlined-in-foo\.gif$ - [F]

Host Deny

Description:

How can we forbid a list of externally configured hosts from using our server?

Solution:

For Apache >= 1.3b6:

RewriteEngine on
RewriteMap hosts-deny txt:/path/to/hosts.deny
RewriteCond ${hosts-deny:%{REMOTE_HOST}|NOT-FOUND} !=NOT-FOUND [OR]
RewriteCond ${hosts-deny:%{REMOTE_ADDR}|NOT-FOUND} !=NOT-FOUND
RewriteRule ^/.* - [F]

For Apache <= 1.3b6:

RewriteEngine on
RewriteMap hosts-deny txt:/path/to/hosts.deny
RewriteRule ^/(.*)$ ${hosts-deny:%{REMOTE_HOST}|NOT-FOUND}/$1
RewriteRule !^NOT-FOUND/.* - [F]
RewriteRule ^NOT-FOUND/(.*)$ ${hosts-deny:%{REMOTE_ADDR}|NOT-FOUND}/$1
RewriteRule !^NOT-FOUND/.* - [F]
RewriteRule ^NOT-FOUND/(.*)$ /$1

##
hosts.deny
##
ATTENTION! This is a map, not a list, even when we treat it as such.
mod_rewrite parses it for key/value pairs, so at least a
dummy value "-" must be present for each entry.
##

193.102.180.41 -
bsdti1.sdm.de -
192.76.162.40 -

URL-Restricted Proxy

Description:

How can we restrict the proxy to allow access to a configurable set of internet sites only? The site list is extracted from a
prepared bookmarks file.

Solution:

We first have to make sure mod_rewrite is below(!) mod_proxy in the Configuration file when compiling the
Apache webserver (or in the AddModule list of httpd.conf in the case of dynamically loaded modules), as it must
get called _before_ mod_proxy.

For simplicity, we generate the site list as a textfile map (but see the mod_rewrite documentation for a conversion script
to DBM format). A typical Netscape bookmarks file can be converted to a list of sites with a shell script like this:

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (20 of 23) [12/05/2001 4:48:55 PM]

#!/bin/sh
cat ${1:-~/.netscape/bookmarks.html} |
tr -d '\015' | tr '[A-Z]' '[a-z]' | grep href=\" |
sed -e '/href="file:/d;' -e '/href="news:/d;' \
 -e 's|^.*href="[^:]*://\([^:/"]*\).*$|\1 OK|;' \
 -e '/href="/s|^.*href="\([^:/"]*\).*$|\1 OK|;' |
sort -u

We redirect the resulting output into a text file called goodsites.txt. It now looks similar to this:

www.apache.org OK
xml.apache.org OK
jakarta.apache.org OK
perl.apache.org OK
...

We reference this site file within the configuration for the VirtualHost which is responsible for serving as a proxy
(often not port 80, but 81, 8080 or 8008).

<VirtualHost *:8008>
 ...
 RewriteEngine On
 # Either use the (plaintext) allow list from goodsites.txt
 RewriteMap ProxyAllow txt:/usr/local/apache/conf/goodsites.txt
 # Or, for faster access, convert it to a DBM database:
 #RewriteMap ProxyAllow dbm:/usr/local/apache/conf/goodsites
 # Match lowercased hostnames
 RewriteMap lowercase int:tolower
 # Here we go:
 # 1) first lowercase the site name and strip off a :port suffix
 RewriteCond ${lowercase:%{HTTP_HOST}} ^([^:]*).*$
 # 2) next look it up in the map file.
 # "%1" refers to the previous regex.
 # If the result is "OK", proxy access is granted.
 RewriteCond ${ProxyAllow:%1|DENY} !^OK$ [NC]
 # 3) Disallow proxy requests if the site was _not_ tagged "OK":
 RewriteRule ^proxy: - [F]
 ...
</VirtualHost>

Proxy Deny

Description:

How can we forbid a certain host or even a user of a special host from using the Apache proxy?

Solution:

We first have to make sure mod_rewrite is below(!) mod_proxy in the Configuration file when compiling the
Apache webserver. This way it gets called _before_ mod_proxy. Then we configure the following for a host-dependend
deny...

RewriteCond %{REMOTE_HOST} ^badhost\.mydomain\.com$
RewriteRule !^http://[^/.]\.mydomain.com.* - [F]

...and this one for a user@host-dependend deny:

RewriteCond %{REMOTE_IDENT}@%{REMOTE_HOST} ^badguy@badhost\.mydomain\.com$
RewriteRule !^http://[^/.]\.mydomain.com.* - [F]

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (21 of 23) [12/05/2001 4:48:55 PM]

Special Authentication Variant

Description:

Sometimes a very special authentication is needed, for instance a authentication which checks for a set of explicitly
configured users. Only these should receive access and without explicit prompting (which would occur when using the
Basic Auth via mod_access).

Solution:

We use a list of rewrite conditions to exclude all except our friends:

RewriteCond %{REMOTE_IDENT}@%{REMOTE_HOST} !^friend1@client1.quux-corp\.com$
RewriteCond %{REMOTE_IDENT}@%{REMOTE_HOST} !^friend2@client2.quux-corp\.com$
RewriteCond %{REMOTE_IDENT}@%{REMOTE_HOST} !^friend3@client3.quux-corp\.com$
RewriteRule ^/~quux/only-for-friends/ - [F]

Referer-based Deflector

Description:

How can we program a flexible URL Deflector which acts on the "Referer" HTTP header and can be configured with as
many referring pages as we like?

Solution:

Use the following really tricky ruleset...

RewriteMap deflector txt:/path/to/deflector.map

RewriteCond %{HTTP_REFERER} !=""
RewriteCond ${deflector:%{HTTP_REFERER}} ^-$
RewriteRule ^.* %{HTTP_REFERER} [R,L]

RewriteCond %{HTTP_REFERER} !=""
RewriteCond ${deflector:%{HTTP_REFERER}|NOT-FOUND} !=NOT-FOUND
RewriteRule ^.* ${deflector:%{HTTP_REFERER}} [R,L]

... in conjunction with a corresponding rewrite map:

##
deflector.map
##

http://www.badguys.com/bad/index.html -
http://www.badguys.com/bad/index2.html -
http://www.badguys.com/bad/index3.html http://somewhere.com/

This automatically redirects the request back to the referring page (when "-" is used as the value in the map) or to a
specific URL (when an URL is specified in the map as the second argument).

Other

External Rewriting Engine

Description:

A FAQ: How can we solve the FOO/BAR/QUUX/etc. problem? There seems no solution by the use of mod_rewrite...

Solution:

Use an external rewrite map, i.e. a program which acts like a rewrite map. It is run once on startup of Apache receives
the requested URLs on STDIN and has to put the resulting (usually rewritten) URL on STDOUT (same order!).

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (22 of 23) [12/05/2001 4:48:55 PM]

RewriteEngine on
RewriteMap quux-map prg:/path/to/map.quux.pl
RewriteRule ^/~quux/(.*)$ /~quux/${quux-map:$1}

#!/path/to/perl

disable buffered I/O which would lead
to deadloops for the Apache server
$| = 1;

read URLs one per line from stdin and
generate substitution URL on stdout
while (<>) {
 s|^foo/|bar/|;
 print $_;
}

This is a demonstration-only example and just rewrites all URLs /~quux/foo/... to /~quux/bar/.... Actually
you can program whatever you like. But notice that while such maps can be used also by an average user, only the
system administrator can define it.

Apache HTTP Server Version 1.3

Apache 1.3 URL Rewriting Guide

http://httpd.apache.org/docs/misc/rewriteguide.html (23 of 23) [12/05/2001 4:48:55 PM]

http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Apache Virtual Host documentation

The term Virtual Host refers to the practice of maintaining more than one server on one machine, as differentiated by their apparent
hostname. For example, it is often desirable for companies sharing a web server to have their own domains, with web servers
accessible as www.company1.com and www.company2.com, without requiring the user to know any extra path information.

Apache was one of the first servers to support IP-based virtual hosts right out of the box. Versions 1.1 and later of Apache support
both, IP-based and name-based virtual hosts (vhosts). The latter variant of virtual hosts is sometimes also called host-based or
non-IP virtual hosts.

Below is a list of documentation pages which explain all details of virtual host support in Apache version 1.3 and later.

Virtual Host Support

Name-based Virtual Hosts●

IP-based Virtual Hosts●

Virtual Host examples for common setups●

In-Depth Discussion of Virtual Host Matching●

File Descriptor Limits●

Dynamically Configured Mass Virtual Hosting●

Configuration directives

<VirtualHost>●

NameVirtualHost●

ServerName●

ServerAlias●

ServerPath●

Folks trying to debug their virtual host configuration may find the Apache -S command line switch useful. It will dump out a
description of how Apache parsed the configuration file. Careful examination of the IP addresses and server names may help
uncover configuration mistakes.

Apache HTTP Server Version 1.3

Apache Virtual Host documentation

http://httpd.apache.org/docs/vhosts/index.html [12/05/2001 4:48:57 PM]

http://httpd.apache.org/docs/vhosts/

Apache HTTP Server Version 1.3

Name-based Virtual Host Support

This document describes when and how to use name-based virtual hosts.

Name-based vs. IP-based Virtual Hosts●

Using Name-based Virtual Hosts●

Compatibility With Older Browsers●

See also: Virtual Host examples for common setups, IP-based Virtual Host Support, An In-Depth Discussion of Virtual Host
Matching, and Dynamically configured mass virtual hosting.

Name-based vs. IP-based Virtual Hosts

IP-based virtual hosts use the IP address of the connection to determine the correct virtual host to serve. Therefore you need to have
a separate IP address for each host. With name-based virtual hosting, the server relies on the client to report the hostname as part of
the HTTP headers. Using this technique, many different hosts can share the same IP address.

Name-based virtual hosting is usually simpler, since you need only configure your DNS server to map each hostname to the correct
IP address and then configure the Apache HTTP Server to recognize the different hostnames. Name-based virtual hosting also eases
the demand for scarce IP addresses. Therefore you should use name-based virtual hosting unless there is a specific reason to choose
IP-based virtual hosting. Some reasons why you might consider using IP-based virtual hosting:

Some ancient clients are not compatible with name-based virtual hosting. For name-based virtual hosting to work, the client
must send the HTTP Host header. This is required by HTTP/1.1, and is implemented by all modern HTTP/1.0 browsers as
an extension. If you need to support obsolete clients and still use name-based virtual hosting, a possible technique is
discussed at the end of this document.

●

Name-based virtual hosting cannot be used with SSL secure servers because of the nature of the SSL protocol.●

Some operating systems and network equipment implement bandwidth management techniques that cannot differentiate
between hosts unless they are on separate IP addresses.

●

Using Name-based Virtual Hosts

Related Directives

DocumentRoot
NameVirtualHost
ServerAlias
ServerName
ServerPath
VirtualHost

To use name-based virtual hosting, you must designate the IP address (and possibly port) on the server that will be accepting
requests for the hosts. This is configured using the NameVirtualHost directive. In the normal case where any and all IP addresses on
the server should be used, you can use * as the argument to NameVirtualHost. (NameVirtualHost * will work only in
version 1.3.13 and later.) Note that mentioning an IP address in a NameVirtualHost directive does not automatically make the

Name-based Virtual Hosts

http://httpd.apache.org/docs/vhosts/name-based.html (1 of 3) [12/05/2001 4:48:58 PM]

server listen to that IP address. See Setting which addresses and ports Apache uses for more details. In addition, any IP address
specified here must be associated with a network interface on the server.

The next step is to create a <VirtualHost> block for each different host that you would like to serve. The argument to the
<VirtualHost> directive should be the same as the argument to the NameVirtualHost directive (ie, an IP address, or * for
all addresses). Inside each <VirtualHost> block, you will need at minimum a ServerName directive to designate which host is
served and a DocumentRoot directive to show where in the filesystem the content for that host lives.

For example, suppose that both www.domain.tld and www.otherdomain.tld point at an IP address that the server is listening to.
Then you simply add the following to httpd.conf:

 NameVirtualHost *

 <VirtualHost *>
 ServerName www.domain.tld
 DocumentRoot /www/domain
 </VirtualHost>

 <VirtualHost *>
 ServerName www.otherdomain.tld
 DocumentRoot /www/otherdomain
 </VirtualHost>

You can alternatively specify an explicit IP address in place of the * in both the NameVirtualHost and <VirtualHost>
directives. The IP address is required in version 1.3.12 and earlier.

Many servers want to be accessible by more than one name. This is possible with the ServerAlias directive, placed inside the
<VirtualHost> section. For example if you add this to the first <VirtualHost> block above

ServerAlias domain.tld *.domain.tld

then requests for all hosts in the domain.tld domain will be served by the www.domain.tld virtual host. The wildcard
characters * and ? can be used to match names. Of course, you can't just make up names and place them in ServerName or
ServerAlias. You must first have your DNS server properly configured to map those names to an IP address associated with
your server.

Finally, you can fine-tune the configuration of the virtual hosts by placing other directives inside the <VirtualHost> containers.
Most directives can be placed in these containers and will then change the configuration only of the relevant virtual host. To find out
if a particular directive is allowed, check the Context of the directive. Configuration directives set in the main server context
(outside any <VirtualHost> container) will be used only if they are not overriden by the virtual host settings.

Now when a request arrives, the server will first check if it is using an IP address that matches the NameVirtualHost. If it is,
then it will look at each <VirtualHost> section with a matching IP address and try to find one where the ServerName or
ServerAlias matches the requested hostname. If it finds one, then it uses the configuration for that server. If no matching virtual
host is found, then the first listed virtual host that matches the IP address will be used.

As a consequence, the first listed virtual host is the default virtual host. The DocumentRoot from the main server will never be
used when an IP address matches the NameVirtualHost directive. If you would like to have a special configuration for requests
that do not match any particular virtual host, simply put that configuration in a <VirtualHost> container and list it first in the
configuration file.

Compatibility with Older Browsers

As mentioned earlier, there are some clients who do not send the required data for the name-based virtual hosts to work properly.
These clients will always be sent the pages from the first virtual host listed for that IP address (the primary name-based virtual host).

There is a possible workaround with the ServerPath directive, albeit a slightly cumbersome one:

Example configuration:

Name-based Virtual Hosts

http://httpd.apache.org/docs/vhosts/name-based.html (2 of 3) [12/05/2001 4:48:58 PM]

http://httpd.apache.org/docs/mod/directive-dist.html#Context

 NameVirtualHost 111.22.33.44

 <VirtualHost 111.22.33.44>
 ServerName www.domain.tld
 ServerPath /domain
 DocumentRoot /web/domain
 </VirtualHost>

What does this mean? It means that a request for any URI beginning with "/domain" will be served from the virtual host
www.domain.tld This means that the pages can be accessed as http://www.domain.tld/domain/ for all clients, although
clients sending a Host: header can also access it as http://www.domain.tld/.

In order to make this work, put a link on your primary virtual host's page to http://www.domain.tld/domain/ Then, in the virtual
host's pages, be sure to use either purely relative links (e.g., "file.html" or "../icons/image.gif" or links containing the prefacing
/domain/ (e.g., "http://www.domain.tld/domain/misc/file.html" or "/domain/misc/file.html").

This requires a bit of discipline, but adherence to these guidelines will, for the most part, ensure that your pages will work with all
browsers, new and old.

See also: ServerPath configuration example

Apache HTTP Server Version 1.3

Name-based Virtual Hosts

http://httpd.apache.org/docs/vhosts/name-based.html (3 of 3) [12/05/2001 4:48:58 PM]

http://httpd.apache.org/docs/vhosts/

Apache HTTP Server Version 1.3

Apache IP-based Virtual Host Support

See also: Name-based Virtual Hosts Support

System requirements

As the term IP-based indicates, the server must have a different IP address for each IP-based virtual host. This can be achieved
by the machine having several physical network connections, or by use of virtual interfaces which are supported by most modern
operating systems (see system documentation for details, these are frequently called "ip aliases", and the "ifconfig" command is
most commonly used to set them up).

How to set up Apache

There are two ways of configuring apache to support multiple hosts. Either by running a separate httpd daemon for each hostname,
or by running a single daemon which supports all the virtual hosts.

Use multiple daemons when:

There are security partitioning issues, such as company1 does not want anyone at company2 to be able to read their data
except via the web. In this case you would need two daemons, each running with different User, Group, Listen, and
ServerRoot settings.

●

You can afford the memory and file descriptor requirements of listening to every IP alias on the machine. It's only possible
to Listen to the "wildcard" address, or to specific addresses. So if you have a need to listen to a specific address for
whatever reason, then you will need to listen to all specific addresses. (Although one httpd could listen to N-1 of the
addresses, and another could listen to the remaining address.)

●

Use a single daemon when:

Sharing of the httpd configuration between virtual hosts is acceptable.●

The machine services a large number of requests, and so the performance loss in running separate daemons may be
significant.

●

Setting up multiple daemons

Create a separate httpd installation for each virtual host. For each installation, use the Listen directive in the configuration file to
select which IP address (or virtual host) that daemon services. e.g.

 Listen www.smallco.com:80

It is recommended that you use an IP address instead of a hostname (see DNS caveats).

Apache IP-based Virtual Host Support

http://httpd.apache.org/docs/vhosts/ip-based.html (1 of 2) [12/05/2001 4:48:59 PM]

Setting up a single daemon with virtual hosts

For this case, a single httpd will service requests for the main server and all the virtual hosts. The VirtualHost directive in the
configuration file is used to set the values of ServerAdmin, ServerName, DocumentRoot, ErrorLog and TransferLog or CustomLog
configuration directives to different values for each virtual host. e.g.

 <VirtualHost www.smallco.com>
 ServerAdmin webmaster@mail.smallco.com
 DocumentRoot /groups/smallco/www
 ServerName www.smallco.com
 ErrorLog /groups/smallco/logs/error_log
 TransferLog /groups/smallco/logs/access_log
 </VirtualHost>

 <VirtualHost www.baygroup.org>
 ServerAdmin webmaster@mail.baygroup.org
 DocumentRoot /groups/baygroup/www
 ServerName www.baygroup.org
 ErrorLog /groups/baygroup/logs/error_log
 TransferLog /groups/baygroup/logs/access_log
 </VirtualHost>

It is recommended that you use an IP address instead of a hostname (see DNS caveats).

Almost any configuration directive can be put in the VirtualHost directive, with the exception of directives that control process
creation and a few other directives. To find out if a directive can be used in the VirtualHost directive, check the Context using the
directive index.

User and Group may be used inside a VirtualHost directive if the suEXEC wrapper is used.

SECURITY: When specifying where to write log files, be aware of some security risks which are present if anyone other than the
user that starts Apache has write access to the directory where they are written. See the security tips document for details.

Apache HTTP Server Version 1.3

Apache IP-based Virtual Host Support

http://httpd.apache.org/docs/vhosts/ip-based.html (2 of 2) [12/05/2001 4:48:59 PM]

http://httpd.apache.org/docs/vhosts/

Apache HTTP Server Version 1.3

Dynamically configured mass virtual hosting

This document describes how to efficiently serve an arbitrary number of virtual hosts with Apache 1.3.

Contents:

Motivation●

Overview●

Simple dynamic virtual hosts●

A virtually hosted homepages system●

Using more than one virtual hosting system on the same server●

More efficient IP-based virtual hosting●

Using older versions of Apache●

Simple dynamic virtual hosts using mod_rewrite●

A homepages system using mod_rewrite●

Using a separate virtual host configuration file●

Motivation

The techniques described here are of interest if your httpd.conf contains many <VirtualHost> sections that are
substantially the same, for example:

NameVirtualHost 111.22.33.44
<VirtualHost 111.22.33.44>
 ServerName www.customer-1.com
 DocumentRoot /www/hosts/www.customer-1.com/docs
 ScriptAlias /cgi-bin/ /www/hosts/www.customer-1.com/cgi-bin
</VirtualHost>
<VirtualHost 111.22.33.44>
 ServerName www.customer-2.com
 DocumentRoot /www/hosts/www.customer-2.com/docs
 ScriptAlias /cgi-bin/ /www/hosts/www.customer-2.com/cgi-bin
</VirtualHost>
blah blah blah
<VirtualHost 111.22.33.44>
 ServerName www.customer-N.com
 DocumentRoot /www/hosts/www.customer-N.com/docs
 ScriptAlias /cgi-bin/ /www/hosts/www.customer-N.com/cgi-bin
</VirtualHost>

Dynamically configured mass virtual hosting

http://httpd.apache.org/docs/vhosts/mass.html (1 of 6) [12/05/2001 4:49:02 PM]

The basic idea is to replace all of the static <VirtualHost> configuration with a mechanism that works it out dynamically. This
has a number of advantages:

Your configuration file is smaller so Apache starts faster and uses less memory.1.

Adding virtual hosts is simply a matter of creating the appropriate directories in the filesystem and entries in the DNS - you
don't need to reconfigure or restart Apache.

2.

The main disadvantage is that you cannot have a different log file for each virtual host; however if you have very many virtual hosts
then doing this is dubious anyway because it eats file descriptors. It is better to log to a pipe or a fifo and arrange for the process at
the other end to distribute the logs to the customers (it can also accumulate statistics, etc.).

Overview

A virtual host is defined by two pieces of information: its IP address, and the contents of the Host: header in the HTTP request.
The dynamic mass virtual hosting technique is based on automatically inserting this information into the pathname of the file that is
used to satisfy the request. This is done most easily using mod_vhost_alias, but if you are using a version of Apache up to
1.3.6 then you must use mod_rewrite. Both of these modules are disabled by default; you must enable one of them when
configuring and building Apache if you want to use this technique.

A couple of things need to be `faked' to make the dynamic virtual host look like a normal one. The most important is the server
name which is used by Apache to generate self-referential URLs, etc. It is configured with the ServerName directive, and it is
available to CGIs via the SERVER_NAME environment variable. The actual value used at run time is controlled by the
UseCanonicalName setting. With UseCanonicalName Off the server name comes from the contents of the Host: header
in the request. With UseCanonicalName DNS it comes from a reverse DNS lookup of the virtual host's IP address. The former
setting is used for name-based dynamic virtual hosting, and the latter is used for IP-based hosting. If Apache cannot work out the
server name because there is no Host: header or the DNS lookup fails then the value configured with ServerName is used
instead.

The other thing to `fake' is the document root (configured with DocumentRoot and available to CGIs via the DOCUMENT_ROOT
environment variable). In a normal configuration this setting is used by the core module when mapping URIs to filenames, but when
the server is configured to do dynamic virtual hosting that job is taken over by another module (either mod_vhost_alias or
mod_rewrite) which has a different way of doing the mapping. Neither of these modules is responsible for setting the
DOCUMENT_ROOT environment variable so if any CGIs or SSI documents make use of it they will get a misleading value.

Simple dynamic virtual hosts

This extract from httpd.conf implements the virtual host arrangement outlined in the Motivation section above, but in a generic
fashion using mod_vhost_alias.

get the server name from the Host: header
UseCanonicalName Off

this log format can be split per-virtual-host based on the first field
LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon
CustomLog logs/access_log vcommon

include the server name in the filenames used to satisfy requests
VirtualDocumentRoot /www/hosts/%0/docs
VirtualScriptAlias /www/hosts/%0/cgi-bin

This configuration can be changed into an IP-based virtual hosting solution by just turning UseCanonicalName Off into
UseCanonicalName DNS. The server name that is inserted into the filename is then derived from the IP address of the virtual
host.

Dynamically configured mass virtual hosting

http://httpd.apache.org/docs/vhosts/mass.html (2 of 6) [12/05/2001 4:49:02 PM]

A virtually hosted homepages system

This is an adjustment of the above system tailored for an ISP's homepages server. Using a slightly more complicated configuration
we can select substrings of the server name to use in the filename so that e.g. the documents for www.user.isp.com are found in
/home/user/. It uses a single cgi-bin directory instead of one per virtual host.

all the preliminary stuff is the same as above, then

include part of the server name in the filenames
VirtualDocumentRoot /www/hosts/%2/docs

single cgi-bin directory
ScriptAlias /cgi-bin/ /www/std-cgi/

There are examples of more complicated VirtualDocumentRoot settings in the mod_vhost_alias documentation.

Using more than one virtual hosting system on the same server

With more complicated setups you can use Apache's normal <VirtualHost> directives to control the scope of the various virtual
hosting configurations. For example, you could have one IP address for homepages customers and another for commercial
customers with the following setup. This can of course be combined with conventional <VirtualHost> configuration sections.

UseCanonicalName Off

LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon

<Directory /www/commercial>
 Options FollowSymLinks
 AllowOverride All
</Directory>

<Directory /www/homepages>
 Options FollowSymLinks
 AllowOverride None
</Directory>

<VirtualHost 111.22.33.44>
 ServerName www.commercial.isp.com

 CustomLog logs/access_log.commercial vcommon

 VirtualDocumentRoot /www/commercial/%0/docs
 VirtualScriptAlias /www/commercial/%0/cgi-bin
</VirtualHost>

<VirtualHost 111.22.33.45>
 ServerName www.homepages.isp.com

 CustomLog logs/access_log.homepages vcommon

 VirtualDocumentRoot /www/homepages/%0/docs
 ScriptAlias /cgi-bin/ /www/std-cgi/
</VirtualHost>

Dynamically configured mass virtual hosting

http://httpd.apache.org/docs/vhosts/mass.html (3 of 6) [12/05/2001 4:49:02 PM]

More efficient IP-based virtual hosting

After the first example I noted that it is easy to turn it into an IP-based virtual hosting setup. Unfortunately that configuration is not
very efficient because it requires a DNS lookup for every request. This can be avoided by laying out the filesystem according to the
IP addresses themselves rather than the corresponding names and changing the logging similarly. Apache will then usually not need
to work out the server name and so incur a DNS lookup.

get the server name from the reverse DNS of the IP address
UseCanonicalName DNS

include the IP address in the logs so they may be split
LogFormat "%A %h %l %u %t \"%r\" %s %b" vcommon
CustomLog logs/access_log vcommon

include the IP address in the filenames
VirtualDocumentRootIP /www/hosts/%0/docs
VirtualScriptAliasIP /www/hosts/%0/cgi-bin

Using older versions of Apache

The examples above rely on mod_vhost_alias which appeared after version 1.3.6. If you are using a version of Apache without
mod_vhost_alias then you can implement this technique with mod_rewrite as illustrated below, but only for
Host:-header-based virtual hosts.

In addition there are some things to beware of with logging. Apache 1.3.6 is the first version to include the %V log format directive;
in versions 1.3.0 - 1.3.3 the %v option did what %V does; version 1.3.4 has no equivalent. In all these versions of Apache the
UseCanonicalName directive can appear in .htaccess files which means that customers can cause the wrong thing to be
logged. Therefore the best thing to do is use the %{Host}i directive which logs the Host: header directly; note that this may
include :port on the end which is not the case for %V.

Simple dynamic virtual hosts using mod_rewrite

This extract from httpd.conf does the same thing as the first example. The first half is very similar to the corresponding part
above but with some changes for backward compatibility and to make the mod_rewrite part work properly; the second half
configures mod_rewrite to do the actual work.

There are a couple of especially tricky bits: By default, mod_rewrite runs before the other URI translation modules
(mod_alias etc.) so if they are used then mod_rewrite must be configured to accommodate them. Also, mome magic must be
performed to do a per-dynamic-virtual-host equivalent of ScriptAlias.

get the server name from the Host: header
UseCanonicalName Off

splittable logs
LogFormat "%{Host}i %h %l %u %t \"%r\" %s %b" vcommon
CustomLog logs/access_log vcommon

<Directory /www/hosts>
 # ExecCGI is needed here because we can't force
 # CGI execution in the way that ScriptAlias does
 Options FollowSymLinks ExecCGI
</Directory>

now for the hard bit

Dynamically configured mass virtual hosting

http://httpd.apache.org/docs/vhosts/mass.html (4 of 6) [12/05/2001 4:49:02 PM]

RewriteEngine On

a ServerName derived from a Host: header may be any case at all
RewriteMap lowercase int:tolower

deal with normal documents first:
allow Alias /icons/ to work - repeat for other aliases
RewriteCond %{REQUEST_URI} !^/icons/
allow CGIs to work
RewriteCond %{REQUEST_URI} !^/cgi-bin/
do the magic
RewriteRule ^/(.*)$ /www/hosts/${lowercase:%{SERVER_NAME}}/docs/$1

and now deal with CGIs - we have to force a MIME type
RewriteCond %{REQUEST_URI} ^/cgi-bin/
RewriteRule ^/(.*)$ /www/hosts/${lowercase:%{SERVER_NAME}}/cgi-bin/$1
[T=application/x-httpd-cgi]

that's it!

A homepages system using mod_rewrite

This does the same thing as the second example.

RewriteEngine on

RewriteMap lowercase int:tolower

allow CGIs to work
RewriteCond %{REQUEST_URI} !^/cgi-bin/

check the hostname is right so that the RewriteRule works
RewriteCond ${lowercase:%{SERVER_NAME}} ^www\.[a-z-]+\.isp\.com$

concatenate the virtual host name onto the start of the URI
the [C] means do the next rewrite on the result of this one
RewriteRule ^(.+) ${lowercase:%{SERVER_NAME}}$1 [C]

now create the real file name
RewriteRule ^www\.([a-z-]+)\.isp\.com/(.*) /home/$1/$2

define the global CGI directory
ScriptAlias /cgi-bin/ /www/std-cgi/

Using a separate virtual host configuration file

This arrangement uses more advanced mod_rewrite features to get the translation from virtual host to document root from a
separate configuration file. This provides more flexibility but requires more complicated configuration.

The vhost.map file contains something like this:

www.customer-1.com /www/customers/1
www.customer-2.com /www/customers/2
...
www.customer-N.com /www/customers/N

Dynamically configured mass virtual hosting

http://httpd.apache.org/docs/vhosts/mass.html (5 of 6) [12/05/2001 4:49:02 PM]

The http.conf contains this:

RewriteEngine on

RewriteMap lowercase int:tolower

define the map file
RewriteMap vhost txt:/www/conf/vhost.map

deal with aliases as above
RewriteCond %{REQUEST_URI} !^/icons/
RewriteCond %{REQUEST_URI} !^/cgi-bin/
RewriteCond ${lowercase:%{SERVER_NAME}} ^(.+)$
this does the file-based remap
RewriteCond ${vhost:%1} ^(/.*)$
RewriteRule ^/(.*)$ %1/docs/$1

RewriteCond %{REQUEST_URI} ^/cgi-bin/
RewriteCond ${lowercase:%{SERVER_NAME}} ^(.+)$
RewriteCond ${vhost:%1} ^(/.*)$
RewriteRule ^/(.*)$ %1/cgi-bin/$1

Apache HTTP Server Version 1.3

Dynamically configured mass virtual hosting

http://httpd.apache.org/docs/vhosts/mass.html (6 of 6) [12/05/2001 4:49:02 PM]

http://httpd.apache.org/docs/vhosts/

Apache HTTP Server Version 1.3

Virtual Host examples for common setups

Base configuration

Simple name-based vhosting●

More complicated name-based vhosts●

IP-based vhosts●

Mixed name-/IP-based vhosts●

Port-based vhosts●

Additional features

Using _default_ vhosts●

Migrating a named-based vhost to an IP-based vhost●

Using the ServerPath directive●

Simple name-based vhosting

Compatibility: This syntax was added in Apache 1.3.13.●

Setup: The server machine has a primary name server.domain.tld. There are two aliases (CNAMEs) www.domain.tld and
www.sub.domain.tld for the address server.domain.tld.

Server configuration:

 ...
 Port 80
 ServerName server.domain.tld

 NameVirtualHost *

 <VirtualHost *>
 DocumentRoot /www/domain
 ServerName www.domain.tld
 ...
 </VirtualHost>

 <VirtualHost *>
 DocumentRoot /www/subdomain
 ServerName www.sub.domain.tld
 ...
 </VirtualHost>

●

VirtualHost Examples

http://httpd.apache.org/docs/vhosts/examples.html (1 of 8) [12/05/2001 4:49:04 PM]

The asterisks match all addresses, so the main server serves no requests. Due to the fact that
www.domain.tld is first in the configuration file, it has the highest priority and can be seen as the default or
primary server.

More complicated name-based vhosts

Setup 1: The server machine has one IP address (111.22.33.44) which resolves to the name server.domain.tld. There are
two aliases (CNAMEs) www.domain.tld and www.sub.domain.tld for the address 111.22.33.44.

Server configuration:

 ...
 Port 80
 ServerName server.domain.tld

 NameVirtualHost 111.22.33.44

 <VirtualHost 111.22.33.44>
 DocumentRoot /www/domain
 ServerName www.domain.tld
 ...
 </VirtualHost>

 <VirtualHost 111.22.33.44>
 DocumentRoot /www/subdomain
 ServerName www.sub.domain.tld
 ...
 </VirtualHost>

Apart from localhost there are no unspecified addresses/ports, therefore the main server only serves
localhost requests. Due to the fact that www.domain.tld has the highest priority it can be seen as the default
or primary server.

●

Setup 2: The server machine has two IP addresses (111.22.33.44 and 111.22.33.55) which resolve to the names
server1.domain.tld and server2.domain.tld respectively. The alias www.domain.tld should be used for the main server
which should also catch any unspecified addresses. We want to use a virtual host for the alias www.otherdomain.tld and
another virtual host, with server name www.sub.domain.tld, should catch any request to hostnames of the form
*.sub.domain.tld. The address 111.22.33.55 should be used for the virtual hosts.

Server configuration:

 ...
 Port 80
 ServerName www.domain.tld
 DocumentRoot /www/domain

 NameVirtualHost 111.22.33.55

 <VirtualHost 111.22.33.55>
 DocumentRoot /www/otherdomain
 ServerName www.otherdomain.tld
 ...
 </VirtualHost>

 <VirtualHost 111.22.33.55>
 DocumentRoot /www/subdomain
 ServerName www.sub.domain.tld
 ServerAlias *.sub.domain.tld
 ...
 </VirtualHost>

●

VirtualHost Examples

http://httpd.apache.org/docs/vhosts/examples.html (2 of 8) [12/05/2001 4:49:04 PM]

Any request to an address other than 111.22.33.55 will be served from the main server. A request to
111.22.33.55 with an unknown or no Host: header will be served from www.otherdomain.tld.

Setup 3: The server machine has two IP addresses (192.168.1.1 and 111.22.33.55). The machine is sitting between an
internal (intranet) network and an external (internet) network. Outside of the network, the name server1.domain.tld resolves
to the external address (111.22.33.55), but inside the network, that same name resolves to the internal address (192.168.1.1).

The server can be made to respond to internal and external requests with the same content, with just one VirtualHost
section.

Server configuration:

 ...
 NameVirtualHost 192.168.1.1
 NameVirtualHost 111.22.33.55

 <VirtualHost 192.168.1.1 111.22.33.55>
 DocumentRoot /www/server1
 ServerName server1.domain.tld
 ServerAlias server1
 ...
 </VirtualHost>

Now requests from both networks will be served from the same VirtualHost

●

Setup 4: You have multiple domains going to the same IP and also want to serve multiple ports. By defining the ports in the
"NameVirtualHost" tag, you can allow this to work. If you try using <VirtualHost name:port> without the NameVirtualHost
name:port or you try to use the Port directive, your configuration will not work.

Server configuration:

 ...
 NameVirtualHost 111.22.33.44:80
 NameVirtualHost 111.22.33.44:8080

 <VirtualHost 111.22.33.44:80>
 ServerName www.domain.tld
 DocumentRoot /www/domain-80
 </VirtualHost>

 <VirtualHost 111.22.33.44:8080>
 ServerName www.domain.tld
 DocumentRoot /www/domain-8080
 </VirtualHost>

 <VirtualHost 111.22.33.44:80>
 ServerName www.otherdomain.tld
 DocumentRoot /www/otherdomain-80
 </VirtualHost>

 <VirtualHost 111.22.33.44:8080>
 ServerName www.otherdomain.tld
 DocumentRoot /www/otherdomain-8080
 </VirtualHost>

●

VirtualHost Examples

http://httpd.apache.org/docs/vhosts/examples.html (3 of 8) [12/05/2001 4:49:04 PM]

IP-based vhosts

Setup 1: The server machine has two IP addresses (111.22.33.44 and 111.22.33.55) which resolve to the names
server.domain.tld and www.otherdomain.tld respectively. The hostname www.domain.tld is an alias (CNAME) for
server.domain.tld and will represent the main server.

Server configuration:

 ...
 Port 80
 DocumentRoot /www/domain
 ServerName www.domain.tld

 <VirtualHost 111.22.33.55>
 DocumentRoot /www/otherdomain
 ServerName www.otherdomain.tld
 ...
 </VirtualHost>

www.otherdomain.tld can only be reached through the address 111.22.33.55, while www.domain.tld can
only be reached through 111.22.33.44 (which represents our main server).

●

Setup 2: Same as setup 1, but we don't want to have a dedicated main server.

Server configuration:

 ...
 Port 80
 ServerName server.domain.tld

 <VirtualHost 111.22.33.44>
 DocumentRoot /www/domain
 ServerName www.domain.tld
 ...
 </VirtualHost>

 <VirtualHost 111.22.33.55>
 DocumentRoot /www/otherdomain
 ServerName www.otherdomain.tld
 ...
 </VirtualHost>

The main server can never catch a request, because all IP addresses of our machine are in use for IP-based
virtual hosts (only localhost requests can hit the main server).

●

Setup 3: The server machine has two IP addresses (111.22.33.44 and 111.22.33.55) which resolve to the names
server.domain.tld and www-cache.domain.tld respectively. The hostname www.domain.tld is an alias (CNAME) for
server.domain.tld and will represent the main server. www-cache.domain.tld will become our proxy-cache listening on port
8080, while the web server itself uses the default port 80.

Server configuration:

 ...
 Port 80
 Listen 111.22.33.44:80
 Listen 111.22.33.55:8080
 ServerName server.domain.tld

 <VirtualHost 111.22.33.44:80>
 DocumentRoot /www/domain
 ServerName www.domain.tld

●

VirtualHost Examples

http://httpd.apache.org/docs/vhosts/examples.html (4 of 8) [12/05/2001 4:49:04 PM]

 ...
 </VirtualHost>

 <VirtualHost 111.22.33.55:8080>
 ServerName www-cache.domain.tld
 ...
 <Directory proxy:>
 Order Deny,Allow
 Deny from all
 Allow from 111.22.33
 </Directory>
 </VirtualHost>

The main server can never catch a request, because all IP addresses (apart from localhost) of our machine
are in use for IP-based virtual hosts. The web server can only be reached on the first address through port
80 and the proxy only on the second address through port 8080.

Mixed name-/IP-based vhosts

Setup: The server machine has three IP addresses (111.22.33.44, 111.22.33.55 and 111.22.33.66) which resolve to the
names server.domain.tld, www.otherdomain1.tld and www.otherdomain2.tld respectively. The address 111.22.33.44 should
we used for a couple of name-based vhosts and the other addresses for IP-based vhosts.

Server configuration:

 ...
 Port 80
 ServerName server.domain.tld

 NameVirtualHost 111.22.33.44

 <VirtualHost 111.22.33.44>
 DocumentRoot /www/domain
 ServerName www.domain.tld
 ...
 </VirtualHost>

 <VirtualHost 111.22.33.44>
 DocumentRoot /www/subdomain1
 ServerName www.sub1.domain.tld
 ...
 </VirtualHost>

 <VirtualHost 111.22.33.44>
 DocumentRoot /www/subdomain2
 ServerName www.sub2.domain.tld
 ...
 </VirtualHost>

 <VirtualHost 111.22.33.55>
 DocumentRoot /www/otherdomain1
 ServerName www.otherdomain1.tld
 ...
 </VirtualHost>

 <VirtualHost 111.22.33.66>
 DocumentRoot /www/otherdomain2
 ServerName www.otherdomain2.tld
 ...

●

VirtualHost Examples

http://httpd.apache.org/docs/vhosts/examples.html (5 of 8) [12/05/2001 4:49:04 PM]

 </VirtualHost>

Port-based vhosts

Setup: The server machine has one IP address (111.22.33.44) which resolves to the name www.domain.tld. If we don't have
the option to get another address or alias for our server we can use port-based vhosts if we need a virtual host with a
different configuration.

Server configuration:

 ...
 Listen 80
 Listen 8080
 ServerName www.domain.tld
 DocumentRoot /www/domain

 <VirtualHost 111.22.33.44:8080>
 DocumentRoot /www/domain2
 ...
 </VirtualHost>

A request to www.domain.tld on port 80 is served from the main server and a request to port 8080 is served
from the virtual host.

●

Using _default_ vhosts

Setup 1: Catching every request to any unspecified IP address and port, i.e., an address/port combination that is not used for
any other virtual host.

Server configuration:

 ...
 <VirtualHost _default_:*>
 DocumentRoot /www/default
 ...
 </VirtualHost>

Using such a default vhost with a wildcard port effectively prevents any request going to the main server.
A default vhost never serves a request that was sent to an address/port that is used for name-based vhosts. If
the request contained an unknown or no Host: header it is always served from the primary name-based
vhost (the vhost for that address/port appearing first in the configuration file).
You can use AliasMatch or RewriteRule to rewrite any request to a single information page (or
script).

●

Setup 2: Same as setup 1, but the server listens on several ports and we want to use a second _default_ vhost for port
80.

Server configuration:

 ...
 <VirtualHost _default_:80>
 DocumentRoot /www/default80
 ...
 </VirtualHost>

 <VirtualHost _default_:*>

●

VirtualHost Examples

http://httpd.apache.org/docs/vhosts/examples.html (6 of 8) [12/05/2001 4:49:04 PM]

 DocumentRoot /www/default
 ...
 </VirtualHost>

The default vhost for port 80 (which must appear before any default vhost with a wildcard port) catches all
requests that were sent to an unspecified IP address. The main server is never used to serve a request.

Setup 3: We want to have a default vhost for port 80, but no other default vhosts.

Server configuration:

 ...
 <VirtualHost _default_:80>
 DocumentRoot /www/default
 ...
 </VirtualHost>

A request to an unspecified address on port 80 is served from the default vhost any other request to an
unspecified address and port is served from the main server.

●

Migrating a name-based vhost to an IP-based vhost

Setup: The name-based vhost with the hostname www.otherdomain.tld (from our name-based example, setup 2) should get
its own IP address. To avoid problems with name servers or proxies who cached the old IP address for the name-based
vhost we want to provide both variants during a migration phase.
The solution is easy, because we can simply add the new IP address (111.22.33.66) to the VirtualHost directive.

Server configuration:

 ...
 Port 80
 ServerName www.domain.tld
 DocumentRoot /www/domain

 NameVirtualHost 111.22.33.55

 <VirtualHost 111.22.33.55 111.22.33.66>
 DocumentRoot /www/otherdomain
 ServerName www.otherdomain.tld
 ...
 </VirtualHost>

 <VirtualHost 111.22.33.55>
 DocumentRoot /www/subdomain
 ServerName www.sub.domain.tld
 ServerAlias *.sub.domain.tld
 ...
 </VirtualHost>

The vhost can now be accessed through the new address (as an IP-based vhost) and through the old address
(as a name-based vhost).

●

VirtualHost Examples

http://httpd.apache.org/docs/vhosts/examples.html (7 of 8) [12/05/2001 4:49:04 PM]

Using the ServerPath directive

Setup: We have a server with two name-based vhosts. In order to match the correct virtual host a client must send the
correct Host: header. Old HTTP/1.0 clients do not send such a header and Apache has no clue what vhost the client tried
to reach (and serves the request from the primary vhost). To provide as much backward compatibility as possible we create
a primary vhost which returns a single page containing links with an URL prefix to the name-based virtual hosts.

Server configuration:

 ...
 NameVirtualHost 111.22.33.44

 <VirtualHost 111.22.33.44>
 # primary vhost
 DocumentRoot /www/subdomain
 RewriteEngine On
 RewriteRule ^/.* /www/subdomain/index.html
 ...
 </VirtualHost>

 <VirtualHost 111.22.33.44>
 DocumentRoot /www/subdomain/sub1
 ServerName www.sub1.domain.tld
 ServerPath /sub1/
 RewriteEngine On
 RewriteRule ^(/sub1/.*) /www/subdomain$1
 ...
 </VirtualHost>

 <VirtualHost 111.22.33.44>
 DocumentRoot /www/subdomain/sub2
 ServerName www.sub2.domain.tld
 ServerPath /sub2/
 RewriteEngine On
 RewriteRule ^(/sub2/.*) /www/subdomain$1
 ...
 </VirtualHost>

Due to the ServerPath directive a request to the URL http://www.sub1.domain.tld/sub1/ is always
served from the sub1-vhost.
A request to the URL http://www.sub1.domain.tld/ is only served from the sub1-vhost if the client sent a
correct Host: header. If no Host: header is sent the client gets the information page from the primary
host.
Please note that there is one oddity: A request to http://www.sub2.domain.tld/sub1/ is also served from the
sub1-vhost if the client sent no Host: header.
The RewriteRule directives are used to make sure that a client which sent a correct Host: header can
use both URL variants, i.e., with or without URL prefix.

●

Apache HTTP Server Version 1.3

VirtualHost Examples

http://httpd.apache.org/docs/vhosts/examples.html (8 of 8) [12/05/2001 4:49:04 PM]

http://httpd.apache.org/docs/vhosts/

Apache HTTP Server Version 1.3

An In-Depth Discussion of Virtual Host Matching

The virtual host code was completely rewritten in Apache 1.3. This document attempts to explain exactly what Apache does when
deciding what virtual host to serve a hit from. With the help of the new NameVirtualHost directive virtual host configuration should
be a lot easier and safer than with versions prior to 1.3.

If you just want to make it work without understanding how, here are some examples.

Config File Parsing

There is a main_server which consists of all the definitions appearing outside of <VirtualHost> sections. There are virtual
servers, called vhosts, which are defined by <VirtualHost> sections.

The directives Port, ServerName, ServerPath, and ServerAlias can appear anywhere within the definition of a server. However, each
appearance overrides the previous appearance (within that server).

The default value of the Port field for main_server is 80. The main_server has no default ServerPath, or ServerAlias. The
default ServerName is deduced from the servers IP address.

The main_server Port directive has two functions due to legacy compatibility with NCSA configuration files. One function is to
determine the default network port Apache will bind to. This default is overridden by the existence of any Listen directives. The
second function is to specify the port number which is used in absolute URIs during redirects.

Unlike the main_server, vhost ports do not affect what ports Apache listens for connections on.

Each address appearing in the VirtualHost directive can have an optional port. If the port is unspecified it defaults to the value
of the main_server's most recent Port statement. The special port * indicates a wildcard that matches any port. Collectively the
entire set of addresses (including multiple A record results from DNS lookups) are called the vhost's address set.

Unless a NameVirtualHost directive is used for a specific IP address the first vhost with that address is treated as an IP-based vhost.
In 1.3.13 and later that includes the IP address *.

If name-based vhosts should be used a NameVirtualHost directive must appear with the IP address set to be used for the
name-based vhosts. In other words, you must specify the IP address that holds the hostname aliases (CNAMEs) for your
name-based vhosts via a NameVirtualHost directive in your configuration file.

Multiple NameVirtualHost directives can be used each with a set of VirtualHost directives but only one
NameVirtualHost directive should be used for each specific IP:port pair.

The ordering of NameVirtualHost and VirtualHost directives is not important which makes the following two examples
identical (only the order of the VirtualHost directives for one address set is important, see below):

 |
 NameVirtualHost 111.22.33.44 | <VirtualHost 111.22.33.44>
 <VirtualHost 111.22.33.44> | # server A
 # server A | </VirtualHost>
 ... | <VirtualHost 111.22.33.55>
 </VirtualHost> | # server C
 <VirtualHost 111.22.33.44> | ...
 # server B | </VirtualHost>

An In-Depth Discussion of Virtual Host Matching

http://httpd.apache.org/docs/vhosts/details.html (1 of 4) [12/05/2001 4:49:06 PM]

 ... | <VirtualHost 111.22.33.44>
 </VirtualHost> | # server B
 | ...
 NameVirtualHost 111.22.33.55 | </VirtualHost>
 <VirtualHost 111.22.33.55> | <VirtualHost 111.22.33.55>
 # server C | # server D
 ... | ...
 </VirtualHost> | </VirtualHost>
 <VirtualHost 111.22.33.55> |
 # server D | NameVirtualHost 111.22.33.44
 ... | NameVirtualHost 111.22.33.55
 </VirtualHost> |
 |

(To aid the readability of your configuration you should prefer the left variant.)

After parsing the VirtualHost directive, the vhost server is given a default Port equal to the port assigned to the first name in
its VirtualHost directive.

The complete list of names in the VirtualHost directive are treated just like a ServerAlias (but are not overridden by any
ServerAlias statement) if all names resolve to the same address set. Note that subsequent Port statements for this vhost will
not affect the ports assigned in the address set.

During initialization a list for each IP address is generated and inserted into an hash table. If the IP address is used in a
NameVirtualHost directive the list contains all name-based vhosts for the given IP address. If there are no vhosts defined for
that address the NameVirtualHost directive is ignored and an error is logged. For an IP-based vhost the list in the hash table is
empty.

Due to a fast hashing function the overhead of hashing an IP address during a request is minimal and almost not existent.
Additionally the table is optimized for IP addresses which vary in the last octet.

For every vhost various default values are set. In particular:

If a vhost has no ServerAdmin, ResourceConfig, AccessConfig, Timeout, KeepAliveTimeout,
KeepAlive, MaxKeepAliveRequests, or SendBufferSize directive then the respective value is inherited from
the main_server. (That is, inherited from whatever the final setting of that value is in the main_server.)

1.

The "lookup defaults" that define the default directory permissions for a vhost are merged with those of the main_server.
This includes any per-directory configuration information for any module.

2.

The per-server configs for each module from the main_server are merged into the vhost server.3.

Essentially, the main_server is treated as "defaults" or a "base" on which to build each vhost. But the positioning of these
main_server definitions in the config file is largely irrelevant -- the entire config of the main_server has been parsed when this final
merging occurs. So even if a main_server definition appears after a vhost definition it might affect the vhost definition.

If the main_server has no ServerName at this point, then the hostname of the machine that httpd is running on is used instead. We
will call the main_server address set those IP addresses returned by a DNS lookup on the ServerName of the main_server.

For any undefined ServerName fields, a name-based vhost defaults to the address given first in the VirtualHost statement
defining the vhost.

Any vhost that includes the magic _default_ wildcard is given the same ServerName as the main_server.

Virtual Host Matching

The server determines which vhost to use for a request as follows:

Hash table lookup

When the connection is first made by a client, the IP address to which the client connected is looked up in the internal IP hash table.

If the lookup fails (the IP address wasn't found) the request is served from the _default_ vhost if there is such a vhost for the port to
which the client sent the request. If there is no matching _default_ vhost the request is served from the main_server.

An In-Depth Discussion of Virtual Host Matching

http://httpd.apache.org/docs/vhosts/details.html (2 of 4) [12/05/2001 4:49:06 PM]

In Apache 1.3.13 and later, if the IP address is not found in the hash table then the match against the port number may also result in
an entry corresponding to a NameVirtualHost *, which is subsequently handled like other name-based vhosts.

If the lookup succeeded (a corresponding list for the IP address was found) the next step is to decide if we have to deal with an
IP-based or a name-base vhost.

IP-based vhost

If the entry we found has an empty name list then we have found an IP-based vhost, no further actions are performed and the request
is served from that vhost.

Name-based vhost

If the entry corresponds to a name-based vhost the name list contains one or more vhost structures. This list contains the vhosts in
the same order as the VirtualHost directives appear in the config file.

The first vhost on this list (the first vhost in the config file with the specified IP address) has the highest priority and catches any
request to an unknown server name or a request without a Host: header field.

If the client provided a Host: header field the list is searched for a matching vhost and the first hit on a ServerName or
ServerAlias is taken and the request is served from that vhost. A Host: header field can contain a port number, but Apache
always matches against the real port to which the client sent the request.

If the client submitted a HTTP/1.0 request without Host: header field we don't know to what server the client tried to connect and
any existing ServerPath is matched against the URI from the request. The first matching path on the list is used and the request
is served from that vhost.

If no matching vhost could be found the request is served from the first vhost with a matching port number that is on the list for the
IP to which the client connected (as already mentioned before).

Persistent connections

The IP lookup described above is only done once for a particular TCP/IP session while the name lookup is done on every request
during a KeepAlive/persistent connection. In other words a client may request pages from different name-based vhosts during a
single persistent connection.

Absolute URI

If the URI from the request is an absolute URI, and its hostname and port match the main server or one of the configured virtual
hosts and match the address and port to which the client sent the request, then the scheme/hostname/port prefix is stripped off and
the remaining relative URI is served by the corresponding main server or virtual host. If it does not match, then the URI remains
untouched and the request is taken to be a proxy request.

Observations

A name-based vhost can never interfere with an IP-base vhost and vice versa. IP-based vhosts can only be reached through
an IP address of its own address set and never through any other address. The same applies to name-based vhosts, they can
only be reached through an IP address of the corresponding address set which must be defined with a NameVirtualHost
directive.

●

ServerAlias and ServerPath checks are never performed for an IP-based vhost.●

The order of name-/IP-based, the _default_ vhost and the NameVirtualHost directive within the config file is not
important. Only the ordering of name-based vhosts for a specific address set is significant. The one name-based vhosts that
comes first in the configuration file has the highest priority for its corresponding address set.

●

For security reasons the port number given in a Host: header field is never used during the matching process. Apache
always uses the real port to which the client sent the request.

●

If a ServerPath directive exists which is a prefix of another ServerPath directive that appears later in the
configuration file, then the former will always be matched and the latter will never be matched. (That is assuming that no

●

An In-Depth Discussion of Virtual Host Matching

http://httpd.apache.org/docs/vhosts/details.html (3 of 4) [12/05/2001 4:49:06 PM]

Host: header field was available to disambiguate the two.)

If two IP-based vhosts have an address in common, the vhost appearing first in the config file is always matched. Such a
thing might happen inadvertently. The server will give a warning in the error logfile when it detects this.

●

A _default_ vhost catches a request only if there is no other vhost with a matching IP address and a matching port
number for the request. The request is only caught if the port number to which the client sent the request matches the port
number of your _default_ vhost which is your standard Port by default. A wildcard port can be specified (i.e.,
default:*) to catch requests to any available port. In Apache 1.3.13 and later this also applies to
NameVirtualHost * vhosts.

●

The main_server is only used to serve a request if the IP address and port number to which the client connected is
unspecified and does not match any other vhost (including a _default_ vhost). In other words the main_server only
catches a request for an unspecified address/port combination (unless there is a _default_ vhost which matches that
port).

●

A _default_ vhost or the main_server is never matched for a request with an unknown or missing Host: header field if
the client connected to an address (and port) which is used for name-based vhosts, e.g., in a NameVirtualHost directive.

●

You should never specify DNS names in VirtualHost directives because it will force your server to rely on DNS to
boot. Furthermore it poses a security threat if you do not control the DNS for all the domains listed. There's more
information available on this and the next two topics.

●

ServerName should always be set for each vhost. Otherwise A DNS lookup is required for each vhost.●

Tips

In addition to the tips on the DNS Issues page, here are some further tips:

Place all main_server definitions before any VirtualHost definitions. (This is to aid the readability of the configuration
-- the post-config merging process makes it non-obvious that definitions mixed in around virtual hosts might affect all
virtual hosts.)

●

Group corresponding NameVirtualHost and VirtualHost definitions in your configuration to ensure better
readability.

●

Avoid ServerPaths which are prefixes of other ServerPaths. If you cannot avoid this then you have to ensure that
the longer (more specific) prefix vhost appears earlier in the configuration file than the shorter (less specific) prefix (i.e.,
"ServerPath /abc" should appear after "ServerPath /abc/def").

●

Apache HTTP Server Version 1.3

An In-Depth Discussion of Virtual Host Matching

http://httpd.apache.org/docs/vhosts/details.html (4 of 4) [12/05/2001 4:49:06 PM]

http://httpd.apache.org/docs/vhosts/

Apache HTTP Server Version 1.3

File Descriptor Limits

When using a large number of Virtual Hosts, Apache may run out of available file descriptors (sometimes called file handles if each
Virtual Host specifies different log files. The total number of file descriptors used by Apache is one for each distinct error log file,
one for every other log file directive, plus 10-20 for internal use. Unix operating systems limit the number of file descriptors that
may be used by a process; the limit is typically 64, and may usually be increased up to a large hard-limit.

Although Apache attempts to increase the limit as required, this may not work if:

Your system does not provide the setrlimit() system call.1.

The setrlimit(RLIMIT_NOFILE) call does not function on your system (such as Solaris 2.3)2.

The number of file descriptors required exceeds the hard limit.3.

Your system imposes other limits on file descriptors, such as a limit on stdio streams only using file descriptors below 256.
(Solaris 2)

4.

In the event of problems you can:

Reduce the number of log files; don't specify log files in the VirtualHost sections, but only log to the main log files.●

If you system falls into 1 or 2 (above), then increase the file descriptor limit before starting Apache, using a script like

#!/bin/sh
ulimit -S -n 100
exec httpd

●

Please see the Descriptors and Apache document containing further details about file descriptor problems and how they can be
solved on your operating system.

Apache HTTP Server Version 1.3

Apache Server Virtual Host Support

http://httpd.apache.org/docs/vhosts/fd-limits.html [12/05/2001 4:49:07 PM]

http://httpd.apache.org/docs/vhosts/

Apache HTTP Server

Issues Regarding DNS and Apache

This page could be summarized with the statement: don't require Apache to use DNS for any parsing of the configuration files. If
Apache has to use DNS to parse the configuration files then your server may be subject to reliability problems (it might not boot), or
denial and theft of service attacks (including users able to steal hits from other users).

A Simple Example

Consider this configuration snippet:

 <VirtualHost www.abc.dom>
 ServerAdmin webgirl@abc.dom
 DocumentRoot /www/abc
 </VirtualHost>

In order for Apache to function properly it absolutely needs to have two pieces of information about each virtual host: the
ServerName and at least one IP address that the server responds to. This example does not include the IP address, so Apache must
use DNS to find the address of www.abc.dom. If for some reason DNS is not available at the time your server is parsing its config
file, then this virtual host will not be configured. It won't be able to respond to any hits to this virtual host (prior to Apache version
1.2 the server would not even boot).

Suppose that www.abc.dom has address 10.0.0.1. Then consider this configuration snippet:

 <VirtualHost 10.0.0.1>
 ServerAdmin webgirl@abc.dom
 DocumentRoot /www/abc
 </VirtualHost>

Now Apache needs to use reverse DNS to find the ServerName for this virtualhost. If that reverse lookup fails then it will
partially disable the virtualhost (prior to Apache version 1.2 the server would not even boot). If the virtual host is name-based then it
will effectively be totally disabled, but if it is IP-based then it will mostly work. However if Apache should ever have to generate a
full URL for the server which includes the server name then it will fail to generate a valid URL.

Here is a snippet that avoids both of these problems.

 <VirtualHost 10.0.0.1>
 ServerName www.abc.dom
 ServerAdmin webgirl@abc.dom
 DocumentRoot /www/abc
 </VirtualHost>

Denial of Service

There are (at least) two forms that denial of service can come in. If you are running a version of Apache prior to version 1.2 then
your server will not even boot if one of the two DNS lookups mentioned above fails for any of your virtual hosts. In some cases this
DNS lookup may not even be under your control. For example, if abc.dom is one of your customers and they control their own
DNS then they can force your (pre-1.2) server to fail while booting simply by deleting the www.abc.dom record.

Another form is far more insidious. Consider this configuration snippet:

Issues Regarding DNS and Apache

http://httpd.apache.org/docs/dns-caveats.html (1 of 3) [12/05/2001 4:49:08 PM]

 <VirtualHost www.abc.dom>
 ServerAdmin webgirl@abc.dom
 DocumentRoot /www/abc
 </VirtualHost>

 <VirtualHost www.def.dom>
 ServerAdmin webguy@def.dom
 DocumentRoot /www/def
 </VirtualHost>

Suppose that you've assigned 10.0.0.1 to www.abc.dom and 10.0.0.2 to www.def.dom. Furthermore, suppose that def.com
has control of their own DNS. With this config you have put def.com into a position where they can steal all traffic destined to
abc.com. To do so, all they have to do is set www.def.dom to 10.0.0.1. Since they control their own DNS you can't stop them
from pointing the www.def.com record wherever they wish.

Requests coming in to 10.0.0.1 (including all those where users typed in URLs of the form http://www.abc.dom/whatever)
will all be served by the def.com virtual host. To better understand why this happens requires a more in-depth discussion of how
Apache matches up incoming requests with the virtual host that will serve it. A rough document describing this is available.

The "main server" Address

The addition of name-based virtual host support in Apache 1.1 requires Apache to know the IP address(es) of the host that httpd is
running on. To get this address it uses either the global ServerName (if present) or calls the C function gethostname (which
should return the same as typing "hostname" at the command prompt). Then it performs a DNS lookup on this address. At present
there is no way to avoid this lookup.

If you fear that this lookup might fail because your DNS server is down then you can insert the hostname in /etc/hosts (where
you probably already have it so that the machine can boot properly). Then ensure that your machine is configured to use
/etc/hosts in the event that DNS fails. Depending on what OS you are using this might be accomplished by editing
/etc/resolv.conf, or maybe /etc/nsswitch.conf.

If your server doesn't have to perform DNS for any other reason then you might be able to get away with running Apache with the
HOSTRESORDER environment variable set to "local". This all depends on what OS and resolver libraries you are using. It also
affects CGIs unless you use mod_env to control the environment. It's best to consult the man pages or FAQs for your OS.

Tips to Avoid these problems

use IP addresses in <VirtualHost>●

use IP addresses in Listen●

use IP addresses in BindAddress●

ensure all virtual hosts have an explicit ServerName●

create a <VirtualHost _default_:*> server that has no pages to serve●

Appendix: Future Directions

The situation regarding DNS is highly undesirable. For Apache 1.2 we've attempted to make the server at least continue booting in
the event of failed DNS, but it might not be the best we can do. In any event requiring the use of explicit IP addresses in
configuration files is highly undesirable in today's Internet where renumbering is a necessity.

A possible work around to the theft of service attack described above would be to perform a reverse DNS lookup on the ip address
returned by the forward lookup and compare the two names. In the event of a mismatch the virtualhost would be disabled. This
would require reverse DNS to be configured properly (which is something that most admins are familiar with because of the
common use of "double-reverse" DNS lookups by FTP servers and TCP wrappers).

In any event it doesn't seem possible to reliably boot a virtual-hosted web server when DNS has failed unless IP addresses are used.
Partial solutions such as disabling portions of the configuration might be worse than not booting at all depending on what the
webserver is supposed to accomplish.

Issues Regarding DNS and Apache

http://httpd.apache.org/docs/dns-caveats.html (2 of 3) [12/05/2001 4:49:08 PM]

As HTTP/1.1 is deployed and browsers and proxies start issuing the Host header it will become possible to avoid the use of
IP-based virtual hosts entirely. In this event a webserver has no requirement to do DNS lookups during configuration. But as of
March 1997 these features have not been deployed widely enough to be put into use on critical webservers.

Apache HTTP Server

Issues Regarding DNS and Apache

http://httpd.apache.org/docs/dns-caveats.html (3 of 3) [12/05/2001 4:49:08 PM]

Apache HTTP Server Version 1.3

Apache Server Frequently Asked Questions

$Revision: 1.149 $ ($Date: 2001/10/08 01:26:54 $)

The latest version of this FAQ is always available from the main Apache web site, at <http://httpd.apache.org/docs/misc/FAQ.html>.

If you are reading a text-only version of this FAQ, you may find numbers enclosed in brackets (such as "[12]"). These refer to the list of
reference URLs to be found at the end of the document. These references do not appear, and are not needed, for the hypertext version.

The Questions

Background

What is Apache?1.

How and why was Apache created?2.

Why the name "Apache"?3.

OK, so how does Apache compare to other servers?4.

How thoroughly tested is Apache?5.

What are the future plans for Apache?6.

Whom do I contact for support?7.

Is there any more information on Apache?8.

Where can I get Apache?9.

May I use the Apache logo on my product or Web site?10.

.

General Technical Questions

"Why can't I ...? Why won't ... work?" What to do in case of problems1.

How compatible is Apache with my existing NCSA 1.3 setup?2.

Is Apache Year 2000 compliant?3.

How do I submit a patch to the Apache Group?4.

Why has Apache stolen my favourite site's Internet address?5.

Why am I getting spam mail from the Apache site?6.

May I include the Apache software on a CD or other package I'm distributing?7.

What's the best hardware/operating system/... How do I get the most out of my Apache Web server?8.

What are "regular expressions"?9.

Why isn't there a binary for my platform?10.

B.

Building Apache

Why do I get an error about an undefined reference to "__inet_ntoa" or other __inet_* symbols?1.

Why won't Apache compile with my system's cc?2.

Why do I get complaints about redefinition of "struct iovec" when compiling under Linux?3.

I'm using gcc and I get some compilation errors, what is wrong?4.

C.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (1 of 24) [12/05/2001 4:49:18 PM]

I'm using RedHat Linux 5.0, or some other glibc-based Linux system, and I get errors with the crypt function when I
attempt to build Apache 1.2.

5.

Error Log Messages and Problems Starting Apache

Why do I get "setgid: Invalid argument" at startup?1.

Why am I getting "httpd: could not set socket option TCP_NODELAY" in my error log?2.

Why am I getting "connection reset by peer" in my error log?3.

The errorlog says Apache dumped core, but where's the dump file?4.

When I run it under Linux I get "shmget: function not found", what should I do?5.

Server hangs, or fails to start, and/or error log fills with "fcntl: F_SETLKW: No record locks available" or similar
messages

6.

Why am I getting "Expected </Directory> but saw </Directory>" when I try to start Apache?7.

I'm using RedHat Linux and I have problems with httpd dying randomly or not restarting properly8.

I upgraded from an Apache version earlier than 1.2.0 and suddenly I have problems with Apache dying randomly or not
restarting properly

9.

When I try to start Apache from a DOS window, I get a message like "Cannot determine host name. Use ServerName
directive to set it manually." What does this mean?

10.

When I try to start Apache for Windows, I get a message like "Unable To Locate WS2_32.DLL...". What should I do?11.

Apache for Windows does not start. Error log contains this message "[crit] (10045) The attempted operation is not
supported for the type of object referenced: Parent: WSADuplicateSocket failed for socket ###". What does this mean?

12.

When I try to start Apache on Windows, I get a message like "System error 1067 has occurred. The
process terminated unexpectedly." What does this mean?

13.

On a SuSE Linux system, I try and configure access control using basic authentication. Although I follow the example
exactly, authentication fails, and an error message "admin: not a valid FDN:" is logged.

14.

D.

Configuration Questions

Why can't I run more than <n> virtual hosts?1.

Can I increase FD_SETSIZE on FreeBSD?2.

Why doesn't my ErrorDocument 401 work?3.

Why does Apache send a cookie on every response?4.

Why don't my cookies work, I even compiled in mod_cookies?5.

Why do my Java app[let]s give me plain text when I request an URL from an Apache server?6.

How do I get Apache to send a MIDI file so the browser can play it?7.

How do I add browsers and referrers to my logs?8.

Why does accessing directories only work when I include the trailing "/" (e.g., http://foo.domain.com/~user/) but not
when I omit it (e.g., http://foo.domain.com/~user)?

9.

Why doesn't mod_info list any directives?10.

I upgraded to Apache 1.3 and now my virtual hosts don't work!11.

I'm using RedHat Linux and my .htm files are showing up as HTML source rather than being formatted!12.

My .htaccess files are being ignored.13.

Why do I get a "Forbidden" message whenever I try to access a particular directory?14.

Why do I get a "Forbidden/You don't have permission to access / on this server" message whenever I try to access my
server?

15.

Why do my files appear correctly in Internet Explorer, but show up as source or trigger a save window with Netscape?16.

My site is accessible under many different hostnames; how do I redirect clients so that they see only a single name?17.

E.

Dynamic Content (CGI and SSI)F.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (2 of 24) [12/05/2001 4:49:18 PM]

How do I enable CGI execution in directories other than the ScriptAlias?1.

What does it mean when my CGIs fail with "Premature end of script headers"?2.

Why do I keep getting "Method Not Allowed" for form POST requests?3.

How can I get my script's output without Apache buffering it? Why doesn't my server push work?4.

Where can I find the "CGI specification"?5.

Why isn't FastCGI included with Apache any more?6.

How do I enable SSI (parsed HTML)?7.

Why don't my parsed files get cached?8.

How can I have my script output parsed?9.

SSIs don't work for VirtualHosts and/or user home directories10.

How can I use ErrorDocument and SSI to simplify customized error messages?11.

Why is the environment variable REMOTE_USER not set?12.

How do I allow each of my user directories to have a cgi-bin directory?13.

Authentication and Access Restrictions

Why isn't restricting access by host or domain name working correctly?1.

How do I set up Apache to require a username and password to access certain documents?2.

How do I set up Apache to allow access to certain documents only if a site is either a local site or the user supplies a
password and username?

3.

Why does my authentication give me a server error?4.

Do I have to keep the (mSQL) authentication information on the same machine?5.

Why is my mSQL authentication terribly slow?6.

Can I use my /etc/passwd file for Web page authentication?7.

Why does Apache ask for my password twice before serving a file?8.

G.

URL Rewriting

Where can I find mod_rewrite rulesets which already solve particular URL-related problems?1.

Where can I find any published information about URL-manipulations and mod_rewrite?2.

Why is mod_rewrite so difficult to learn and seems so complicated?3.

What can I do if my RewriteRules don't work as expected?4.

Why don't some of my URLs get prefixed with DocumentRoot when using mod_rewrite?5.

How can I make all my URLs case-insensitive with mod_rewrite?6.

Why are RewriteRules in my VirtualHost parts ignored?7.

How can I use strings with whitespaces in RewriteRule's ENV flag?8.

H.

Features

Does or will Apache act as a Proxy server?1.

What are "multiviews"?2.

Why can't I publish to my Apache server using PUT on Netscape Gold and other programs?3.

Why doesn't Apache include SSL?4.

How can I attach a footer to my documents without using SSI?5.

Does Apache include a search engine?6.

How can I rotate my log files?7.

How do I keep certain requests from appearing in my logs?8.

I.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (3 of 24) [12/05/2001 4:49:18 PM]

Does Apache include any sort of database integration?9.

Can I use Active Server Pages (ASP) with Apache?10.

Does Apache come with Java support?11.

The Answers

A. Background

What is Apache?

The Apache httpd server

is a powerful, flexible, HTTP/1.1 compliant web server❍

implements the latest protocols, including HTTP/1.1 (RFC2616)❍

is highly configurable and extensible with third-party modules❍

can be customised by writing 'modules' using the Apache module API❍

provides full source code and comes with an unrestrictive license❍

runs on Windows NT/9x, Netware 5.x, OS/2, and most versions of Unix, as well as several other operating systems❍

is actively being developed❍

encourages user feedback through new ideas, bug reports and patches❍

implements many frequently requested features, including:

DBM databases for authentication

allows you to easily set up password-protected pages with enormous numbers of authorized users, without
bogging down the server.

Customized responses to errors and problems

Allows you to set up files, or even CGI scripts, which are returned by the server in response to errors and
problems, e.g. setup a script to intercept 500 Server Errors and perform on-the-fly diagnostics for both users and
yourself.

Multiple DirectoryIndex directives

Allows you to say DirectoryIndex index.html index.cgi, which instructs the server to either send
back index.html or run index.cgi when a directory URL is requested, whichever it finds in the directory.

Unlimited flexible URL rewriting and aliasing

Apache has no fixed limit on the numbers of Aliases and Redirects which may be declared in the config files. In
addition, a powerful rewriting engine can be used to solve most URL manipulation problems.

Content negotiation

i.e. the ability to automatically serve clients of varying sophistication and HTML level compliance, with
documents which offer the best representation of information that the client is capable of accepting.

Virtual Hosts

A much requested feature, sometimes known as multi-homed servers. This allows the server to distinguish
between requests made to different IP addresses or names (mapped to the same machine). Apache also offers
dynamically configurable mass-virtual hosting.

Configurable Reliable Piped Logs

You can configure Apache to generate logs in the format that you want. In addition, on most Unix architectures,
Apache can send log files to a pipe, allowing for log rotation, hit filtering, real-time splitting of multiple vhosts
into separate logs, and asynchronous DNS resolving on the fly.

❍

1.

How and why was Apache created?

The About Apache document explains how the Apache project evolved from its beginnings as an outgrowth of the NCSA httpd
project to its current status as one of the fastest, most efficient, and most functional web servers in existence.

2.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (4 of 24) [12/05/2001 4:49:18 PM]

http://httpd.apache.org/ABOUT_APACHE.html

Why the name "Apache"?

A cute name which stuck. Apache is "A PAtCHy server". It was based on some existing code and a series of "patch files".

For many developers it is also a reverent connotation to the Native American Indian tribe of Apache, well-known for their
superior skills in warfare strategy and inexhaustible endurance. For more information on the Apache Nation, we suggest searching
Google, Northernlight, or AllTheWeb.

3.

OK, so how does Apache compare to other servers?

For an independent assessment, see Web Compare.

Apache has been shown to be substantially faster, more stable, and more feature-full than many other web servers. Although
certain commercial servers have claimed to surpass Apache's speed (it has not been demonstrated that any of these "benchmarks"
are a good way of measuring WWW server speed at any rate), we feel that it is better to have a mostly-fast free server than an
extremely-fast server that costs thousands of dollars. Apache is run on sites that get millions of hits per day, and they have
experienced no performance difficulties.

4.

How thoroughly tested is Apache?

Apache is run on over 6 million Internet servers (as of February 2000). It has been tested thoroughly by both developers and
users. The Apache Group maintains rigorous standards before releasing new versions of their server, and our server runs without a
hitch on over one half of all WWW servers available on the Internet. When bugs do show up, we release patches and new
versions as soon as they are available.

5.

What are the future plans for Apache?

to continue to be an "open source" no-charge-for-use HTTP server,❍

to keep up with advances in HTTP protocol and web developments in general,❍

to collect suggestions for fixes/improvements from its users,❍

to respond to needs of large volume providers as well as occasional users.❍

6.

Whom do I contact for support?

There is no official support for Apache. None of the developers want to be swamped by a flood of trivial questions that can be
resolved elsewhere. Bug reports and suggestions should be sent via the bug report page. Other questions should be directed to the
Apache HTTP Server Users List or the comp.infosystems.www.servers.unix or comp.infosystems.www.servers.ms-windows
newsgroup (as appropriate for the platform you use), where some of the Apache team lurk, in the company of many other httpd
gurus who should be able to help.

Commercial support for Apache is, however, available from a number of third parties.

7.

Is there any more information available on Apache?

Indeed there is. See the main Apache web site. There is also a regular electronic publication called Apache Week available. Links
to relevant Apache Week articles are included below where appropriate. There are also some Apache-specific books available.

8.

Where can I get Apache?

You can find out how to download the source for Apache at the project's main web page.

9.

May I use the Apache logo on my product or Web site?

You may NOT use any original artwork from the Apache Software Foundation, nor make or use modified versions of such
artwork, except under the following conditions:

You may use the 'Powered by Apache' graphic on a Web site that is being served by the Apache HTTP server software.❍

You may use the aforementioned 'Powered by Apache' graphic or the Apache Software Foundation logo in product❍

10.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (5 of 24) [12/05/2001 4:49:18 PM]

http://www.indians.org/welker/apache.htm
http://www.indians.org/welker/apache.htm
http://www.google.com/search?q=Apache+Nation
http://www.northernlight.com/nlquery.fcg?qr=Apache+Nation
http://www.alltheweb.com/cgi-bin/asearch?query=Apache+Nation
http://webcompare.internet.com/
http://httpd.apache.org/bug_report.html
http://httpd.apache.org/userslist.html
news:comp.infosystems.www.servers.unix
news:comp.infosystems.www.servers.ms-windows
http://httpd.apache.org/
http://www.apacheweek.com/
http://httpd.apache.org/info/apache_books.html
http://httpd.apache.org/
http://httpd.apache.org/apache_pb.gif
http://www.apache.org/images/asf_logo.gif

description and promotional material IF and ONLY IF such use can in no way be interpreted as anything other than an
attribution. Using the Apache name and artwork in a manner that implies endorsement of a product or service is strictly
forbidden.

B. General Technical Questions

"Why can't I ...? Why won't ... work?" What to do in case of problems

If you are having trouble with your Apache server software, you should take the following steps:

Check the errorlog!

Apache tries to be helpful when it encounters a problem. In many cases, it will provide some details by writing one or
messages to the server error log. Sometimes this is enough for you to diagnose & fix the problem yourself (such as file
permissions or the like). The default location of the error log is /usr/local/apache/logs/error_log, but see the ErrorLog
directive in your config files for the location on your server.

1.

Check the FAQ!

The latest version of the Apache Frequently-Asked Questions list can always be found at the main Apache web site.

2.

Check the Apache bug database

Most problems that get reported to The Apache Group are recorded in the bug database. Please check the existing reports,
open and closed, before adding one. If you find that your issue has already been reported, please don't add a "me, too"
report. If the original report isn't closed yet, we suggest that you check it periodically. You might also consider contacting
the original submitter, because there may be an email exchange going on about the issue that isn't getting recorded in the
database.

3.

Ask in a user support group.

A lot of common problems never make it to the bug database because there's already high Q&A traffic about them in the
Users mailing list or comp.infosystems.www.servers.unix and related newsgroups. These newsgroups are also available
via Google. Many Apache users, and some of the developers, can be found roaming their virtual halls, so it is suggested
that you seek wisdom there. The chances are good that you'll get a faster answer there than from the bug database, even if
you don't see your question already posted.

4.

If all else fails, report the problem in the bug database

If you've gone through those steps above that are appropriate and have obtained no relief, then please do let The Apache
Group know about the problem by logging a bug report.

If your problem involves the server crashing and generating a core dump, please include a backtrace (if possible). As an
example,

cd ServerRoot
dbx httpd core
(dbx) where

(Substitute the appropriate locations for your ServerRoot and your httpd and core files. You may have to use gdb instead
of dbx.)

5.

1.

How compatible is Apache with my existing NCSA 1.3 setup?

Apache attempts to offer all the features and configuration options of NCSA httpd 1.3, as well as many of the additional features
found in NCSA httpd 1.4 and NCSA httpd 1.5.

NCSA httpd appears to be moving toward adding experimental features which are not generally required at the moment. Some of
the experiments will succeed while others will inevitably be dropped. The Apache philosophy is to add what's needed as and
when it is needed.

Friendly interaction between Apache and NCSA developers should ensure that fundamental feature enhancements stay consistent
between the two servers for the foreseeable future.

2.

Is Apache Year 2000 compliant?3.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (6 of 24) [12/05/2001 4:49:18 PM]

http://bugs.apache.org/
http://httpd.apache.org/userslist.html
news:comp.infosystems.www.servers.unix
http://groups.google.com/groups?group=comp.infosystems.www.servers
http://httpd.apache.org/bug_report.html

Yes, Apache is Year 2000 compliant.

Apache internally never stores years as two digits. On the HTTP protocol level RFC1123-style addresses are generated which is
the only format a HTTP/1.1-compliant server should generate. To be compatible with older applications Apache recognizes ANSI
C's asctime() and RFC850-/RFC1036-style date formats, too. The asctime() format uses four-digit years, but the RFC850
and RFC1036 date formats only define a two-digit year. If Apache sees such a date with a value less than 70 it assumes that the
century is 20 rather than 19.

Although Apache is Year 2000 compliant, you may still get problems if the underlying OS has problems with dates past year
2000 (e.g., OS calls which accept or return year numbers). Most (UNIX) systems store dates internally as signed 32-bit integers
which contain the number of seconds since 1st January 1970, so the magic boundary to worry about is the year 2038 and not 2000.
But modern operating systems shouldn't cause any trouble at all.

Users of Apache 1.2.x should upgrade to a current version of Apache 1.3 (see year-2000 improvements in Apache 1.3 for details).

The Apache HTTP Server project is an open-source software product of the Apache Software Foundation. The project and the
Foundation cannot offer legal assurances regarding any suitability of the software for your application. There are several
commercial Apache support organizations and derivative server products available that may be able to stand behind the software
and provide you with any assurances you may require. You may find links to some of these vendors at
<http://www.apache.org/info/support.cgi>.

The Apache HTTP server software is distributed with the following disclaimer, found in the software license:

 THIS SOFTWARE IS PROVIDED BY THE APACHE GROUP ``AS IS'' AND ANY
 EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE GROUP OR
 ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 OF THE POSSIBILITY OF SUCH DAMAGE.

How do I submit a patch to the Apache Group?

The Apache Group encourages patches from outside developers. There are 2 main "types" of patches: small bugfixes and general
improvements. Bugfixes should be submitting using the Apache bug report page. Improvements, modifications, and additions
should follow the instructions below.

In general, the first course of action is to be a member of the dev@httpd.apache.org mailing list. This indicates to the Group that
you are closely following the latest Apache developments. Your patch file should be generated using either 'diff -c' or
'diff -u' against the latest CVS tree. To submit your patch, send email to dev@httpd.apache.org with a Subject: line that starts
with [PATCH] and includes a general description of the patch. In the body of the message, the patch should be clearly described
and then included at the end of the message. If the patch-file is long, you can note a URL to the file instead of the file itself. Use
of MIME enclosures/attachments should be avoided.

Be prepared to respond to any questions about your patches and possibly defend your code. If your patch results in a lot of
discussion, you may be asked to submit an updated patch that incorporate all changes and suggestions.

4.

Why has Apache stolen my favourite site's Internet address?

The simple answer is: "It hasn't." This misconception is usually caused by the site in question having migrated to the Apache Web
server software, but not having migrated the site's content yet. When Apache is installed, the default page that gets installed tells
the Webmaster the installation was successful. The expectation is that this default page will be replaced with the site's real
content. If it doesn't, complain to the Webmaster, not to the Apache project -- we just make the software and aren't responsible for
what people do (or don't do) with it.

5.

Why am I getting spam mail from the Apache site?6.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (7 of 24) [12/05/2001 4:49:18 PM]

http://www.apache.org/info/support.cgi
http://httpd.apache.org/bug_report.html

The short answer is: "You aren't." Usually when someone thinks the Apache site is originating spam, it's because they've traced
the spam to a Web site, and the Web site says it's using Apache. See the previous FAQ entry for more details on this
phenomenon.

No marketing spam originates from the Apache site. The only mail that comes from the site goes only to addresses that have been
requested to receive the mail.

May I include the Apache software on a CD or other package I'm distributing?

The detailed answer to this question can be found in the Apache license, which is included in the Apache distribution in the file
LICENSE. You can also find it on the Web at <http://www.apache.org/LICENSE.txt>.

7.

What's the best hardware/operating system/... How do I get the most out of my Apache Web server?

Check out Dean Gaudet's performance tuning page.

8.

What are "regular expressions"?

Regular expressions are a way of describing a pattern - for example, "all the words that begin with the letter A" or "every 10-digit
phone number" or even "Every sentence with two commas in it, and no capital letter Q". Regular expressions (aka "regex"s) are
useful in Apache because they let you apply certain attributes against collections of files or resources in very flexible ways - for
example, all .gif and .jpg files under any "images" directory could be written as /\/images\/.*(jpg|gif)$/.

The best overview around is probably the one which comes with Perl. We implement a simple subset of Perl's regex support, but
it's still a good way to learn what they mean. You can start by going to the CPAN page on regular expressions, and branching out
from there.

9.

Why isn't there a binary for my platform?

The developers make sure that the software builds and works correctly on the platforms available to them; this does not
necessarily mean that your platform is one of them. In addition, the Apache HTTP server project is primarily source oriented,
meaning that distributing valid and buildable source code is the purpose of a release, not making sure that there is a binary
package for all of the supported platforms.

If you don't see a kit for your platform listed in the binary distribution area (<URL:http://httpd.apache.org/dist/httpd/binaries/>), it
means either that the platform isn't available to any of the developers, or that they just haven't gotten around to preparing a binary
for it. As this is a voluntary project, they are under no obligation to do so. Users are encouraged and expected to build the
software themselves.

The sole exception to these practices is the Windows package. Unlike most Unix and Unix-like platforms, Windows systems do
not come with a bundled software development environment, so we do prepare binary kits for Windows when we make a release.
Again, however, it's a voluntary thing and only a limited number of the developers have the capability to build the InstallShield
package, so the Windows release may lag somewhat behind the source release. This lag should be no more than a few days at
most.

10.

C. Building Apache

Why do I get an error about an undefined reference to "__inet_ntoa" or other __inet_* symbols?

If you have installed BIND-8 then this is normally due to a conflict between your include files and your libraries. BIND-8 installs
its include files and libraries /usr/local/include/ and /usr/local/lib/, while the resolver that comes with your
system is probably installed in /usr/include/ and /usr/lib/. If your system uses the header files in
/usr/local/include/ before those in /usr/include/ but you do not use the new resolver library, then the two versions
will conflict.

To resolve this, you can either make sure you use the include files and libraries that came with your system or make sure to use
the new include files and libraries. Adding -lbind to the EXTRA_LDFLAGS line in your Configuration file, then re-running
Configure, should resolve the problem. (Apache versions 1.2.* and earlier use EXTRA_LFLAGS instead.)

Note:As of BIND 8.1.1, the bind libraries and files are installed under /usr/local/bind by default, so you should not run into this

1.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (8 of 24) [12/05/2001 4:49:18 PM]

http://www.perl.com/CPAN-local/doc/manual/html/pod/perlre.html#Regular_Expressions
http://httpd.apache.org/dist/httpd/binaries/
http://www.isc.org/bind.html

problem. Should you want to use the bind resolvers you'll have to add the following to the respective lines:

EXTRA_CFLAGS=-I/usr/local/bind/include
EXTRA_LDFLAGS=-L/usr/local/bind/lib
EXTRA_LIBS=-lbind

Why won't Apache compile with my system's cc?

If the server won't compile on your system, it is probably due to one of the following causes:

The Configure script doesn't recognize your system environment.
This might be either because it's completely unknown or because the specific environment (include files, OS version, et
cetera) isn't explicitly handled. If this happens, you may need to port the server to your OS yourself.

❍

Your system's C compiler is garbage.
Some operating systems include a default C compiler that is either not ANSI C-compliant or suffers from other
deficiencies. The usual recommendation in cases like this is to acquire, install, and use gcc.

❍

Your include files may be confused.
In some cases, we have found that a compiler installation or system upgrade has left the C header files in an inconsistent
state. Make sure that your include directory tree is in sync with the compiler and the operating system.

❍

Your operating system or compiler may be out of revision.
Software vendors (including those that develop operating systems) issue new releases for a reason; sometimes to add
functionality, but more often to fix bugs that have been discovered. Try upgrading your compiler and/or your operating
system.

❍

The Apache Group tests the ability to build the server on many different platforms. Unfortunately, we can't test all of the OS
platforms there are. If you have verified that none of the above issues is the cause of your problem, and it hasn't been reported
before, please submit a problem report. Be sure to include complete details, such as the compiler & OS versions and exact error
messages.

2.

Why do I get complaints about redefinition of "struct iovec" when compiling under Linux?

This is a conflict between your C library includes and your kernel includes. You need to make sure that the versions of both are
matched properly. There are two workarounds, either one will solve the problem:

Remove the definition of struct iovec from your C library includes. It is located in
/usr/include/sys/uio.h. Or,

❍

Add -DNO_WRITEV to the EXTRA_CFLAGS line in your Configuration and reconfigure/rebuild. This hurts performance
and should only be used as a last resort.

❍

3.

I'm using gcc and I get some compilation errors, what is wrong?

GCC parses your system header files and produces a modified subset which it uses for compiling. This behavior ties GCC tightly
to the version of your operating system. So, for example, if you were running IRIX 5.3 when you built GCC and then upgrade to
IRIX 6.2 later, you will have to rebuild GCC. Similarly for Solaris 2.4, 2.5, or 2.5.1 when you upgrade to 2.6. Sometimes you can
type "gcc -v" and it will tell you the version of the operating system it was built against.

If you fail to do this, then it is very likely that Apache will fail to build. One of the most common errors is with readv, writev,
or uio.h. This is not a bug with Apache. You will need to re-install GCC.

4.

I'm using RedHat Linux 5.0, or some other glibc-based Linux system, and I get errors with the crypt function when I
attempt to build Apache 1.2.

glibc puts the crypt function into a separate library. Edit your src/Configuration file and set this:

EXTRA_LIBS=-lcrypt

Then re-run src/Configure and re-execute the make.

5.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (9 of 24) [12/05/2001 4:49:18 PM]

http://httpd.apache.org/bug_report.html

D. Error Log Messages and Problems Starting Apache

Why do I get "setgid: Invalid argument" at startup?

Your Group directive (probably in conf/httpd.conf) needs to name a group that actually exists in the /etc/group file (or your
system's equivalent). This problem is also frequently seen when a negative number is used in the Group directive (e.g.,
"Group #-1"). Using a group name -- not group number -- found in your system's group database should solve this problem in
all cases.

1.

Why am I getting "httpd: could not set socket option TCP_NODELAY" in my error log?

This message almost always indicates that the client disconnected before Apache reached the point of calling setsockopt()
for the connection. It shouldn't occur for more than about 1% of the requests your server handles, and it's advisory only in any
case.

2.

Why am I getting "connection reset by peer" in my error log?

This is a normal message and nothing about which to be alarmed. It simply means that the client canceled the connection before it
had been completely set up - such as by the end-user pressing the "Stop" button. People's patience being what it is, sites with
response-time problems or slow network links may experiences this more than high-capacity ones or those with large pipes to the
network.

3.

The errorlog says Apache dumped core, but where's the dump file?

In Apache version 1.2, the error log message about dumped core includes the directory where the dump file should be located.
However, many Unixes do not allow a process that has called setuid() to dump core for security reasons; the typical Apache
setup has the server started as root to bind to port 80, after which it changes UIDs to a non-privileged user to serve requests.

Dealing with this is extremely operating system-specific, and may require rebuilding your system kernel. Consult your operating
system documentation or vendor for more information about whether your system does this and how to bypass it. If there is a
documented way of bypassing it, it is recommended that you bypass it only for the httpd server process if possible.

The canonical location for Apache's core-dump files is the ServerRoot directory. As of Apache version 1.3, the location can be set
via the CoreDumpDirectory directive to a different directory. Make sure that this directory is writable by the user the server runs
as (as opposed to the user the server is started as).

4.

When I run it under Linux I get "shmget: function not found", what should I do?

Your kernel has been built without SysV IPC support. You will have to rebuild the kernel with that support enabled (it's under the
"General Setup" submenu). Documentation for kernel building is beyond the scope of this FAQ; you should consult the Kernel
HOWTO, or the documentation provided with your distribution, or a Linux newsgroup/mailing list. As a last-resort workaround,
you can comment out the #define USE_SHMGET_SCOREBOARD definition in the LINUX section of src/conf.h and rebuild
the server (prior to 1.3b4, simply removing #define HAVE_SHMGET would have sufficed). This will produce a server which is
slower and less reliable.

5.

Server hangs, or fails to start, and/or error log fills with "fcntl: F_SETLKW: No record locks available" or similar
messages

These are symptoms of a fine locking problem, which usually means that the server is trying to use a synchronization file on an
NFS filesystem.

Because of its parallel-operation model, the Apache Web server needs to provide some form of synchronization when accessing
certain resources. One of these synchronization methods involves taking out locks on a file, which means that the filesystem
whereon the lockfile resides must support locking. In many cases this means it can't be kept on an NFS-mounted filesystem.

To cause the Web server to work around the NFS locking limitations, include a line such as the following in your server
configuration files:

LockFile /var/run/apache-lock

The directory should not be generally writable (e.g., don't use /var/tmp). See the LockFile documentation for more information.

6.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (10 of 24) [12/05/2001 4:49:18 PM]

http://www.redhat.com/mirrors/LDP/HOWTO/Kernel-HOWTO.html
http://www.redhat.com/mirrors/LDP/HOWTO/Kernel-HOWTO.html
http://www.redhat.com/mirrors/LDP/HOWTO/META-FAQ.html

Why am I getting "Expected </Directory> but saw </Directory>" when I try to start Apache?

This is a known problem with certain versions of the AIX C compiler. IBM are working on a solution, and the issue is being
tracked by problem report #2312.

7.

I'm using RedHat Linux and I have problems with httpd dying randomly or not restarting properly

RedHat Linux versions 4.x (and possibly earlier) RPMs contain various nasty scripts which do not stop or restart Apache
properly. These can affect you even if you're not running the RedHat supplied RPMs.

If you're using the default install then you're probably running Apache 1.1.3, which is outdated. From RedHat's ftp site you can
pick up a more recent RPM for Apache 1.2.x. This will solve one of the problems.

If you're using a custom built Apache rather than the RedHat RPMs then you should rpm -e apache. In particular you want
the mildly broken /etc/logrotate.d/apache script to be removed, and you want the broken
/etc/rc.d/init.d/httpd (or httpd.init) script to be removed. The latter is actually fixed by the apache-1.2.5 RPMs
but if you're building your own Apache then you probably don't want the RedHat files.

We can't stress enough how important it is for folks, especially vendors to follow the stopping Apache directions given in our
documentation. In RedHat's defense, the broken scripts were necessary with Apache 1.1.x because the Linux support in 1.1.x was
very poor, and there were various race conditions on all platforms. None of this should be necessary with Apache 1.2 and later.

8.

I upgraded from an Apache version earlier than 1.2.0 and suddenly I have problems with Apache dying randomly or not
restarting properly

You should read the previous note about problems with RedHat installations. It is entirely likely that your installation has
start/stop/restart scripts which were built for an earlier version of Apache. Versions earlier than 1.2.0 had various race conditions
that made it necessary to use kill -9 at times to take out all the httpd servers. But that should not be necessary any longer. You
should follow the directions on how to stop and restart Apache.

As of Apache 1.3 there is a script src/support/apachectl which, after a bit of customization, is suitable for starting,
stopping, and restarting your server.

9.

When I try to start Apache from a DOS window, I get a message like "Cannot determine host name. Use ServerName
directive to set it manually." What does this mean?

It means what it says; the Apache software can't determine the hostname of your system. Edit your conf\httpd.conf file, look for
the string "ServerName", and make sure there's an uncommented directive such as

ServerName localhost

or

ServerName www.foo.com

in the file. Correct it if there one there with wrong information, or add one if you don't already have one.

Also, make sure that your Windows system has DNS enabled. See the TCP/IP setup component of the Networking or Internet
Options control panel.

After verifying that DNS is enabled and that you have a valid hostname in your ServerName directive, try to start the server
again.

10.

When I try to start Apache for Windows, I get a message like "Unable To Locate WS2_32.DLL...". What should I do?

Short answer: You need to install Winsock 2, available from http://www.microsoft.com/windows95/downloads/

Detailed answer: Prior to version 1.3.9, Apache for Windows used Winsock 1.1. Beginning with version 1.3.9, Apache began
using Winsock 2 features (specifically, WSADuplicateSocket()). WS2_32.DLL implements the Winsock 2 API. Winsock 2 ships
with Windows NT 4.0 and Windows 98. Some of the earlier releases of Windows 95 did not include Winsock 2.

11.

Apache for Windows does not start. Error log contains this message: "[crit] (10045) The attempted operation is not
supported for the type of object referenced: Parent: WSADuplicateSocket failed for socket ###". What does this mean?

12.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (11 of 24) [12/05/2001 4:49:19 PM]

http://bugs.apache.org/index/full/2312
http://www.microsoft.com/windows95/downloads/

We have seen this problem when Apache is run on systems along with Virtual Private Networking clients like Aventail Connect.
Aventail Connect is a Layered Service Provider (LSP) that inserts itself, as a "shim," between the Winsock 2 API and Window's
native Winsock 2 implementation. The Aventail Connect shim does not implement WSADuplicateSocket, which is the cause of
the failure.

The shim is not unloaded when Aventail Connect is shut down. Once observed, the problem persists until the shim is either
explicitly unloaded or the machine is rebooted. Instructions for temporarily removing the Aventail Connect V3.x shim can be
found here: "How to Remove Aventail Connect v3.x from the LSP Order for Testing Purposes."

Another potential solution (not tested) is to add apache.exe to the Aventail "Connect Exclusion List". See this link for details:
"How to Add an Application to Aventail Connect's Application Exclusion List."

Apache is affected in a similar way by any firewall program that isn't correctly configured. Assure you exclude your Apache
server ports (usually port 80) from the list of ports to block. Refer to your firewall program's documentation for the how-to.

When I try to start Apache on Windows, I get a message like "System error 1067 has occurred. The
process terminated unexpectedly." What does this mean?

This message means that the Web server was unable to start correctly for one reason or another. To find out why, execute the
following commands in a DOS window:

 c:
 cd "\Program Files\Apache Group\Apache"
 apache

(If you don't get the prompt back, hit Control-C to cause Apache to exit.)

The error you see will probably be one of those preceding this question in the FAQ.

As of Apache 1.3.14, first check the Windows NT Event Log for Application errors using the Windows NT/2000 Event Viewer
program. Any errors that occur prior to opening the Apache error log will be stored here, if Apache is run as a Service on NT or
2000. As with any error, also check your Apache error log.

13.

On a SuSE Linux system, I try and configure access control using basic authentication. Although I follow the example
exactly, authentication fails, and an error message "admin: not a valid FDN:" is logged.

In the SuSE distribution, additional 3rd party authentication modules have been added and activated by default. These modules
interfere with the Apache standard modules and cause Basic authentication to fail. Our recommendation is to comment all those
modules in /etc/httpd/suse_addmodule.conf and /etc/httpd/suse_loadmodule.conf which are not
actually required for running your server.

14.

E. Configuration Questions

Why can't I run more than <n> virtual hosts?

You are probably running into resource limitations in your operating system. The most common limitation is the per-process limit
on file descriptors, which is almost always the cause of problems seen when adding virtual hosts. Apache often does not give an
intuitive error message because it is normally some library routine (such as gethostbyname()) which needs file descriptors
and doesn't complain intelligibly when it can't get them.

Each log file requires a file descriptor, which means that if you are using separate access and error logs for each virtual host, each
virtual host needs two file descriptors. Each Listen directive also needs a file descriptor.

Typical values for <n> that we've seen are in the neighborhood of 128 or 250. When the server bumps into the file descriptor
limit, it may dump core with a SIGSEGV, it might just hang, or it may limp along and you'll see (possibly meaningful) errors in
the error log. One common problem that occurs when you run into a file descriptor limit is that CGI scripts stop being executed
properly.

As to what you can do about this:

Reduce the number of Listen directives. If there are no other servers running on the machine on the same port then you
normally don't need any Listen directives at all. By default Apache listens to all addresses on port 80.

1.

1.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (12 of 24) [12/05/2001 4:49:19 PM]

http://support.aventail.com/akb/article00386.html
http://support.aventail.com/akb/article00586.html

Reduce the number of log files. You can use mod_log_config to log all requests to a single log file while including the
name of the virtual host in the log file. You can then write a script to split the logfile into separate files later if necessary.
Such a script is provided with the Apache 1.3 distribution in the src/support/split-logfile file.

2.

Increase the number of file descriptors available to the server (see your system's documentation on the limit or
ulimit commands). For some systems, information on how to do this is available in the performance hints page. There
is a specific note for FreeBSD below.

For Windows 95, try modifying your C:\CONFIG.SYS file to include a line like

FILES=300

Remember that you'll need to reboot your Windows 95 system in order for the new value to take effect.

3.

"Don't do that" - try to run with fewer virtual hosts4.

Spread your operation across multiple server processes (using Listen for example, but see the first point) and/or ports.5.

Since this is an operating-system limitation, there's not much else available in the way of solutions.

As of 1.2.1 we have made attempts to work around various limitations involving running with many descriptors. More
information is available.

Can I increase FD_SETSIZE on FreeBSD?

On versions of FreeBSD before 3.0, the FD_SETSIZE define defaults to 256. This means that you will have trouble usefully
using more than 256 file descriptors in Apache. This can be increased, but doing so can be tricky.

If you are using a version prior to 2.2, you need to recompile your kernel with a larger FD_SETSIZE. This can be done by adding
a line such as:

options FD_SETSIZE nnn

to your kernel config file. Starting at version 2.2, this is no longer necessary.

If you are using a version of 2.1-stable from after 1997/03/10 or 2.2 or 3.0-current from before 1997/06/28, there is a limit in the
resolver library that prevents it from using more file descriptors than what FD_SETSIZE is set to when libc is compiled. To
increase this, you have to recompile libc with a higher FD_SETSIZE.

In FreeBSD 3.0, the default FD_SETSIZE has been increased to 1024 and the above limitation in the resolver library has been
removed.

After you deal with the appropriate changes above, you can increase the setting of FD_SETSIZE at Apache compilation time by
adding "-DFD_SETSIZE=nnn" to the EXTRA_CFLAGS line in your Configuration file.

2.

Why doesn't my ErrorDocument 401 work?

You need to use it with a URL in the form "/foo/bar" and not one with a method and hostname such as "http://host/foo/bar". See
the ErrorDocument documentation for details. This was incorrectly documented in the past.

3.

Why does Apache send a cookie on every response?

Apache does not automatically send a cookie on every response, unless you have re-compiled it with the mod_usertrack module,
and specifically enabled it with the CookieTracking directive. This module has been in Apache since version 1.2. This module
may help track users, and uses cookies to do this. If you are not using the data generated by mod_usertrack, do not compile it into
Apache.

4.

Why don't my cookies work, I even compiled in mod_cookies?

Firstly, you do not need to compile in mod_cookies in order for your scripts to work (see the previous question for more about
mod_cookies). Apache passes on your Set-Cookie header fine, with or without this module. If cookies do not work it will be
because your script does not work properly or your browser does not use cookies or is not set-up to accept them.

5.

Why do my Java app[let]s give me plain text when I request an URL from an Apache server?6.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (13 of 24) [12/05/2001 4:49:19 PM]

As of version 1.2, Apache is an HTTP/1.1 (HyperText Transfer Protocol version 1.1) server. This fact is reflected in the protocol
version that's included in the response headers sent to a client when processing a request. Unfortunately, low-level Web access
classes included in the Java Development Kit (JDK) version 1.0.2 expect to see the version string "HTTP/1.0" and do not
correctly interpret the "HTTP/1.1" value Apache is sending (this part of the response is a declaration of what the server can do
rather than a declaration of the dialect of the response). The result is that the JDK methods do not correctly parse the headers, and
include them with the document content by mistake.

This is definitely a bug in the JDK 1.0.2 foundation classes from Sun, and it has been fixed in version 1.1. However, the classes in
question are part of the virtual machine environment, which means they're part of the Web browser (if Java-enabled) or the Java
environment on the client system - so even if you develop your classes with a recent JDK, the eventual users might encounter the
problem. The classes involved are replaceable by vendors implementing the Java virtual machine environment, and so even those
that are based upon the 1.0.2 version may not have this problem.

In the meantime, a workaround is to tell Apache to "fake" an HTTP/1.0 response to requests that come from the JDK methods;
this can be done by including a line such as the following in your server configuration files:

BrowserMatch Java1.0 force-response-1.0
BrowserMatch JDK/1.0 force-response-1.0

More information about this issue can be found in the Java and HTTP/1.1 page at the Apache web site.

How do I get Apache to send a MIDI file so the browser can play it?

Even though the registered MIME type for MIDI files is audio/midi, some browsers are not set up to recognize it as such; instead,
they look for audio/x-midi. There are two things you can do to address this:

Configure your browser to treat documents of type audio/midi correctly. This is the type that Apache sends by default.
This may not be workable, however, if you have many client installations to change, or if some or many of the clients are
not under your control.

1.

Instruct Apache to send a different Content-type header for these files by adding the following line to your server's
configuration files:

AddType audio/x-midi .mid .midi .kar

Note that this may break browsers that do recognize the audio/midi MIME type unless they're prepared to also handle
audio/x-midi the same way.

2.

7.

How do I add browsers and referrers to my logs?

Apache provides a couple of different ways of doing this. The recommended method is to compile the mod_log_config module
into your configuration and use the CustomLog directive.

You can either log the additional information in files other than your normal transfer log, or you can add them to the records
already being written. For example:

CustomLog logs/access_log "%h %l %u %t \"%r\" %s %b \"%{Referer}i\" \"%{User-Agent}i\""

This will add the values of the User-agent: and Referer: headers, which indicate the client and the referring page, respectively, to
the end of each line in the access log.

You may want to check out the Apache Week article entitled: "Gathering Visitor Information: Customizing Your Logfiles".

8.

Why does accessing directories only work when I include the trailing "/" (e.g., http://foo.domain.com/~user/) but not when
I omit it (e.g., http://foo.domain.com/~user)?

When you access a directory without a trailing "/", Apache needs to send what is called a redirect to the client to tell it to add the
trailing slash. If it did not do so, relative URLs would not work properly. When it sends the redirect, it needs to know the name of
the server so that it can include it in the redirect. There are two ways for Apache to find this out; either it can guess, or you can
tell it. If your DNS is configured correctly, it can normally guess without any problems. If it is not, however, then you need to tell
it.

Add a ServerName directive to the config file to tell it what the domain name of the server is.

9.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (14 of 24) [12/05/2001 4:49:19 PM]

http://httpd.apache.org/info/jdk-102.html
http://www.apacheweek.com/features/logfiles

Why doesn't mod_info list any directives?

The mod_info module allows you to use a Web browser to see how your server is configured. Among the information it displays
is the list modules and their configuration directives. The "current" values for the directives are not necessarily those of the
running server; they are extracted from the configuration files themselves at the time of the request. If the files have been changed
since the server was last reloaded, the display will not match the values actively in use. If the files and the path to the files are not
readable by the user as which the server is running (see the User directive), then mod_info cannot read them in order to list their
values. An entry will be made in the error log in this event, however.

10.

I upgraded to Apache 1.3 and now my virtual hosts don't work!

In versions of Apache prior to 1.3b2, there was a lot of confusion regarding address-based virtual hosts and (HTTP/1.1)
name-based virtual hosts, and the rules concerning how the server processed <VirtualHost> definitions were very complex and
not well documented.

Apache 1.3b2 introduced a new directive, NameVirtualHost, which simplifies the rules quite a bit. However, changing the rules
like this means that your existing name-based <VirtualHost> containers probably won't work correctly immediately following the
upgrade.

To correct this problem, add the following line to the beginning of your server configuration file, before defining any virtual
hosts:

NameVirtualHost n.n.n.n

Replace the "n.n.n.n" with the IP address to which the name-based virtual host names resolve; if you have multiple name-based
hosts on multiple addresses, repeat the directive for each address.

Make sure that your name-based <VirtualHost> blocks contain ServerName and possibly ServerAlias directives so Apache can be
sure to tell them apart correctly.

Please see the Apache Virtual Host documentation for further details about configuration.

11.

I'm using RedHat Linux and my .htm files are showing up as HTML source rather than being formatted!

RedHat messed up and forgot to put a content type for .htm files into /etc/mime.types. Edit /etc/mime.types, find
the line containing html and add htm to it. Then restart your httpd server:

kill -HUP `cat /var/run/httpd.pid`

Then clear your browsers' caches. (Many browsers won't re-examine the content type after they've reloaded a page.)

12.

My .htaccess files are being ignored.

This is almost always due to your AllowOverride directive being set incorrectly for the directory in question. If it is set to None
then .htaccess files will not even be looked for. If you do have one that is set, then be certain it covers the directory you are trying
to use the .htaccess file in. This is normally accomplished by ensuring it is inside the proper Directory container.

13.

Why do I get a "Forbidden" message whenever I try to access a particular directory?

This message is generally caused because either

The underlying file system permissions do not allow the User/Group under which Apache is running to access the
necessary files; or

❍

The Apache configuration has some access restrictions in place which forbid access to the files.❍

You can determine which case applies to your situation by checking the error log.

In the case where file system permission are at fault, remember that not only must the directory and files in question be readable,
but also all parent directories must be at least searchable by the web server in order for the content to be accessible.

14.

Why do I get a "Forbidden/You don't have permission to access / on this server" message whenever I try to access my
server?

15.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (15 of 24) [12/05/2001 4:49:19 PM]

http://httpd.apache.org/docs/vhosts/

Search your conf/httpd.conf file for this exact string: <Files ~>. If you find it, that's your problem -- that particular
<Files> container is malformed. Delete it or replace it with <Files ~ "^\.ht"> and restart your server and things should
work as expected.

This error appears to be caused by a problem with the version of linuxconf distributed with Redhat 6.x. It may reappear if you use
linuxconf again.

If you don't find this string, check out the previous question.

Why do my files appear correctly in Internet Explorer, but show up as source or trigger a save window with Netscape?

Internet Explorer (IE) and Netscape handle mime type detection in different ways, and therefore will display the document
differently. In particular, IE sometimes relies on the file extension to determine the mime type. This can happen when the server
specifies a mime type of application/octet-stream or text/plain. (Unfortunately, this behavior makes it impossible
to properly send plain text in some situations unless the file extension is txt.) There are more details available on IE's mime type
detection behavior in an MSDN article.

In order to make all browsers work correctly, you should assure that Apache sends the correct mime type for the file. This is
accomplished by editing the mime.types file or using an AddType directive in the Apache configuration files.

16.

My site is accessible under many different hostnames; how do I redirect clients so that they see only a single name?

Many sites map a variety of hostnames to the same content. For example, www.example.com, example.com and
www.example.net may all refer to the same site. It is best to make sure that, regardless of the name clients use to access the
site, they will be redirected to a single, canonical hostname. This makes the site easier to maintain and assures that there will be
only one version of the site in proxy caches and search engines.

There are two techniques to implement canonical hostnames:

Use mod_rewrite as described in the "Canonical Hostnames" section of the URL Rewriting Guide.1.

Use name-based virtual hosting:

NameVirtualHost *

<VirtualHost *>
 ServerName www.example.net
 ServerAlias example.com
 Redirect permanent / http://www.example.com/
</VirtualHost>

<VirtualHost *>
 ServerName www.example.com
 DocumentRoot /usr/local/apache/htdocs
</VirtualHost>

2.

17.

F. Dynamic Content (CGI and SSI)

How do I enable CGI execution in directories other than the ScriptAlias?

Apache recognizes all files in a directory named as a ScriptAlias as being eligible for execution rather than processing as normal
documents. This applies regardless of the file name, so scripts in a ScriptAlias directory don't need to be named "*.cgi" or "*.pl"
or whatever. In other words, all files in a ScriptAlias directory are scripts, as far as Apache is concerned.

To persuade Apache to execute scripts in other locations, such as in directories where normal documents may also live, you must
tell it how to recognize them - and also that it's okay to execute them. For this, you need to use something like the AddHandler
directive.

In an appropriate section of your server configuration files, add a line such as

AddHandler cgi-script .cgi

The server will then recognize that all files in that location (and its logical descendants) that end in ".cgi" are script files,
not documents.

1.

1.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (16 of 24) [12/05/2001 4:49:19 PM]

http://msdn.microsoft.com/workshop/networking/moniker/overview/appendix_a.asp

Make sure that the directory location is covered by an Options declaration that includes the ExecCGI option.2.

In some situations, you might not want to actually allow all files named "*.cgi" to be executable. Perhaps all you want is to enable
a particular file in a normal directory to be executable. This can be alternatively accomplished via mod_rewrite and the following
steps:

Locally add to the corresponding .htaccess file a ruleset similar to this one:

RewriteEngine on
RewriteBase /~foo/bar/
RewriteRule ^quux\.cgi$ - [T=application/x-httpd-cgi]

1.

Make sure that the directory location is covered by an Options declaration that includes the ExecCGI and
FollowSymLinks option.

2.

What does it mean when my CGIs fail with "Premature end of script headers"?

It means just what it says: the server was expecting a complete set of HTTP headers (one or more followed by a blank line), and
didn't get them.

The most common cause of this problem is the script dying before sending the complete set of headers, or possibly any at all, to
the server. To see if this is the case, try running the script standalone from an interactive session, rather than as a script under the
server. If you get error messages, this is almost certainly the cause of the "premature end of script headers" message. Even if the
CGI runs fine from the command line, remember that the environment and permissions may be different when running under the
web server. The CGI can only access resources allowed for the User and Group specified in your Apache configuration. In
addition, the environment will not be the same as the one provided on the command line, but it can be adjusted using the
directives provided by mod_env.

The second most common cause of this (aside from people not outputting the required headers at all) is a result of an interaction
with Perl's output buffering. To make Perl flush its buffers after each output statement, insert the following statements around the
print or write statements that send your HTTP headers:

{
 local ($oldbar) = $|;
 $cfh = select (STDOUT);
 $| = 1;
 #
 # print your HTTP headers here
 #
 $| = $oldbar;
 select ($cfh);
}

This is generally only necessary when you are calling external programs from your script that send output to stdout, or if there
will be a long delay between the time the headers are sent and the actual content starts being emitted. To maximize performance,
you should turn buffer-flushing back off (with $| = 0 or the equivalent) after the statements that send the headers, as displayed
above.

If your script isn't written in Perl, do the equivalent thing for whatever language you are using (e.g., for C, call fflush() after
writing the headers).

Another cause for the "premature end of script headers" message are the RLimitCPU and RLimitMEM directives. You may get
the message if the CGI script was killed due to a resource limit.

In addition, a configuration problem in suEXEC, mod_perl, or another third party module can often interfere with the execution
of your CGI and cause the "premature end of script headers" message.

2.

Why do I keep getting "Method Not Allowed" for form POST requests?

This is almost always due to Apache not being configured to treat the file you are trying to POST to as a CGI script. You can not
POST to a normal HTML file; the operation has no meaning. See the FAQ entry on CGIs outside ScriptAliased directories for
details on how to configure Apache to treat the file in question as a CGI.

3.

How can I get my script's output without Apache buffering it? Why doesn't my server push work?4.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (17 of 24) [12/05/2001 4:49:19 PM]

As of Apache 1.3, CGI scripts are essentially not buffered. Every time your script does a "flush" to output data, that data gets
relayed on to the client. Some scripting languages, for example Perl, have their own buffering for output - this can be disabled by
setting the $| special variable to 1. Of course this does increase the overall number of packets being transmitted, which can result
in a sense of slowness for the end user.

Prior to 1.3, you needed to use "nph-" scripts to accomplish non-buffering. Today, the only difference between nph scripts and
normal scripts is that nph scripts require the full HTTP headers to be sent.

Where can I find the "CGI specification"?

The Common Gateway Interface (CGI) specification can be found at the original NCSA site <
http://hoohoo.ncsa.uiuc.edu/cgi/interface.html>. This version hasn't been updated since 1995, and there have been some efforts to
update it.

A new draft is being worked on with the intent of making it an informational RFC; you can find out more about this project at
<http://web.golux.com/coar/cgi/>.

5.

Why isn't FastCGI included with Apache any more?

The simple answer is that it was becoming too difficult to keep the version being included with Apache synchronized with the
master copy at the FastCGI web site. When a new version of Apache was released, the version of the FastCGI module included
with it would soon be out of date.

You can still obtain the FastCGI module for Apache from the master FastCGI web site.

6.

How do I enable SSI (parsed HTML)?

SSI (an acronym for Server-Side Include) directives allow static HTML documents to be enhanced at run-time (e.g., when
delivered to a client by Apache). The format of SSI directives is covered in the mod_include manual; suffice it to say that Apache
supports not only SSI but xSSI (eXtended SSI) directives.

Processing a document at run-time is called parsing it; hence the term "parsed HTML" sometimes used for documents that
contain SSI instructions. Parsing tends to be resource-consumptive compared to serving static files, and is not enabled by default.
It can also interfere with the cachability of your documents, which can put a further load on your server. (See the next question for
more information about this.)

To enable SSI processing, you need to

Build your server with the mod_include module. This is normally compiled in by default.❍

Make sure your server configuration files have an Options directive which permits Includes.❍

Make sure that the directory where you want the SSI documents to live is covered by the "server-parsed" content handler,
either explicitly or in some ancestral location. That can be done with the following AddHandler directive:

AddHandler server-parsed .shtml

This indicates that all files ending in ".shtml" in that location (or its descendants) should be parsed. Note that using
".html" will cause all normal HTML files to be parsed, which may put an inordinate load on your server.

❍

For additional information, see the Apache Week article on Using Server Side Includes.

7.

Why don't my parsed files get cached?

Since the server is performing run-time processing of your SSI directives, which may change the content shipped to the client, it
can't know at the time it starts parsing what the final size of the result will be, or whether the parsed result will always be the
same. This means that it can't generate Content-Length or Last-Modified headers. Caches commonly work by comparing the
Last-Modified of what's in the cache with that being delivered by the server. Since the server isn't sending that header for a parsed
document, whatever's doing the caching can't tell whether the document has changed or not - and so fetches it again to be on the
safe side.

You can work around this in some cases by causing an Expires header to be generated. (See the mod_expires documentation for
more details.) Another possibility is to use the XBitHack Full mechanism, which tells Apache to send (under certain
circumstances detailed in the XBitHack directive description) a Last-Modified header based upon the last modification time of the

8.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (18 of 24) [12/05/2001 4:49:19 PM]

http://hoohoo.ncsa.uiuc.edu/cgi/interface.html
http://web.golux.com/coar/cgi/
http://www.fastcgi.com/
http://www.apacheweek.com/features/ssi

file being parsed. Note that this may actually be lying to the client if the parsed file doesn't change but the SSI-inserted content
does; if the included content changes often, this can result in stale copies being cached.

How can I have my script output parsed?

So you want to include SSI directives in the output from your CGI script, but can't figure out how to do it? The short answer is
"you can't." This is potentially a security liability and, more importantly, it can not be cleanly implemented under the current
server API. The best workaround is for your script itself to do what the SSIs would be doing. After all, it's generating the rest of
the content.

This is a feature The Apache Group hopes to add in the next major release after 1.3.

9.

SSIs don't work for VirtualHosts and/or user home directories.

This is almost always due to having some setting in your config file that sets "Options Includes" or some other setting for your
DocumentRoot but not for other directories. If you set it inside a Directory section, then that setting will only apply to that
directory.

10.

How can I use ErrorDocument and SSI to simplify customized error messages?

Have a look at this document. It shows in example form how you can a combination of XSSI and negotiation to tailor a set of
ErrorDocuments to your personal taste, and returning different internationalized error responses based on the client's native
language.

11.

Why is the environment variable REMOTE_USER not set?

This variable is set and thus available in SSI or CGI scripts if and only if the requested document was protected by access
authentication. For an explanation on how to implement these restrictions, see Apache Week's articles on Using User
Authentication or DBM User Authentication.

Hint: When using a CGI script to receive the data of a HTML FORM notice that protecting the document containing the FORM is
not sufficient to provide REMOTE_USER to the CGI script. You have to protect the CGI script, too. Or alternatively only the
CGI script (then authentication happens only after filling out the form).

12.

How do I allow each of my user directories to have a cgi-bin directory?

Remember that CGI execution does not need to be restricted only to cgi-bin directories. You can allow CGI script execution in
arbitrary parts of your filesystem.

There are many ways to give each user directory a cgi-bin directory such that anything requested as
http://example.com/~user/cgi-bin/program will be executed as a CGI script. Two alternatives are:

Place the cgi-bin directory next to the public_html directory:

ScriptAliasMatch ^/~([^/]*)/cgi-bin/(.*) /home/$1/cgi-bin/$2

1.

Place the cgi-bin directory underneath the public_html directory:

<Directory /home/*/public_html/cgi-bin>
 Options ExecCGI
 SetHandler cgi-script
</Directory>

2.

13.

G. Authentication and Access Restrictions

Why isn't restricting access by host or domain name working correctly?

Two of the most common causes of this are:

An error, inconsistency, or unexpected mapping in the DNS registration
This happens frequently: your configuration restricts access to Host.FooBar.Com, but you can't get in from that host. The
usual reason for this is that Host.FooBar.Com is actually an alias for another name, and when Apache performs the
address-to-name lookup it's getting the real name, not Host.FooBar.Com. You can verify this by checking the reverse

1.

1.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (19 of 24) [12/05/2001 4:49:19 PM]

http://www.apacheweek.com/
http://www.apacheweek.com/features/userauth
http://www.apacheweek.com/features/userauth
http://www.apacheweek.com/features/dbmauth

lookup yourself. The easiest way to work around it is to specify the correct host name in your configuration.

Inadequate checking and verification in your configuration of Apache
If you intend to perform access checking and restriction based upon the client's host or domain name, you really need to
configure Apache to double-check the origin information it's supplied. You do this by adding the -DMAXIMUM_DNS
clause to the EXTRA_CFLAGS definition in your Configuration file. For example:

EXTRA_CFLAGS=-DMAXIMUM_DNS

This will cause Apache to be very paranoid about making sure a particular host address is really assigned to the name it
claims to be. Note that this can incur a significant performance penalty, however, because of all the name resolution
requests being sent to a nameserver.

2.

How do I set up Apache to require a username and password to access certain documents?

There are several ways to do this; some of the more popular ones are to use the mod_auth, mod_auth_db, or mod_auth_dbm
modules.

For an explanation on how to implement these restrictions, see Apache Week's articles on Using User Authentication or DBM
User Authentication.

2.

How do I set up Apache to allow access to certain documents only if a site is either a local site or the user supplies a
password and username?

Use the Satisfy directive, in particular the Satisfy Any directive, to require that only one of the access restrictions be met. For
example, adding the following configuration to a .htaccess or server configuration file would restrict access to people who either
are accessing the site from a host under domain.com or who can supply a valid username and password:

Deny from all
Allow from .domain.com
AuthType Basic
AuthUserFile /usr/local/apache/conf/htpasswd.users
AuthName "special directory"
Require valid-user
Satisfy any

See the user authentication question and the mod_access module for details on how the above directives work.

3.

Why does my authentication give me a server error?

Under normal circumstances, the Apache access control modules will pass unrecognized user IDs on to the next access control
module in line. Only if the user ID is recognized and the password is validated (or not) will it give the usual success or
"authentication failed" messages.

However, if the last access module in line 'declines' the validation request (because it has never heard of the user ID or because it
is not configured), the http_request handler will give one of the following, confusing, errors:

check access❍

check user. No user file?❍

check access. No groups file?❍

This does not mean that you have to add an 'AuthUserFile /dev/null' line as some magazines suggest!

The solution is to ensure that at least the last module is authoritative and CONFIGURED. By default, mod_auth is authoritative
and will give an OK/Denied, but only if it is configured with the proper AuthUserFile. Likewise, if a valid group is required.
(Remember that the modules are processed in the reverse order from that in which they appear in your compile-time
Configuration file.)

A typical situation for this error is when you are using the mod_auth_dbm, mod_auth_msql, mod_auth_mysql, mod_auth_anon or
mod_auth_cookie modules on their own. These are by default not authoritative, and this will pass the buck on to the
(non-existent) next authentication module when the user ID is not in their respective database. Just add the appropriate
'XXXAuthoritative yes' line to the configuration.

In general it is a good idea (though not terribly efficient) to have the file-based mod_auth a module of last resort. This allows you

4.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (20 of 24) [12/05/2001 4:49:19 PM]

http://www.apacheweek.com/
http://www.apacheweek.com/features/userauth
http://www.apacheweek.com/features/dbmauth
http://www.apacheweek.com/features/dbmauth

to access the web server with a few special passwords even if the databases are down or corrupted. This does cost a file
open/seek/close for each request in a protected area.

Do I have to keep the (mSQL) authentication information on the same machine?

Some organizations feel very strongly about keeping the authentication information on a different machine than the webserver.
With the mod_auth_msql, mod_auth_mysql, and other SQL modules connecting to (R)DBMses this is quite possible. Just
configure an explicit host to contact.

Be aware that with mSQL and Oracle, opening and closing these database connections is very expensive and time consuming.
You might want to look at the code in the auth_* modules and play with the compile time flags to alleviate this somewhat, if your
RDBMS licences allow for it.

5.

Why is my mSQL authentication terribly slow?

You have probably configured the Host by specifying a FQHN, and thus the libmsql will use a full blown TCP/IP socket to talk to
the database, rather than a fast internal device. The libmsql, the mSQL FAQ, and the mod_auth_msql documentation warn you
about this. If you have to use different hosts, check out the mod_auth_msql code for some compile time flags which might - or
might not - suit you.

6.

Can I use my /etc/passwd file for Web page authentication?

Yes, you can - but it's a very bad idea. Here are some of the reasons:

The Web technology provides no governors on how often or how rapidly password (authentication failure) retries can be
made. That means that someone can hammer away at your system's root password using the Web, using a dictionary or
similar mass attack, just as fast as the wire and your server can handle the requests. Most operating systems these days
include attack detection (such as n failed passwords for the same account within m seconds) and evasion (breaking the
connection, disabling the account under attack, disabling all logins from that source, et cetera), but the Web does not.

❍

An account under attack isn't notified (unless the server is heavily modified); there's no "You have 19483 login failures"
message when the legitimate owner logs in.

❍

Without an exhaustive and error-prone examination of the server logs, you can't tell whether an account has been
compromised. Detecting that an attack has occurred, or is in progress, is fairly obvious, though - if you look at the logs.

❍

Web authentication passwords (at least for Basic authentication) generally fly across the wire, and through intermediate
proxy systems, in what amounts to plain text. "O'er the net we go/Caching all the way;/O what fun it is to surf/Giving my
password away!"

❍

Since HTTP is stateless, information about the authentication is transmitted each and every time a request is made to the
server. Essentially, the client caches it after the first successful access, and transmits it without asking for all subsequent
requests to the same server.

❍

It's relatively trivial for someone on your system to put up a page that will steal the cached password from a client's cache
without them knowing. Can you say "password grabber"?

❍

If you still want to do this in light of the above disadvantages, the method is left as an exercise for the reader. It'll void your
Apache warranty, though, and you'll lose all accumulated UNIX guru points.

7.

Why does Apache ask for my password twice before serving a file?

If the hostname under which you are accessing the server is different than the hostname specified in the ServerName directive,
then depending on the setting of the UseCanonicalName directive, Apache will redirect you to a new hostname when
constructing self-referential URLs. This happens, for example, in the case where you request a directory without including the
trailing slash.

When this happens, Apache will ask for authentication once under the original hostname, perform the redirect, and then ask again
under the new hostname. For security reasons, the browser must prompt again for the password when the host name changes.

To eliminate this problem you should

Always use the trailing slash when requesting directories;1.

Change the ServerName to match the name you are using in the URL; and/or2.

Set UseCanonicalName off.3.

8.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (21 of 24) [12/05/2001 4:49:19 PM]

H. URL Rewriting

Where can I find mod_rewrite rulesets which already solve particular URL-related problems?

There is a collection of Practical Solutions for URL-Manipulation where you can find all typical solutions the author of
mod_rewrite currently knows of. If you have more interesting rulesets which solve particular problems not currently covered in
this document, send it to Ralf S. Engelschall for inclusion. The other webmasters will thank you for avoiding the reinvention of
the wheel.

1.

Where can I find any published information about URL-manipulations and mod_rewrite?

There is an article from Ralf S. Engelschall about URL-manipulations based on mod_rewrite in the "iX Multiuser Multitasking
Magazin" issue #12/96. The german (original) version can be read online at <http://www.heise.de/ix/artikel/9612149/>, the
English (translated) version can be found at <http://www.heise.de/ix/artikel/E/9612149/>.

2.

Why is mod_rewrite so difficult to learn and seems so complicated?

Hmmm... there are a lot of reasons. First, mod_rewrite itself is a powerful module which can help you in really all aspects of URL
rewriting, so it can be no trivial module per definition. To accomplish its hard job it uses software leverage and makes use of a
powerful regular expression library by Henry Spencer which is an integral part of Apache since its version 1.2. And regular
expressions itself can be difficult to newbies, while providing the most flexible power to the advanced hacker.

On the other hand mod_rewrite has to work inside the Apache API environment and needs to do some tricks to fit there. For
instance the Apache API as of 1.x really was not designed for URL rewriting at the .htaccess level of processing. Or the
problem of multiple rewrites in sequence, which is also not handled by the API per design. To provide this features mod_rewrite
has to do some special (but API compliant!) handling which leads to difficult processing inside the Apache kernel. While the user
usually doesn't see anything of this processing, it can be difficult to find problems when some of your RewriteRules seem not to
work.

3.

What can I do if my RewriteRules don't work as expected?

Use "RewriteLog somefile" and "RewriteLogLevel 9" and have a precise look at the steps the rewriting engine performs. This is
really the only one and best way to debug your rewriting configuration.

4.

Why don't some of my URLs get prefixed with DocumentRoot when using mod_rewrite?

If the rule starts with /somedir/... make sure that really no /somedir exists on the filesystem if you don't want to lead the URL to
match this directory, i.e., there must be no root directory named somedir on the filesystem. Because if there is such a directory,
the URL will not get prefixed with DocumentRoot. This behavior looks ugly, but is really important for some other aspects of
URL rewriting.

5.

How can I make all my URLs case-insensitive with mod_rewrite?

You can't! The reasons are: first, that, case translations for arbitrary length URLs cannot be done via regex patterns and
corresponding substitutions. One needs a per-character pattern like the sed/Perl tr|..|..| feature. Second, just making URLs always
upper or lower case does not solve the whole problem of case-INSENSITIVE URLs, because URLs actually have to be rewritten
to the correct case-variant for the file residing on the filesystem in order to allow Apache to access the file. And the Unix
filesystem is always case-SENSITIVE.

But there is a module named mod_speling.c in the Apache distribution. Try this module to help correct people who use
mis-cased URLs.

6.

Why are RewriteRules in my VirtualHost parts ignored?

Because you have to enable the engine for every virtual host explicitly due to security concerns. Just add a "RewriteEngine on" to
your virtual host configuration parts.

7.

How can I use strings with whitespaces in RewriteRule's ENV flag?8.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (22 of 24) [12/05/2001 4:49:19 PM]

http://www.engelschall.com/pw/apache/rewriteguide/
mailto:rse@apache.org
mailto:rse@apache.org
http://www.heise.de/ix/artikel/9612149/
http://www.heise.de/ix/artikel/E/9612149/

There is only one ugly solution: You have to surround the complete flag argument by quotation marks ("[E=...]"). Notice: The
argument to quote here is not the argument to the E-flag, it is the argument of the Apache config file parser, i.e., the third
argument of the RewriteRule here. So you have to write "[E=any text with whitespaces]".

I. Features

Does or will Apache act as a Proxy server?

Apache version 1.1 and above comes with a proxy module. If compiled in, this will make Apache act as a caching-proxy server.

1.

What are "multiviews"?

"Multiviews" is the general name given to the Apache server's ability to provide language-specific document variants in response
to a request. This is documented quite thoroughly in the content negotiation description page. In addition, Apache Week carried
an article on this subject entitled "Content Negotiation Explained".

2.

Why can't I publish to my Apache server using PUT on Netscape Gold and other programs?

Because you need to install and configure a script to handle the uploaded files. This script is often called a "PUT" handler. There
are several available, but they may have security problems. Using FTP uploads may be easier and more secure, at least for now.
For more information, see the Apache Week article Publishing Pages with PUT.

3.

Why doesn't Apache include SSL?

SSL (Secure Socket Layer) data transport requires encryption, and many governments have restrictions upon the import, export,
and use of encryption technology. If Apache included SSL in the base package, its distribution would involve all sorts of legal and
bureaucratic issues, and it would no longer be freely available. Also, some of the technology required to talk to current clients
using SSL is patented by RSA Data Security, who restricts its use without a license.

Some SSL implementations of Apache are available, however; see the "related projects" page at the main Apache web site.

You can find out more about this topic in the Apache Week article about Apache and Secure Transactions.

4.

How can I attach a footer to my documents without using SSI?

You can make arbitrary changes to static documents by configuring an Action which launches a CGI script. The CGI is then
responsible for setting a content-type and delivering the requested document (the location of which is passed in the
PATH_TRANSLATED environment variable), along with whatever footer is needed.

Busy sites may not want to run a CGI script on every request, and should consider using an Apache module to add the footer.
There are several third party modules available through the Apache Module Registry which will add footers to documents. These
include mod_trailer, PHP (php3_auto_append_file), mod_layout, and mod_perl (Apache::Sandwich).

5.

Does Apache include a search engine?

Apache does not include a search engine, but there are many good commercial and free search engines which can be used easily
with Apache. Some of them are listed on the Web Site Search Tools page. Open source search engines that are often used with
Apache include ht://Dig and SWISH-E.

6.

How can I rotate my log files?

The simple answer: by piping the transfer log into an appropriate log file rotation utility.

The longer answer: In the src/support/ directory, you will find a utility called rotatelogs which can be used like this:

 TransferLog "|/path/to/rotatelogs /path/to/logs/access_log 86400"

to enable daily rotation of the log files.

7.

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (23 of 24) [12/05/2001 4:49:19 PM]

http://www.apacheweek.com/features/negotiation
http://www.apacheweek.com/features/put
http://www.rsa.com/
http://httpd.apache.org/related_projects.html
http://www.apacheweek.com/features/ssl
http://modules.apache.org/
http://www.searchtools.com/tools/tools.html
http://www.htdig.org/
http://sunsite.berkeley.edu/SWISH-E/

A more sophisticated solution of a logfile rotation utility is available under the name cronolog from Andrew Ford's site at
http://www.ford-mason.co.uk/resources/cronolog/. It can automatically create logfile subdirectories based on time and date, and
can have a constant symlink point to the rotating logfiles. (As of version 1.6.1, cronolog is available under the Apache License).
Use it like this:

 CustomLog "|/path/to/cronolog --symlink=/usr/local/apache/logs/access_log
/usr/local/apache/logs/%Y/%m/access_log" combined

How do I keep certain requests from appearing in my logs?

The maximum flexibility for removing unwanted information from log files is obtained by post-processing the logs, or using
piped-logs to feed the logs through a program which does whatever you want. However, Apache does offer the ability to prevent
requests from ever appearing in the log files. You can do this by using the SetEnvIf directive to set an environment variable for
certain requests and then using the conditional CustomLog syntax to prevent logging when the environment variable is set.

8.

Does Apache support any sort of database integration?

No. Apache is a Web (HTTP) server, not an application server. The base package does not include any such functionality. See the
PHP project and the mod_perl project for examples of modules that allow you to work with databases from within the Apache
environment.

9.

Can I use Active Server Pages (ASP) with Apache?

The base Apache Web server package does not include ASP support. However, there are a couple of after-market solutions that
let you add this functionality; see the related projects page to find out more.

10.

Does Apache come with Java support?

The base Apache Web server package does not include support for Java, Java Server Pages, Enterprise Java Beans, or Java
servlets. Those features are available as add-ons from the Apache/Java project site, <URL:http://jakarta.apache.org/>.

11.

Apache HTTP Server Version 1.3

Apache Server Frequently Asked Questions

http://httpd.apache.org/docs/misc/FAQ.html (24 of 24) [12/05/2001 4:49:19 PM]

http://www.ford-mason.co.uk/resources/cronolog/
http://httpd.apache.org/docs/LICENSE
http://www.php.net/
http://perl.apache.org/
http://httpd.apache.org/related_projects.html
http://jakarta.apache.org/
http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Authentication, Authorization, and Access Control

Introduction●

Basic authentication

How basic authentication works❍

Configuration: Protecting content with basic authentication❍

Frequently asked questions about basic auth❍

Security caveat❍

●

Digest authentication

How digest auth works❍

Configuration: Protecting content with digest authentication❍

Caveats❍

●

Database authentication modules

mod_auth_db and mod_auth_dbm❍

Berkeley DB files❍

Installing mod_auth_db❍

Protecting a directory with mod_auth_db❍

●

Access control

Allow and Deny❍

Satisfy❍

●

Summary●

Authentication, Authorization, and Access Control

Authentication, Authorization, and Access Control

http://httpd.apache.org/docs/howto/auth.html (1 of 13) [12/05/2001 4:49:25 PM]

Introduction

Apache has three distinct ways of dealing with the question of whether a particular request for a resource will result in that resource
actually be returned. These criteria are called Authorization, Authentication, and Access control.

Authentication is any process by which you verify that someone is who they claim they are. This usually involves a username and a
password, but can include any other method of demonstrating identity, such as a smart card, retina scan, voice recognition, or
fingerprints. Authentication is equivalent to showing your drivers license at the ticket counter at the airport.

Authorization is finding out if the person, once identified, is permitted to have the resource. This is usually determined by finding
out if that person is a part of a particular group, if that person has paid admission, or has a particular level of security clearance.
Authorization is equivalent to checking the guest list at an exclusive party, or checking for your ticket when you go to the opera.

Finally, access control is a much more general way of talking about controlling access to a web resource. Access can be granted or
denied based on a wide variety of criteria, such as the network address of the client, the time of day, the phase of the moon, or the
browser which the visitor is using. Access control is analogous to locking the gate at closing time, or only letting people onto the
ride who are more than 48 inches tall - it's controlling entrance by some arbitrary condition which may or may not have anything to
do with the attributes of the particular visitor.

Because these three techniques are so closely related in most real applications, it is difficult to talk about them separate from one
another. In particular, authentication and authorization are, in most actual implementations, inextricable.

If you have information on your web site that is sensitive, or intended for only a small group of people, the techniques in this
tutorial will help you make sure that the people that see those pages are the people that you wanted to see them.

Basic authentication

As the name implies, basic authentication is the simplest method of authentication, and for a long time was the most common
authentication method used. However, other methods of authentication have recently passed basic in common usage, due to
usability issues that will be discussed in a minute.

How basic authentication works

When a particular resource has been protected using basic authentication, Apache sends a 401 Authentication Required
header with the response to the request, in order to notify the client that user credentials must be supplied in order for the resource to
be returned as requested.

Upon receiving a 401 response header, the client's browser, if it supports basic authentication, will ask the user to supply a
username and password to be sent to the server. If you are using a graphical browser, such as Netscape or Internet Explorer, what
you will see is a box which pops up and gives you a place to type in your username and password, to be sent back to the server. If
the username is in the approved list, and if the password supplied is correct, the resource will be returned to the client.

Because the HTTP protocol is stateless, each request will be treated in the same way, even though they are from the same client.
That is, every resource which is requested from the server will have to supply authentication credentials over again in order to
receive the resource.

Fortunately, the browser takes care of the details here, so that you only have to type in your username and password one time per
browser session - that is, you might have to type it in again the next time you open up your browser and visit the same web site.

Along with the 401 response, certain other information will be passed back to the client. In particular, it sends a name which is
associated with the protected area of the web site. This is called the realm, or just the authentication name. The client browser
caches the username and password that you supplied, and stores it along with the authentication realm, so that if other resources are
requested from the same realm, the same username and password can be returned to authenticate that request without requiring the
user to type them in again. This cacheing is usually just for the current browser session, but some browsers allow you to store them
permanently, so that you never have to type in your password again.

Authentication, Authorization, and Access Control

http://httpd.apache.org/docs/howto/auth.html (2 of 13) [12/05/2001 4:49:26 PM]

The authentication name, or realm, will appear in the pop-up box, in order to identify what the username and password are being
requested for.

Configuration: Protecting content with basic authentication

There are two configuration steps which you must complete in order to protect a resource using basic authentication. Or three,
depending on what you are trying to do.

Create a password file1.

Set the configuration to use this password file2.

Optionally, create a group file3.

Create a password file

In order to determine whether a particular username/password combination is valid, the username and password supplied by the user
will need to be compared to some authoritative listing of usernames and password. This is the password file, which you will need to
create on the server side, and populate with valid users and their passwords.

Because this file contains sensitive information, it should be stored outside of the document directory. Although, as you will see in a
moment, the passwords are encrypted in the file, if a cracker were to gain access to the file, it would be an aid in their attempt to
figure out the passwords. And, because people tend to be sloppy with the passwords that they choose, and use the same password
for web site authentication as for their bank account, this potentially be a very serious breach of security, even if the content on your
web site is not particularly sensitive.

Caution: Encourage your users to use a different password for your web site than for other more essential things. For example,
many people tend to use two passwords - one for all of their extremely important things, such as the login to their desktop computer,
and for their bank account, and another for less sensitive things, the compromise of which would be less serious.

To create the password file, use the htpasswd utility that came with Apache. This will be located in the bin directory of
wherever you installed Apache. For example, it will probably be located at /usr/local/apache/bin/htpasswd if you
installed Apache from source.

To create the file, type:

htpasswd -c /usr/local/apache/passwd/password username

htpasswd will ask you for the password, and then ask you to type it again to confirm it:

htpasswd -c /usr/local/apache/passwd/passwords rbowen
New password: mypassword
Re-type new password: mypassword
Adding password for user rbowen

Note that in the example shown, a password file is being created containing a user called rbowen, and this password file is being
placed in the location /usr/local/apache/passwd/passwords. You will substitute the location, and the username, which
you want to use to start your password file.

If htpasswd is not in your path, you will have to type the full path to the file to get it to run. That is, in the example above, you
would replace htpasswd with /usr/local/apache/bin/htpasswd

The -c flag is used only when you are creating a new file. After the first time, you will omit the -c flag, when you are adding new
users to an already-existing password file.

htpasswd /usr/local/apache/passwd/passwords sungo

The example just shown will add a user named sungo to a password file which has already been created earlier. As before, you
will be asked for the password at the command line, and then will be asked to confirm the password by typing it again.

Authentication, Authorization, and Access Control

http://httpd.apache.org/docs/howto/auth.html (3 of 13) [12/05/2001 4:49:26 PM]

Caution: Be very careful when you add new users to an existing password file that you don't use the -c flag by mistake. Using the
-c flag will create a new password file, even if you already have an existing file of that name. That is, it will remove the contents of
the file that is there, and replace it with a new file containing only the one username which you were adding.

The password is stored in the password file in encrypted form, so that users on the system will not be able to read the file and
immediately determine the passwords of all the users. Nevertheless, you should store the file in as secure a location as possible, with
whatever minimum permissions on the file so that the web server itself can read the file. For example, if your server is configured to
run as user nobody and group nogroup, then you should set permissions on the file so that only that user can read the file:

chown nobody.nogroup /usr/local/apache/passwd/passwords
chmod 640 /usr/local/apache/passwd/passwords

On Windows, a similar precaution should be taken, changing the ownership of the password file to the web server user, so that other
users cannot read the file.

Set the configuration to use this password file

Once you have created the password file, you need to tell Apache about it, and tell Apache to use this file in order to require user
credentials for admission. This configuration is done with the following directives:

AuthType Authentication type being used. In this case, it will be set to Basic

AuthName The authentication realm or name

AuthUserFile The location of the password file

AuthGroupFile The location of the group file, if any

Require The requirement(s) which must be satisfied in order to grant admission

These directives may be placed in a .htaccess file in the particular directory being protected, or may go in the main server
configuration file, in a <Directory> section, or other scope container.

The example shown below defines an authentication realm called ``By Invitation Only''. The password file located at
/usr/local/apache/passwd/passwords will be used to verify the user's identity. Only users named rbowen or sungo
will be granted access, and even then only if they provide a password which matches the password stored in the password file.

AuthType Basic
AuthName "By Invitation Only"
AuthUserFile /usr/local/apache/passwd/passwords
Require user rbowen sungo

The phrase ``By Invitation Only'' will be displayed in the password pop-up box, where the user will have to type their credentials.

You will need to restart your Apache server in order for the new configuration to take effect, if these directives were put in the main
server configuration file. Directives placed in .htaccess files take effect immediately, since .htaccess files are parsed each
time files are served.

The next time that you load a file from that directory, you will see the familiar username/password dialog box pop up, requiring that
you type the username and password before you are permitted to proceed.

Note that in addition to specifically listing the users to whom you want to grant access, you can specify that any valid user should be
let in. This is done with the valid-user keyword:

Require valid-user

Authentication, Authorization, and Access Control

http://httpd.apache.org/docs/howto/auth.html (4 of 13) [12/05/2001 4:49:26 PM]

Optionally, create a group file

Most of the time, you will want more than one, or two, or even a dozen, people to have access to a resource. You want to be able to
define a group of people that have access to that resource, and be able to manage that group of people, adding and removing
members, without having to edit the server configuration file, and restart Apache, each time.

This is handled using authentication groups. An authentication group is, as you would expect, a group name associated with a list of
members. This list is stored in a group file, which should be stored in the same location as the password file, so that you are able to
keep track of these things.

The format of the group file is exceedingly simple. A group name appears first on a line, followed by a colon, and then a list of the
members of the group, separated by spaces. For example:

authors: rich daniel allan

Once this file has been created, you can Require that someone be in a particular group in order to get the requested resource. This
is done with the AuthGroupFile directive, as shown in the following example.

AuthType Basic
AuthName "Apache Admin Guide Authors"
AuthUserFile /usr/local/apache/passwd/passwords
AuthGroupFile /usr/local/apache/passwd/groups
Require group authors

The authentication process is now one step more involved. When a request is received, and the requested username and password
are supplied, the group file is first checked to see if the supplied username is even in the required group. If it is, then the password
file will be checked to see if the username is in there, and if the supplied password matches the password stored in that file. If any of
these steps fail, access will be forbidden.

Frequently asked questions about basic auth

The following questions tend to get asked very frequently with regard to basic authentication. It should be understood that basic
authentication is very basic, and so is limited to the set of features that has been presented above. Most of the more interesting
things that people tend to want, need to be implemented using some alternate authentication scheme.

How do I log out?

Since browsers first started implementing basic authentication, website administrators have wanted to know how to let the user log
out. Since the browser caches the username and password with the authentication realm, as described earlier in this tutorial, this is
not a function of the server configuration, but is a question of getting the browser to forget the credential information, so that the
next time the resource is requested, the username and password must be supplied again. There are numerous situations in which this
is desirable, such as when using a browser in a public location, and not wishing to leave the browser logged in, so that the next
person can get into your bank account.

However, although this is perhaps the most frequently asked question about basic authentication, thus far none of the major browser
manufacturers have seen this as being a desirable feature to put into their products.

Consequently, the answer to this question is, you can't. Sorry.

How can I change what the password box looks like?

The dialog that pops up for the user to enter their username and password is ugly. It contains text that you did not indicate that you
wanted in there. It looks different in Internet Explorer and Netscape, and contains different text. And it askes for fields that the user

Authentication, Authorization, and Access Control

http://httpd.apache.org/docs/howto/auth.html (5 of 13) [12/05/2001 4:49:26 PM]

might not understand - for example, Netscape asks the user to type in their ``User ID'', and they might not know what that means.
Or, you might want to provide additional explanatory text so that the user has a better idea what is going on.

Unfortunately, these things are features of the browser, and cannot be controlled from the server side. If you want the login to look
different, then you will need to implement your own authenticatin scheme. There is no way to change what this login box looks like
if you are using basic authentication.

How to I make it not ask me for my password the next time?

Because most browsers store your password information only for the current browser session, when you close your browser it
forgets your username and password. So, when you visit the same web site again, you will need to re-enter your username and
password.

There is nothing that can be done about this on the server side.

However, the most recent versions of the major browsers contain the ability to remember your password forever, so that you never
have to log in again. While it is debatable whether this is a good idea, since it effectively overrides the entire point of having
security in the first place, it is certainly convenient for the user, and simplifies the user experience.

Why does it sometimes ask me for my password twice?

When entering a password-protected web site for the first time, you will occasionally notice that you are asked for your password
twice. This may happen immediately after you entered the password the first time, or it may happen when you click on the first link
after authenticating the first time.

This happens for a very simple, but nonetheless confusing, reason, again having to do with the way that the browser caches the login
information.

Login information is stored on the browser based on the authentication realm, specified by the AuthName directive, and by the
server name. In this way, the browser can distinguish between the Private authentication realm on one site and on another. So, if
you go to a site using one name for the server, and internal links on the server refer to that server by a different name, the browser
has no way to know that they are in fact the same server.

For example, if you were to visit the URL http://example.com/private/, which required authentication, your browser
would remember the supplied username and password, associated with the hostname example.com. If, by virtue of an internal
redirect, or fully-qualified HTML links in pages, you are then sent to the URL http://www.example.com/private/, even
though this is really exactly the same URL, the browser does not know this for sure, and is forced to request the authentication
information again, since example.com and www.example.com are not exactly the same hostname. Your browser has no
particular way to know that these are the same web site.

Security caveat

Basic authentication should not be considered secure for any particularly rigorous definition of secure.

Although the password is stored on the server in encrypted format, it is passed from the client to the server in plain text across the
network. Anyone listening with any variety of packet sniffer will be able to read the username and password in the clear as it goes
across.

Not only that, but remember that the username and password are passed with every request, not just when the user first types them
in. So the packet sniffer need not be listening at a particularly strategic time, byt just be listening for long enough to see any request
come across the wire.

And, in addition to that, the content itself is also going across the network in the clear, and so if the web site contains sensitive
information, the same packet sniffer would have access to that information as it went past, even if the username and password were
not used to gain direct access to the web site.

Authentication, Authorization, and Access Control

http://httpd.apache.org/docs/howto/auth.html (6 of 13) [12/05/2001 4:49:26 PM]

Don't use basic authentication for anything that requires real security. It is a detriment for most users, since very few people will
take the trouble, or have the necessary software and/or equipment, to find out passwords. However, if someone had a desire to get
in, it would take very little for them to do so.

Digest authentication

Addressing one of the security caveats of basic authentication, digest authentication provides an alternate method for protecting
your web content. However, it to has a few caveats.

How digest auth works

Digest authentication is implemeted by the module mod_auth_digest. There is an older module, mod_digest, which
implemented an older version of the digest authentication specification, but which will probably not work with newer browsers.

Using digest authentication, your password is never sent across the network in the clear, but is always transmitted as an MD5 digest
of the user's password. In this way, the password cannot be determined by sniffing network traffic.

The full specification of digest authentication can be seen in the internet standards document RFC 2617, which you can see at
http://www1.ics.uci.edu/pub/ietf/http/rfc2617.txt. Additional information and resources about MD5 can be
found at http://userpages.umbc.edu/ mabzug1/cs/md5/md5.html

Configuration: Protecting content with digest authentication

The steps for configuring your server for digest authentication are very similar for those for basic authentication.

Create the password file1.

Set the configuration to use this password file2.

Optionally, create a group file3.

Creating a password file

As with basic authentication, a simple utility is provided to create and maintain the password file which will be used to detmine
whether a particular user's name and password are valid. This utility is called htdigest, and will be located in the bin diretory of
wherever you installed Apache. If you installed Apache from some variety of package manager, htdigest is likely to have been
placed somewhere in your path.

To create a new digest password file, type:

htdigest -c /usr/local/apache/passwd/digest realm username

htdigest will ask you for the desired password, and then ask you to type it again to confirm it.

Note that the realm for which the authentication will be required is part of the argument list.

Once again, as with basic authentication, you are encouraged to place the generated file somewhere outside of the document
directory.

And, as with the htpasswd utility, the -c flag creates a new file, or, if a file of that name already exists, deletes the contents of
that file and generates a new file in its place. Omit the -c flag in order to add new user information to an existing password file.

Set the configuration to use this password file

Once you have created a password file, you need to tell Apache about it in order to start using it as a source of authenticated user
inormation. This configuration is done with the following directives:

AuthType Authentication type being used. In this case, it will be set to Digest

Authentication, Authorization, and Access Control

http://httpd.apache.org/docs/howto/auth.html (7 of 13) [12/05/2001 4:49:26 PM]

AuthName The authentication realm or name

AuthDigestFile The location of the password file

AuthDigestGroupFile Location of the group file, if any

Require The requirement(s) which must be satisfied in order ot grant admission

These directives may be places in a .htaccess file in the particular directory being protected, or may go in the main server
configuration file, in a <Directory> section, or another scope container.

The following example defines an authentication realm called "Private". The password file located at
/usr/local/apache/passwd/digest will be used to verify the user's identity. Only users named drbacchus or dorfl
will be granted access, if they provide a password that patches the password stored in the password file.

AuthType Digest
AuthName "Private"
AuthDigestFile /usr/local/apache/passwd/digest
Require user drbacchus dorfl

The phrase "Private" will be displayed in the password pop-up box, where the user will have to type their credentials.

Optionally, create a group file

As you have observed, there are not many differences between this configuration process and that required by basic authentication,
described in the previous section. This is true also of group functionality. The group file used for digest authentication is exactly the
same as that used for basic authentication. That is to say, lines in the group file consist the name of the group, a colon, and a list of
the members of that group. For example:

admins: jim roy ed anne

Once this file has been created, you can Require that someone be in a particular group in order to get the requested resource. This
is done with the AuthDigestGroupFile directive, as shown in the following example.

AuthType Digest
AuthName "Private"
AuthDigestFile /usr/local/apache/passwd/digest
AuthDigestGroupFile /usr/local/apache/passwd/digest.groups
Require group admins

The authentication process is the same as that used by basic authentication. It is first verified that the user is in the required group,
and, if this is true, then the password is verified.

Caveats

Before you leap into using digest authentication instead of basic authentication, there are a few things that you should know about.

Most importantly, you need to know that, although digest authentication has this great advantage that you don't send your password
across the network in the clear, it is not supported by all major browsers in use today, and so you should not use it on a web site on
which you cannot control the browsers that people will be using, such as on your intranet site. In particular, Opera 4.0 or later,
Microsoft Internet Explorer 5.0 or later, and Amaya support digest authentication, while Netscape, Mozilla, and various other
browsers do not.

Next, with regard to security considerations, you should understand two things. Although your password is not passed in the clear,
all of your data is, and so this is a rather small measure of security. And, although your password is not really sent at all, but a digest
form of it, someone very familiar with the workings of HTTP could use that information - just your digested password - and use that
to gain access to the content, since that digested password is really all the information required to access the web site.

The moral of this is that if you have content that really needs to be kept secure, use SSL.

Authentication, Authorization, and Access Control

http://httpd.apache.org/docs/howto/auth.html (8 of 13) [12/05/2001 4:49:26 PM]

Database authentication modules

Basic authentication and digest authentication both suffer from the same major flaw. They use text files to store the authentication
information. The problem with this is that looking something up in a text file is very slow. It's rather like trying to find something in
a book that has no index. You have to start at the beginning, and work through it one page at a time until you find what you are
looking for. Now imagine that the next time you need to find the same thing, you don't remember where it was before, so you have
to start at the beginning again, and work through one page at a time until you find it again. And the next time. And the time after
that.

Since HTTP is stateless, authentication has to be verified every time that content is requested. And so every time a document is
accessed which is secured with basic or digest authentication, Apache has to open up those text password files and look through
them one line at a time, until it finds the user that is trying to log in, and verifies their password. In the worst case, if the username
supplied is not in there at all, every line in the file will need to be checked. On average, half of the file will need to be read before
the user is found. This is very slow.

While this is not a big problem for small sets of users, when you get into larger numbers of users (where "larger" means a few
hundred) this becomes prohibitively slow. In many cases, in fact, valid username/password combinations will get rejected because
the authentication module just had to spend so much time looking for the username in the file that Apache will just get tired of
waiting and return a failed authentication.

In these cases, you need an alternative, and that alternative is to use some variety of database. Databases are optimized for looking
for a particular piece of information in a very large data set. It builds indexes in order to rapidly locate a particular record, and they
have query languages for swiftly locating records that match particular criteria.

There are numerous modules available for Apache to authenticate using a variety of different databases. In this section, we'll just
look at two modules which ship with Apache.

mod_auth_db and mod_auth_dbm

mod_auth_db and mod_auth_dbm are modules which lets you keep your usernames and passwords in DB or DBM files. There
are few practical differences between DB files and DBM files. And, on some operating systems, such as various BSDs, and Linux,
they are exactly the same thing. You should pick whichever of the two modules makes the most sense on your particular platform of
choice. If you do not have DB support on your platforn, you may need to install it. You download an implementation of DB at
http://www.sleepycat.com/.

Berkeley DB files

DB files, also known as Berkeley database files, are the simplest form of database, and are rather ideally suited for the sort of data
that needs to be stored for HTTP authentication. DB files store key/value pairs. That is, the name of a variable, and the value of that
variable. While other databases allow the storage of many fields in a given record, a DB file allows only this pairing of key and
value.21.1 This is ideal for authentication, which requires only the pair of a username and password.

Installing mod_auth_db

mod_auth_db!installing

For the purposes of this tutorial, we'll talk about installing and configuring mod_auth_db. However, everything that is said here
can be directly applied to mod_auth_dbm by simply replacing 'db' with 'dbm' and 'DB' with 'DBM' in the various commands, file
names, and directives.

Since mod_auth_db is not compiled in by default, you will need to rebuild Apache in order to get the functionality, unless you
built in everything when we started. Note that if you installed Apache with shared object support, you may be able to just build the
module and load it in to Apache.

To build Apache from scratch with mod_auth_db built in, use the following ./configure line in your apache source code
directory.

Authentication, Authorization, and Access Control

http://httpd.apache.org/docs/howto/auth.html (9 of 13) [12/05/2001 4:49:26 PM]

./configure --enable-module=auth_db

Or, if you had a more complex configure command line, you can just add the -enable-module=auth_db option to that
command line, and you'll get mod_auth_db built into your server.

Protecting a directory with mod_auth_db

Once you have compiled the mod_auth_db module, and loaded it into your web server, you'll find that there's very little
difference between using regular authentication and using mod_auth_db authentication. The procedure is the same as that we
went through with basic and digest authentication:

Create the user file.1.

Configure Apache to use that file for authentication.2.

Optionally, create a group file.3.

Create the user file

The user file for authentication is, this time, not a flat text file, but is a DB file21.2. Fortunately, once again, Apache provides us with
a simple utility for the purpose of managing this user file. This time, the utility is called dbmmanage, and will be located in the
bin subdirectory of wherever you installed Apache.

dbmmanage is somewhat more complicated to use than htpasswd or htdigest, but it is still fairly simple. The syntax which
you will usually be using is as follows:

dbmmanage passwords.db adduser montressor

As with htpasswd, you will at this point be prompted for a password, and then asked to confirm that password by typing it again.
The main difference here is that rather than a text file being created, you are creating a binary file containing the information that
you have supplied.

Type dbmmanage with no arguments to get the full list of options available with this utility.

Creating your user file with Perl

Note that, if you are so inclined, you can manage your user file with Perl, or any other language which has a DB-file module, for
interfacing with this type of database. This covers a number of popular programming languages.

The following Perl code, for example, will add a user 'rbowen', with password 'mypassword', to your password file:

use DB_File;
tie %database, 'DB_File', "passwords.dat"
 or die "Can't initialize database: $!\n";

$username = 'rbowen';
$password = 'mypassword';
@chars=(0..9,'a'..'z');
$salt = '', map { $chars[int rand @chars] } (0..1);

$crypt = crypt($password, $salt);
$database{$username} = $crypt;

untie %database;

As you can imagine, this makes it very simple to write tools to manage the user and password information stored in these files.

Passwords are stored in Unix crypt format, just as they were in the "regular" password files. The 'salt' that is created in the middle
there is part of the process, cenerating a random starting point for that encryption. The technique being used is called a 'tied hash'.
The idea is to tie a built-in data structure to the contents of the file, such that when the data structure is changed, the file is

Authentication, Authorization, and Access Control

http://httpd.apache.org/docs/howto/auth.html (10 of 13) [12/05/2001 4:49:26 PM]

automatically modified at the same time.

Configuration Apache to use this password file

Once you have created the password file, you need to tell Apache about it, and tell Apache to use this file to verify user credentials.
This configuration will look almost the same as that for basic authentication. This configuration can go in a .htaccess file in the
directory to be protected, or can go in the main server configuration, in a <Directory> section, or other scope container
directive.

The configuration will look something like the following:

AuthName "Members Only"
AuthType Basic
AuthDBUserFile /usr/local/apache/passwd/passwords.dat
require user rbowen

Now, users accessing the directory will be required to authenticate against the list of valid users who are in
/usr/local/apache/passwd/passwords.dat.

Optionally, create a group file

As mentioned earlier, DB files store a key/value pair. In the case of group files, the key is the name of the user, and the value is a
comma-separated list of the groups to which the user belongs.

While this is the opposite of the way that group files are stored elsewhere, note that we will primarily be looking up records based
on the username, so it is more efficient to index the file by username, rather than by the group name.

Groups can be added to your group file using dbmmanage and the add command:

dbmmanage add groupfile rbowen one,two,three

In the above example, groupfile is the literal name of the group file, rbowen is the user being added, and one, two, and
three are names of three groups to which this user belongs.

Once you have your groups in the file, you can require a group in the regular way:

AuthName "Members Only"
AuthType Basic
AuthDBUserFile /usr/local/apache/passwd/passwords.dat
AuthDBGroupFile /usr/local/apache/passwd/groups.dat
require group three

Note that if you want to use the same file for both password and group information, you can do so, but this is a little more
complicated to manage, as you have to encrypt the password yourself before you feed it to the dbmmanage utility.

Access control

Authentication by username and password is only part of the story. Frequently you want to let people in based on something other
than who they are. Something such as where they are coming from. Restricting access based on something other than the identity of
the user is generally referred to as Access Control.

Authentication, Authorization, and Access Control

http://httpd.apache.org/docs/howto/auth.html (11 of 13) [12/05/2001 4:49:26 PM]

Allow and Deny

The Allow and Deny directives let you allow and deny access based on the host name, or host address, of the machine requesting a
document. The directive goes hand-in-hand with these is the Order directive, which tells Apache in which order to apply the
filters.

The usage of these directives is:

allow from address

where address is an IP address (or a partial IP address) or a fully qualified domain name (or a partial domain name).

For example, if you have someone spamming your message board, and you want to keep them out, you could do the following:

deny from 205.252.46.165

Visitors coming from that address will not be able to see the content behind this directive. If, instead, you have a machine name,
rather than an IP address, you can use that.

deny from dc.numbersusa.com

And, if you'd like to block access from an entire domain, you can specify just part of an address or domain name:

deny from 192.101.205
deny from cyberthugs.com
deny from ke

Using Order will let you be sure that you are actually restricting things to the group that you want to let in, by combining a deny
and an allow directive:

Order Deny,Allow
Deny from all
Allow from hostname.example.com

Listing just the allow directive would not do what you want, because it will let users from that host in, in addition to letting
everyone in. What you want is to let in only users from that host.

Satisfy

The Satisfy directive can be used to specify that several criteria may be considered when trying to decide if a particular user will
be granted admission. Satisfy can take as an argument one of two options - all or any. By default, it is assumed that the value
is all. This means that if several criteria are specified, then all of them must be met in order for someone to get in. However, if set
to any, then several criteria may be specified, but if the user satisfies any of these, then they will be granted entrance.

A very good example of this is using access control to assure that, although a resource is password protected from outside your
network, all hosts inside the network will be given free access to the resource. This would be accomplished by using the Satisfy
directive, as shown below.

<Directory /usr/local/apache/htdocs/sekrit>
 AuthType Basic
 AuthName intranet
 AuthUserFile /www/passwd/users
 AuthGroupFile /www/passwd/groups
 Require group customers
 Allow from internal.com
 Satisfy any
</Directory>

Authentication, Authorization, and Access Control

http://httpd.apache.org/docs/howto/auth.html (12 of 13) [12/05/2001 4:49:26 PM]

In this scenario, users will be let in ir they either have a password, or if they are in the internal network.

Summary

The various authentication modules provide a number of ways to restrict access to your host based on the identity of the user. They
offere a somewhat standard interface to this functionality, but provide different back-end mechanisms for actually authenticating the
user.

And the access control mechanism allows you to restrict access based on criteria unrelated to the identity of the user.

Footnotes

... value.21.1

There are actually a number of implementations that get around this limitation. MLDBM is one of them, for example.
However, for the purposes of this discussion, we'll just deal with standard Berkeley DB, which is likeley to have shipped
with whatever operating system you are already running.

... file21.2

Or, if you are using mod_auth_dbm, a DBM file.

Authentication, Authorization, and Access Control

http://httpd.apache.org/docs/howto/auth.html (13 of 13) [12/05/2001 4:49:26 PM]

Apache HTTP Server Version 1.3

Dynamic Content with CGI

Dynamic Content with CGI●

Configuring Apache to permit CGI

ScriptAlias❍

CGI outside of ScriptAlias directories

Explicitly using Options to permit CGI execution■

.htaccess files■

❍

●

Writing a CGI program

Your first CGI program❍

●

But it's still not working!

File permissions❍

Path information❍

Syntax errors❍

Error logs❍

●

What's going on behind the scenes?

Environment variables❍

STDIN and STDOUT❍

●

CGI modules/libraries●

For more information●

Dynamic Content with CGI

Related Modules

mod_alias
mod_cgi

Related Directives

AddHandler
Options
ScriptAlias

The CGI (Common Gateway Interface) defines a way for a web server to interact with external content-generating programs, which
are often referred to as CGI programs or CGI scripts. It is the simplest, and most common, way to put dynamic content on your web
site. This document will be an introduction to setting up CGI on your Apache web server, and getting started writing CGI programs.

Apache Tutorial: Dynamic Content with CGI

http://httpd.apache.org/docs/howto/cgi.html (1 of 6) [12/05/2001 4:49:29 PM]

Configuring Apache to permit CGI

In order to get your CGI programs to work properly, you'll need to have Apache configured to permit CGI execution. There are
several ways to do this.

ScriptAlias

The ScriptAlias directive tells Apache that a particular directory is set aside for CGI programs. Apache will assume that every
file in this directory is a CGI program, and will attempt to execute it, when that particular resource is requested by a client.

The ScriptAlias directive looks like:

 ScriptAlias /cgi-bin/ /usr/local/apache/cgi-bin/

The example shown is from your default httpd.conf configuration file, if you installed Apache in the default location. The
ScriptAlias directive is much like the Alias directive, which defines a URL prefix that is to mapped to a particular directory.
Alias and ScriptAlias are usually used for directories that are outside of the DocumentRoot directory. The difference
between Alias and ScriptAlias is that ScriptAlias has the added meaning that everything under that URL prefix will be
considered a CGI program. So, the example above tells Apache that any request for a resource beginning with /cgi-bin/ should
be served from the directory /usr/local/apache/cgi-bin/, and should be treated as a CGI program.

For example, if the URL http://www.example.com/cgi-bin/test.pl is requested, Apache will attempt to execute the
file /usr/local/apache/cgi-bin/test.pl and return the output. Of course, the file will have to exist, and be executable,
and return output in a particular way, or Apache will return an error message.

CGI outside of ScriptAlias directories

CGI programs are often restricted to ScriptAlias'ed directories for security reasons. In this way, administrators can tightly
control who is allowed to use CGI programs. However, if the proper security precautions are taken, there is no reason why CGI
programs cannot be run from arbitrary directories. For example, you may wish to let users have web content in their home
directories with the UserDir directive. If they want to have their own CGI programs, but don't have access to the main cgi-bin
directory, they will need to be able to run CGI programs elsewhere.

Explicitly using Options to permit CGI execution

You could explicitly use the Options directive, inside your main server configuration file, to specify that CGI execution was
permitted in a particular directory:

 <Directory /usr/local/apache/htdocs/somedir>
 Options +ExecCGI
 </Directory>

The above directive tells Apache to permit the execution of CGI files. You will also need to tell the server what files are CGI files.
The following AddHandler directive tells the server to treat all files with the cgi or pl extension as CGI programs:

 AddHandler cgi-script cgi pl

.htaccess files

A .htaccess file is a way to set configuration directives on a per-directory basis. When Apache serves a resource, it looks in the
directory from which it is serving a file for a file called .htaccess, and, if it finds it, it will apply directives found therein.
.htaccess files can be permitted with the AllowOverride directive, which specifies what types of directives can appear in
these files, or if they are not allowed at all. To permit the directive we will need for this purpose, the following configuration will be
needed in your main server configuration:

 AllowOverride Options

Apache Tutorial: Dynamic Content with CGI

http://httpd.apache.org/docs/howto/cgi.html (2 of 6) [12/05/2001 4:49:29 PM]

In the .htaccess file, you'll need the following directive:

 Options +ExecCGI

which tells Apache that execution of CGI programs is permitted in this directory.

Writing a CGI program

There are two main differences between ``regular'' programming, and CGI programming.

First, all output from your CGI program must be preceded by a MIME-type header. This is HTTP header that tells the client what
sort of content it is receiving. Most of the time, this will look like:

 Content-type: text/html

Secondly, your output needs to be in HTML, or some other format that a browser will be able to display. Most of the time, this will
be HTML, but occasionally you might write a CGI program that outputs a gif image, or other non-HTML content.

Apart from those two things, writing a CGI program will look a lot like any other program that you might write.

Your first CGI program

The following is an example CGI program that prints one line to your browser. Type in the following, save it to a file called
first.pl, and put it in your cgi-bin directory.

 #!/usr/bin/perl
 print "Content-type: text/html\r\n\r\n";
 print "Hello, World.";

Even if you are not familiar with Perl, you should be able to see what is happening here. The first line tells Apache (or whatever
shell you happen to be running under) that this program can be executed by feeding the file to the interpreter found at the location
/usr/bin/perl. The second line prints the content-type declaration we talked about, followed by two carriage-return newline
pairs. This puts a blank line after the header, to indicate the end of the HTTP headers, and the beginning of the body. The third line
prints the string ``Hello, World.'' And that's the end of it.

If you open your favorite browser and tell it to get the address

 http://www.example.com/cgi-bin/first.pl

or wherever you put your file, you will see the one line Hello, World. appear in your browser window. It's not very exciting,
but once you get that working, you'll have a good chance of getting just about anything working.

But it's still not working!

There are four basic things that you may see in your browser when you try to access your CGI program from the web:

The output of your CGI program

Great! That means everything worked fine.

The source code of your CGI program or a "POST Method Not Allowed" message

That means that you have not properly configured Apache to process your CGI program. Reread the section on configuring
Apache and try to find what you missed.

A message starting with "Forbidden"

Apache Tutorial: Dynamic Content with CGI

http://httpd.apache.org/docs/howto/cgi.html (3 of 6) [12/05/2001 4:49:29 PM]

That means that there is a permissions problem. Check the Apache error log and the section below on file permissions.

A message saying "Internal Server Error"

If you check the Apache error log, you will probably find that it says "Premature end of script headers", possibly along with
an error message generated by your CGI program. In this case, you will want to check each of the below sections to see
what might be preventing your CGI program from emitting the proper HTTP headers.

File permissions

Remember that the server does not run as you. That is, when the server starts up, it is running with the permissions of an
unprivileged user - usually ``nobody'', or ``www'' - and so it will need extra permissions to execute files that are owned by you.
Usually, the way to give a file sufficient permissions to be executed by ``nobody'' is to give everyone execute permission on the file:

 chmod a+x first.pl

Also, if your program reads from, or writes to, any other files, those files will need to have the correct permissions to permit this.

The exception to this is when the server is configured to use suexec. This program allows CGI programs to be run under different
user permissions, depending on which virtual host or user home directory they are located in. Suexec has very strict permission
checking, and any failure in that checking will result in your CGI programs failing with an "Internal Server Error". In this case, you
will need to check the suexec log file to see what specific security check is failing.

Path information

When you run a program from your command line, you have certain information that is passed to the shell without you thinking
about it. For example, you have a path, which tells the shell where it can look for files that you reference.

When a program runs through the web server as a CGI program, it does not have that path. Any programs that you invoke in your
CGI program (like 'sendmail', for example) will need to be specified by a full path, so that the shell can find them when it attempts
to execute your CGI program.

A common manifestation of this is the path to the script interpreter (often perl) indicated in the first line of your CGI program,
which will look something like:

 #!/usr/bin/perl

Make sure that this is in fact the path to the interpreter.

Syntax errors

Most of the time when a CGI program fails, it's because of a problem with the program itself. This is particularly true once you get
the hang of this CGI stuff, and no longer make the above two mistakes. Always attempt to run your program from the command line
before you test if via a browser. This will eliminate most of your problems.

Error logs

The error logs are your friend. Anything that goes wrong generates message in the error log. You should always look there first. If
the place where you are hosting your web site does not permit you access to the error log, you should probably host your site
somewhere else. Learn to read the error logs, and you'll find that almost all of your problems are quickly identified, and quickly
solved.

Apache Tutorial: Dynamic Content with CGI

http://httpd.apache.org/docs/howto/cgi.html (4 of 6) [12/05/2001 4:49:29 PM]

What's going on behind the scenes?

As you become more advanced in CGI programming, it will become useful to understand more about what's happening behind the
scenes. Specifically, how the browser and server communicate with one another. Because although it's all very well to write a
program that prints ``Hello, World.'', it's not particularly useful.

Environment variables

Environment variables are values that float around you as you use your computer. They are useful things like your path (where the
computer searches for a the actual file implementing a command when you type it), your username, your terminal type, and so on.
For a full list of your normal, every day environment variables, type env at a command prompt.

During the CGI transaction, the server and the browser also set environment variables, so that they can communicate with one
another. These are things like the browser type (Netscape, IE, Lynx), the server type (Apache, IIS, WebSite), the name of the CGI
program that is being run, and so on.

These variables are available to the CGI programmer, and are half of the story of the client-server communication. The complete list
of required variables is at http://hoohoo.ncsa.uiuc.edu/cgi/env.html

This simple Perl CGI program will display all of the environment variables that are being passed around. Two similar programs are
included in the cgi-bin directory of the Apache distribution. Note that some variables are required, while others are optional, so
you may see some variables listed that were not in the official list. In addition, Apache provides many different ways for you to add
your own environment variables to the basic ones provided by default.

 #!/usr/bin/perl
 print "Content-type: text/html\n\n";
 foreach $key (keys %ENV) {
 print "$key --> $ENV{$key}
";
 }

STDIN and STDOUT

Other communication between the server and the client happens over standard input (STDIN) and standard output (STDOUT). In
normal everyday context, STDIN means the keyboard, or a file that a program is given to act on, and STDOUT usually means the
console or screen.

When you POST a web form to a CGI program, the data in that form is bundled up into a special format and gets delivered to your
CGI program over STDIN. The program then can process that data as though it was coming in from the keyboard, or from a file

The ``special format'' is very simple. A field name and its value are joined together with an equals (=) sign, and pairs of values are
joined together with an ampersand (&). Inconvenient characters like spaces, ampersands, and equals signs, are converted into their
hex equivalent so that they don't gum up the works. The whole data string might look something like:

 name=Rich%20Bowen&city=Lexington&state=KY&sidekick=Squirrel%20Monkey

You'll sometimes also see this type of string appended to the a URL. When that is done, the server puts that string into the
environment variable called QUERY_STRING. That's called a GET request. Your HTML form specifies whether a GET or a POST
is used to deliver the data, by setting the METHOD attribute in the FORM tag.

Your program is then responsible for splitting that string up into useful information. Fortunately, there are libraries and modules
available to help you process this data, as well as handle other of the aspects of your CGI program.

Apache Tutorial: Dynamic Content with CGI

http://httpd.apache.org/docs/howto/cgi.html (5 of 6) [12/05/2001 4:49:29 PM]

http://hoohoo.ncsa.uiuc.edu/cgi/env.html

CGI modules/libraries

When you write CGI programs, you should consider using a code library, or module, to do most of the grunt work for you. This
leads to fewer errors, and faster development.

If you're writing CGI programs in Perl, modules are available on CPAN. The most popular module for this purpose is CGI.pm. You
might also consider CGI::Lite, which implements a minimal set of functionality, which is all you need in most programs.

If you're writing CGI programs in C, there are a variety of options. One of these is the CGIC library, from
http://www.boutell.com/cgic/

For more information

There are a large number of CGI resources on the web. You can discuss CGI problems with other users on the Usenet group
comp.infosystems.www.authoring.cgi. And the -servers mailing list from the HTML Writers Guild is a great source of answers to
your questions. You can find out more at http://www.hwg.org/lists/hwg-servers/

And, of course, you should probably read the CGI specification, which has all the details on the operation of CGI programs. You
can find the original version at the NCSA and there is an updated draft at the Common Gateway Interface RFC project.

When you post a question about a CGI problem that you're having, whether to a mailing list, or to a newsgroup, make sure you
provide enough information about what happened, what you expected to happen, and how what actually happened was different,
what server you're running, what language your CGI program was in, and, if possible, the offending code. This will make finding
your problem much simpler.

Note that questions about CGI problems should never be posted to the Apache bug database unless you are sure you have found a
problem in the Apache source code.

Apache HTTP Server Version 1.3

Apache Tutorial: Dynamic Content with CGI

http://httpd.apache.org/docs/howto/cgi.html (6 of 6) [12/05/2001 4:49:29 PM]

http://www.cpan.org/
http://www.boutell.com/cgic/
http://www.hwg.org/lists/hwg-servers/
http://hoohoo.ncsa.uiuc.edu/cgi/interface.html
http://web.golux.com/coar/cgi/
http://httpd.apache.org/docs/howto/

Apache HTTP Server Version 1.3

Apache Tutorial: Introduction to Server Side Includes

Apache Tutorial: Introduction to Server Side Includes●

What are SSI?●

Configuring your server to permit SSI●

Basic SSI directives

Today's date❍

Modification date of the file❍

Including the results of a CGI program❍

●

Additional examples

When was this document modified?❍

Including a standard footer❍

What else can I config?❍

Executing commands❍

●

Advanced SSI techniques

Setting variables❍

Conditional expressions❍

●

Conclusion●

Apache Tutorial: Introduction to Server Side Includes

Related Modules

mod_include
mod_cgi
mod_expires

Related Directives

Options
XBitHack
AddType
AddHandler
BrowserMatchNoCase

This HOWTO first appeared in Apache Today (http://www.apachetoday.com/) as a series of three articles. They appear here by
arrangement with ApacheToday and Internet.com.

This article deals with Server Side Includes, usually called simply SSI. In this article, I'll talk about configuring your server to
permit SSI, and introduce some basic SSI techniques for adding dynamic content to your existing HTML pages.

In the latter part of the article, we'll talk about some of the somewhat more advanced things that can be done with SSI, such as
conditional statements in your SSI directives.

Apache Tutorial: Introduction to Server Side Includes

http://httpd.apache.org/docs/howto/ssi.html (1 of 6) [12/05/2001 4:49:32 PM]

What are SSI?

SSI (Server Side Includes) are directives that are placed in HTML pages, and evaluated on the server while the pages are being
served. They let you add dynamically generated content to an existing HTML page, without having to serve the entire page via a
CGI program, or other dynamic technology.

The decision of when to use SSI, and when to have your page entirely generated by some program, is usually a matter of how much
of the page is static, and how much needs to be recalculated every time the page is served. SSI is a great way to add small pieces of
information, such as the current time. But if a majority of your page is being generated at the time that it is served, you need to look
for some other solution.

Configuring your server to permit SSI

To permit SSI on your server, you must have the following directive either in your httpd.conf file, or in a .htaccess file:

 Options +Includes

This tells Apache that you want to permit files to be parsed for SSI directives. Note that most configurations contain multiple
Options directives that can override each other. You will probably need to apply the Options to the specific directory where you
want SSI enabled in order to assure that it gets evaluated last.

Not just any file is parsed for SSI directives. You have to tell Apache which files should be parsed. There are two ways to do this.
You can tell Apache to parse any file with a particular file extension, such as .shtml, with the following directives:

 AddType text/html .shtml
 AddHandler server-parsed .shtml

One disadvantage to this approach is that if you wanted to add SSI directives to an existing page, you would have to change the
name of that page, and all links to that page, in order to give it a .shtml extension, so that those directives would be executed.

The other method is to use the XBitHack directive:

 XBitHack on

XBitHack tells Apache to parse files for SSI directives if they have the execute bit set. So, to add SSI directives to an existing
page, rather than having to change the file name, you would just need to make the file executable using chmod.

 chmod +x pagename.html

A brief comment about what not to do. You'll occasionally see people recommending that you just tell Apache to parse all .html
files for SSI, so that you don't have to mess with .shtml file names. These folks have perhaps not heard about XBitHack. The
thing to keep in mind is that, by doing this, you're requiring that Apache read through every single file that it sends out to clients,
even if they don't contain any SSI directives. This can slow things down quite a bit, and is not a good idea.

Of course, on Windows, there is no such thing as an execute bit to set, so that limits your options a little.

In its default configuration, Apache does not send the last modified date or content length HTTP headers on SSI pages, because
these values are difficult to calculate for dynamic content. This can prevent your document from being cached, and result in slower
perceived client performance. There are two ways to solve this:

Use the XBitHack Full configuration. This tells Apache to determine the last modified date by looking only at the date
of the originally requested file, ignoring the modification date of any included files.

1.

Use the directives provided by mod_expires to set an explicit expiration time on your files, thereby letting browsers and
proxies know that it is acceptable to cache them.

2.

Apache Tutorial: Introduction to Server Side Includes

http://httpd.apache.org/docs/howto/ssi.html (2 of 6) [12/05/2001 4:49:32 PM]

Basic SSI directives

SSI directives have the following syntax:

 <!--#element attribute=value attribute=value ... -->

It is formatted like an HTML comment, so if you don't have SSI correctly enabled, the browser will ignore it, but it will still be
visible in the HTML source. If you have SSI correctly configured, the directive will be replaced with its results.

The element can be one of a number of things, and we'll talk some more about most of these in the next installment of this series.
For now, here are some examples of what you can do with SSI

Today's date

 <!--#echo var="DATE_LOCAL" -->

The echo element just spits out the value of a variable. There are a number of standard variables, which include the whole set of
environment variables that are available to CGI programs. Also, you can define your own variables with the set element.

If you don't like the format in which the date gets printed, you can use the config element, with a timefmt attribute, to modify
that formatting.

 <!--#config timefmt="%A %B %d, %Y" -->
 Today is <!--#echo var="DATE_LOCAL" -->

Modification date of the file

 This document last modified <!--#flastmod file="index.html" -->

This element is also subject to timefmt format configurations.

Including the results of a CGI program

This is one of the more common uses of SSI - to output the results of a CGI program, such as everybody's favorite, a ``hit counter.''

 <!--#include virtual="/cgi-bin/counter.pl" -->

Additional examples

Following are some specific examples of things you can do in your HTML documents with SSI.

When was this document modified?

Earlier, we mentioned that you could use SSI to inform the user when the document was most recently modified. However, the
actual method for doing that was left somewhat in question. The following code, placed in your HTML document, will put such a
time stamp on your page. Of course, you will have to have SSI correctly enabled, as discussed above.

 <!--#config timefmt="%A %B %d, %Y" -->
 This file last modified <!--#flastmod file="ssi.shtml" -->

Of course, you will need to replace the ssi.shtml with the actual name of the file that you're referring to. This can be

Apache Tutorial: Introduction to Server Side Includes

http://httpd.apache.org/docs/howto/ssi.html (3 of 6) [12/05/2001 4:49:32 PM]

inconvenient if you're just looking for a generic piece of code that you can paste into any file, so you probably want to use the
LAST_MODIFIED variable instead:

 <!--#config timefmt="%D" -->
 This file last modified <!--#echo var="LAST_MODIFIED" -->

For more details on the timefmt format, go to your favorite search site and look for ctime. The syntax is the same.

Including a standard footer

If you are managing any site that is more than a few pages, you may find that making changes to all those pages can be a real pain,
particularly if you are trying to maintain some kind of standard look across all those pages.

Using an include file for a header and/or a footer can reduce the burden of these updates. You just have to make one footer file, and
then include it into each page with the include SSI command. The include element can determine what file to include with
either the file attribute, or the virtual attribute. The file attribute is a file path, relative to the current directory. That means
that it cannot be an absolute file path (starting with /), nor can it contain ../ as part of that path. The virtual attribute is probably
more useful, and should specify a URL relative to the document being served. It can start with a /, but must be on the same server as
the file being served.

 <!--#include virtual="/footer.html" -->

I'll frequently combine the last two things, putting a LAST_MODIFIED directive inside a footer file to be included. SSI directives
can be contained in the included file, and includes can be nested - that is, the included file can include another file, and so on.

What else can I config?

In addition to being able to config the time format, you can also config two other things.

Usually, when something goes wrong with your SSI directive, you get the message

 [an error occurred while processing this directive]

If you want to change that message to something else, you can do so with the errmsg attribute to the config element:

 <!--#config errmsg="[It appears that you don't know how to use SSI]" -->

Hopefully, end users will never see this message, because you will have resolved all the problems with your SSI directives before
your site goes live. (Right?)

And you can config the format in which file sizes are returned with the sizefmt attribute. You can specify bytes for a full
count in bytes, or abbrev for an abbreviated number in Kb or Mb, as appropriate.

Executing commands

I expect that I'll have an article some time in the coming months about using SSI with small CGI programs. For now, here's
something else that you can do with the exec element. You can actually have SSI execute a command using the shell (/bin/sh,
to be precise - or the DOS shell, if you're on Win32). The following, for example, will give you a directory listing.

 <pre>
 <!--#exec cmd="ls" -->
 </pre>

Apache Tutorial: Introduction to Server Side Includes

http://httpd.apache.org/docs/howto/ssi.html (4 of 6) [12/05/2001 4:49:32 PM]

or, on Windows

 <pre>
 <!--#exec cmd="dir" -->
 </pre>

You might notice some strange formatting with this directive on Windows, because the output from dir contains the string
``<dir>'' in it, which confuses browsers.

Note that this feature is exceedingly dangerous, as it will execute whatever code happens to be embedded in the exec tag. If you
have any situation where users can edit content on your web pages, such as with a ``guestbook'', for example, make sure that you
have this feature disabled. You can allow SSI, but not the exec feature, with the IncludesNOEXEC argument to the Options
directive.

Advanced SSI techniques

In addition to spitting out content, Apache SSI gives you the option of setting variables, and using those variables in comparisons
and conditionals.

Caveat

Most of the features discussed in this article are only available to you if you are running Apache 1.2 or later. Of course, if you are
not running Apache 1.2 or later, you need to upgrade immediately, if not sooner. Go on. Do it now. We'll wait.

Setting variables

Using the set directive, you can set variables for later use. We'll need this later in the discussion, so we'll talk about it here. The
syntax of this is as follows:

 <!--#set var="name" value="Rich" -->

In addition to merely setting values literally like that, you can use any other variable, including, for example, environment variables,
or some of the variables we discussed in the last article (like LAST_MODIFIED, for example) to give values to your variables. You
will specify that something is a variable, rather than a literal string, by using the dollar sign ($) before the name of the variable.

 <!--#set var="modified" value="$LAST_MODIFIED" -->

To put a literal dollar sign into the value of your variable, you need to escape the dollar sign with a backslash.

 <!--#set var="cost" value="\$100" -->

Finally, if you want to put a variable in the midst of a longer string, and there's a chance that the name of the variable will run up
against some other characters, and thus be confused with those characters, you can place the name of the variable in braces, to
remove this confusion. (It's hard to come up with a really good example of this, but hopefully you'll get the point.)

 <!--#set var="date" value="${DATE_LOCAL}_${DATE_GMT}" -->

Apache Tutorial: Introduction to Server Side Includes

http://httpd.apache.org/docs/howto/ssi.html (5 of 6) [12/05/2001 4:49:32 PM]

Conditional expressions

Now that we have variables, and are able to set and compare their values, we can use them to express conditionals. This lets SSI be
a tiny programming language of sorts. mod_include provides an if, elif, else, endif structure for building conditional
statements. This allows you to effectively generate multiple logical pages out of one actual page.

The structure of this conditional construct is:

 <!--#if expr="test_condition" -->
 <!--#elif expr="test_condition" -->
 <!--#else -->
 <!--#endif -->

A test_condition can be any sort of logical comparison - either comparing values to one another, or testing the ``truth'' of a particular
value. (A given string is true if it is nonempty.) For a full list of the comparison operators available to you, see the mod_include
documentation. Here are some examples of how one might use this construct.

In your configuration file, you could put the following line:

 BrowserMatchNoCase macintosh Mac
 BrowserMatchNoCase MSIE InternetExplorer

This will set environment variables ``Mac'' and ``InternetExplorer'' to true, if the client is running Internet Explorer on a Macintosh.

Then, in your SSI-enabled document, you might do the following:

 <!--#if expr="${Mac} && ${InternetExplorer}" -->
 Apologetic text goes here
 <!--#else -->
 Cool JavaScript code goes here
 <!--#endif -->

Not that I have anything against IE on Macs - I just struggled for a few hours last week trying to get some JavaScript working on IE
on a Mac, when it was working everywhere else. The above was the interim workaround.

Any other variable (either ones that you define, or normal environment variables) can be used in conditional statements. With
Apache's ability to set environment variables with the SetEnvIf directives, and other related directives, this functionality can let
you do some pretty involved dynamic stuff without ever resorting to CGI.

Conclusion

SSI is certainly not a replacement for CGI, or other technologies used for generating dynamic web pages. But it is a great way to
add small amounts of dynamic content to pages, without doing a lot of extra work.

Apache Tutorial: Introduction to Server Side Includes

http://httpd.apache.org/docs/howto/ssi.html (6 of 6) [12/05/2001 4:49:32 PM]

Apache HTTP Server Version 1.3

Apache HOWTO documentation

How to:

redirect an entire server or directory to a single URL●

reset your log files●

stop/restrict robots●

proxy SSL requests through your non-SSL server●

How to redirect an entire server or directory to a single URL

There are two chief ways to redirect all requests for an entire server to a single location: one which requires the use of
mod_rewrite, and another which uses a CGI script.

First: if all you need to do is migrate a server from one name to another, simply use the Redirect directive, as supplied by
mod_alias:

 Redirect / http://www.apache.org/

Since Redirect will forward along the complete path, however, it may not be appropriate - for example, when the directory
structure has changed after the move, and you simply want to direct people to the home page.

The best option is to use the standard Apache module mod_rewrite. If that module is compiled in, the following lines

RewriteEngine On
RewriteRule /.* http://www.apache.org/ [R]

will send an HTTP 302 Redirect back to the client, and no matter what they gave in the original URL, they'll be sent to
"http://www.apache.org/".

The second option is to set up a ScriptAlias pointing to a CGI script which outputs a 301 or 302 status and the location of the
other server.

By using a CGI script you can intercept various requests and treat them specially, e.g., you might want to intercept POST requests,
so that the client isn't redirected to a script on the other server which expects POST information (a redirect will lose the POST
information.) You might also want to use a CGI script if you don't want to compile mod_rewrite into your server.

Here's how to redirect all requests to a script... In the server configuration file,

ScriptAlias / /usr/local/httpd/cgi-bin/redirect_script/

and here's a simple perl script to redirect requests:

#!/usr/local/bin/perl

print "Status: 302 Moved Temporarily\r\n" .
 "Location: http://www.some.where.else.com/\r\n" .
 "\r\n";

Apache HOWTO documentation

http://httpd.apache.org/docs/misc/howto.html (1 of 3) [12/05/2001 4:49:34 PM]

How to reset your log files

Sooner or later, you'll want to reset your log files (access_log and error_log) because they are too big, or full of old information you
don't need.

access.log typically grows by 1Mb for each 10,000 requests.

Most people's first attempt at replacing the logfile is to just move the logfile or remove the logfile. This doesn't work.

Apache will continue writing to the logfile at the same offset as before the logfile moved. This results in a new logfile being created
which is just as big as the old one, but it now contains thousands (or millions) of null characters.

The correct procedure is to move the logfile, then signal Apache to tell it to reopen the logfiles.

Apache is signaled using the SIGHUP (-1) signal. e.g.

mv access_log access_log.old
kill -1 `cat httpd.pid`

Note: httpd.pid is a file containing the process id of the Apache httpd daemon, Apache saves this in the same directory as the
log files.

Many people use this method to replace (and backup) their logfiles on a nightly or weekly basis.

How to stop or restrict robots

Ever wondered why so many clients are interested in a file called robots.txt which you don't have, and never did have?

These clients are called robots (also known as crawlers, spiders and other cute names) - special automated clients which wander
around the web looking for interesting resources.

Most robots are used to generate some kind of web index which is then used by a search engine to help locate information.

robots.txt provides a means to request that robots limit their activities at the site, or more often than not, to leave the site alone.

When the first robots were developed, they had a bad reputation for sending hundreds/thousands of requests to each site, often
resulting in the site being overloaded. Things have improved dramatically since then, thanks to Guidelines for Robot Writers, but
even so, some robots may exhibit unfriendly behavior which the webmaster isn't willing to tolerate, and will want to stop.

Another reason some webmasters want to block access to robots, is to stop them indexing dynamic information. Many search
engines will use the data collected from your pages for months to come - not much use if you're serving stock quotes, news, weather
reports or anything else that will be stale by the time people find it in a search engine.

If you decide to exclude robots completely, or just limit the areas in which they can roam, create a robots.txt file; refer to the
robot information pages provided by Martijn Koster for the syntax.

How to proxy SSL requests through your non-SSL Apache server
(submitted by David Sedlock)

SSL uses port 443 for requests for secure pages. If your browser just sits there for a long time when you attempt to access a secure
page over your Apache proxy, then the proxy may not be configured to handle SSL. You need to instruct Apache to listen on port
443 in addition to any of the ports on which it is already listening:

Apache HOWTO documentation

http://httpd.apache.org/docs/misc/howto.html (2 of 3) [12/05/2001 4:49:34 PM]

http://info.webcrawler.com/mak/projects/robots/guidelines.html
http://info.webcrawler.com/mak/projects/robots/robots.html

 Listen 80
 Listen 443

Then set the security proxy in your browser to 443. That might be it!

If your proxy is sending requests to another proxy, then you may have to set the directive ProxyRemote differently. Here are my
settings:

 ProxyRemote http://nicklas:80/ http://proxy.mayn.franken.de:8080
 ProxyRemote http://nicklas:443/ http://proxy.mayn.franken.de:443

Requests on port 80 of my proxy nicklas are forwarded to proxy.mayn.franken.de:8080, while requests on port 443 are forwarded to
proxy.mayn.franken.de:443. If the remote proxy is not set up to handle port 443, then the last directive can be left out. SSL requests
will only go over the first proxy.

Note that your Apache does NOT have to be set up to serve secure pages with SSL. Proxying SSL is a different thing from using it.

Apache HTTP Server Version 1.3

Apache HOWTO documentation

http://httpd.apache.org/docs/misc/howto.html (3 of 3) [12/05/2001 4:49:34 PM]

http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Apache Tutorials

The following documents give you step-by-step instructions on how to accomplish common tasks with the Apache http server.
Many of these documents are located at external sites and are not the work of the Apache Software Foundation. Copyright to
documents on external sites is owned by the authors or their assignees. Please consult the official Apache Server documentation to
verify what you read on external sites.

Installation & Getting Started

Getting Started with Apache 1.3 (ApacheToday)●

Configuring Your Apache Server Installation (ApacheToday)●

Getting, Installing, and Running Apache (on Unix) (O'Reilly Network Apache DevCenter)●

Maximum Apache: Getting Started (CNET Builder.com)●

How to Build the Apache of Your Dreams (Developer Shed)●

Basic Configuration

An Amble Through Apache Configuration (O'Reilly Network Apache DevCenter)●

Using .htaccess Files with Apache (ApacheToday)●

Setting Up Virtual Hosts (ApacheToday)●

Maximum Apache: Configure Apache (CNET Builder.com)●

Getting More Out of Apache (Developer Shed)●

Security

Security and Apache: An Essential Primer (LinuxPlanet)●

Using User Authentication (Apacheweek)●

DBM User Authentication (Apacheweek)●

An Introduction to Securing Apache (Linux.com)●

Securing Apache - Access Control (Linux.com)●

Apache Authentication Part 1 - Part 2 - Part 3 - Part 4 (ApacheToday)●

mod_access: Restricting Access by Host (ApacheToday)●

Apache Tutorials

http://httpd.apache.org/docs/misc/tutorials.html (1 of 2) [12/05/2001 4:49:35 PM]

http://apachetoday.com/news_story.php3?ltsn=2000-06-1-001-01-NW-DP-LF
http://apachetoday.com/news_story.php3?ltsn=2000-07-10-001-01-NW-LF-SW
http://www.onlamp.com/pub/a/apache/2000/02/24/installing_apache.html
http://www.builder.com/Servers/Apache/ss01.html
http://www.devshed.com/Server_Side/Administration/APACHE/
http://www.onlamp.com/pub/a/apache/2000/03/02/configuring_apache.html
http://apachetoday.com/news_story.php3?ltsn=2000-07-19-002-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-07-17-001-01-PS
http://www.builder.com/Servers/Apache/ss02.html
http://www.devshed.com/Server_Side/Administration/MoreApache/
http://www.linuxplanet.com/linuxplanet/tutorials/1527/1/
http://www.apacheweek.com/features/userauth
http://www.apacheweek.com/features/dbmauth
http://linux.com/security/newsitem.phtml?sid=12&aid=3549
http://linux.com/security/newsitem.phtml?sid=12&aid=3667
http://apachetoday.com/news_story.php3?ltsn=2000-07-24-002-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-07-31-001-01-NW-DP-LF
http://apachetoday.com/news_story.php3?ltsn=2000-08-07-001-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-08-14-001-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-11-13-003-01-SC-LF-SW

Logging

Log Rhythms (O'Reilly Network Apache DevCenter)●

Gathering Visitor Information: Customising Your Logfiles (Apacheweek)●

Apache Guide: Logging Part 1 - Part 2 - Part 3 - Part 4 - Part 5 (ApacheToday)●

CGI and SSI

Dynamic Content with CGI (ApacheToday)●

The Idiot's Guide to Solving Perl CGI Problems (CPAN)●

Executing CGI Scripts as Other Users (LinuxPlanet)●

CGI Programming FAQ (Web Design Group)●

Introduction to Server Side Includes Part 1 - Part 2 (ApacheToday)●

Advanced SSI Techniques (ApacheToday)●

Setting up CGI and SSI with Apache (CNET Builder.com)●

Other Features

Content Negotiation Explained (Apacheweek)●

Using Apache Imagemaps (Apacheweek)●

Keeping Your Images from Adorning Other Sites (ApacheToday)●

Language Negotiation Notes (Alan J. Flavell)●

If you have a pointer to an accurate and well-written tutorial not included here, please let us know by submitting it to the Apache
Bug Database.

Apache HTTP Server Version 1.3

Apache Tutorials

http://httpd.apache.org/docs/misc/tutorials.html (2 of 2) [12/05/2001 4:49:35 PM]

http://www.onlamp.com/pub/a/apache/2000/03/10/log_rhythms.html
http://www.apacheweek.com/features/logfiles
http://apachetoday.com/news_story.php3?ltsn=2000-08-21-003-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-08-28-001-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-09-05-001-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-09-18-003-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-09-25-001-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-06-05-001-10-NW-LF-SW
http://www.perl.com/CPAN-local/doc/FAQs/cgi/idiots-guide.html
http://www.linuxplanet.com/linuxplanet/tutorials/1445/1/
http://www.htmlhelp.org/faq/cgifaq.html
http://apachetoday.com/news_story.php3?ltsn=2000-06-12-001-01-PS
http://apachetoday.com/news_story.php3?ltsn=2000-06-19-002-01-NW-LF-SW
http://apachetoday.com/news_story.php3?ltsn=2000-06-26-001-01-NW-LF-SW
http://www.builder.com/Servers/ApacheFiles/082400/
http://www.apacheweek.com/features/negotiation
http://www.apacheweek.com/features/imagemaps
http://apachetoday.com/news_story.php3?ltsn=2000-06-14-002-01-PS
http://ppewww.ph.gla.ac.uk/~flavell/www/lang-neg.html
http://bugs.apache.org/
http://bugs.apache.org/
http://httpd.apache.org/docs/misc/

Apache HTTP Server

Using Apache With Microsoft Windows

This document explains how to install, configure and run Apache 1.3 under Microsoft Windows. Most of this document assumes
that you are installing Windows from a binary distribution. If you want to compile Apache yourself (possibly to help with
development, or to track down bugs), see Compiling Apache for Microsoft Windows.

If you find any bugs, please document them on our bug reporting page. Contributions are welcomed, please submit your code or
suggestions to the bug report page, or join the new-httpd mailing list.

The bug reporting page and new-httpd mailing list are not provided to answer questions about configuration or running Apache.
Before you submit a bug report or request, first consult this document, the Frequently Asked Questions page and the other relevant
documentation topics. If you still have a question or problem, post it to the comp.infosystems.www.servers.ms-windows
newsgroup, where many Apache users and several contributions are more than willing to answer new and obscure questions about
using Apache on Windows.

groups.google.com's newsgroup archive offers easy browsing of previous questions. Searching the newsgroup archives, you will
usually find your question was already asked and answered by other users!

Warning: Apache on NT has not yet been optimized for performance. Apache still performs best, and is most reliable on Unix
platforms. Over time NT performance has improved, and great progress is being made in the upcoming version 2.0 of Apache for
the Windows platforms. Folks doing comparative reviews of webserver performance are still asked to compare against Apache on a
Unix platform such as Solaris, FreeBSD, or Linux.

Requirements●

Downloading Apache for Windows●

Installing Apache for Windows (binary install)●

Running Apache for Windows●

Testing Apache for Windows●

Configuring Apache for Windows●

Running Apache in a Console Window●

Controlling Apache in a Console Window●

Running Apache for Windows as a Service●

Controlling Apache as a Service●

Compiling Apache for Microsoft Windows●

Requirements

Apache 1.3 is designed to run on Windows NT 4.0 and Windows 2000. The binary installer will only work with the x86 family of
processors, such as Intel's. Apache may also run on Windows 95 and 98, but these have not been tested. In all cases TCP/IP
networking must be installed.

If running on NT 4.0, installing Service Pack 3 or 6 is recommended, as Service Pack 4 created known issues with TCP/IP and

Using Apache with Microsoft Windows

http://httpd.apache.org/docs/windows.html (1 of 6) [12/05/2001 4:49:38 PM]

http://httpd.apache.org/bug_report.html
news:comp.infosystems.www.servers.ms-windows
http://groups.google.com/groups?hl=en&lr=&safe=off&group=comp.infosystems.www.servers.ms-windows

WinSock integrity that were resolved in Service Pack 5 and later.

Note: "Winsock2" is required for Apache 1.3.7 and later.

If running on Windows 95, the "Winsock2" upgrade must be installed before Apache will run. "Winsock2" for Windows 95 is
available here or via here. Be warned that the Dialup Networking 1.2 (MS DUN) updates include a Winsock2 that is entirely
insufficient, and the Winsock2 update must be reinstalled after installing Windows 95 dialup networking. Windows 98, NT (Service
Pack 3 or later) and 2000 users need to take no special action, those versions provide Winsock2 as distributed.

Downloading Apache for Windows

Information on the latest version of Apache can be found on the Apache web server at http://httpd.apache.org/. This will list the
current release, any more recent alpha or beta-test releases, together with details of mirror web and anonymous FTP sites.

You should download the binary build of Apache for Windows named as apache_1_3_#-win32-src.msi if you are
interested in the source code, or simply apache_1_3_#-win32-no_src.msi if you don't plan to do anything with the source
code and appreciate a faster download. Each of these files contains the complete Apache runtime. You must have the Microsoft
Installer version 1.10 installed on your PC before you can install the Apache runtime distributions. Windows 2000 and Windows
ME are both delivered with the Microsoft Installer support, others will need to download it. Instructions on locating the Microsoft
Installer, as well as the binary distributions of Apache, are found at http://httpd.apache.org/dist/httpd/binaries/win32/

The source code is available in the -src.msi distribution, or from the http://httpd.apache.org/dist/httpd/ distribution directory as a
.zip file. If you plan on compiling Apache yourself, there is no need to install either .msi package. The .zip file contains only
source code, with MS-DOS line endings (that is cr/lf line endings, instead of the single lf used for Unix files distributed in .tar.gz or
.tar.Z archives.)

While the source is also available as a .tar.gz .tar.Z archive, these contain unix lf line endings that cause grief for Windows users. To
use those archives, you must convert at least the .mak and .dsp files to have DOS line endings before MSVC can understand them.
Please stick with the .zip file to spare yourself the headache.

Note: prior to 1.3.17 Apache was distributed as an InstallShield 2.0 .exe file. With an increasing number of users unable to run the
InstallShield package [on Windows ME or Windows 2000] the binaries were repackaged into the readily available Microsoft
Installer .msi format.

Installing Apache for Windows

Run the Apache .msi file you downloaded above. This will prompt you for:

whether or not you want to run Apache for all users (installing Apache as a Service), or if you want it installed to run in a
console window when you choose the Start Apache shortcut.

●

your Server name, Domain name and administrative email account.●

the directory to install Apache into (the default is C:\Program Files\Apache Group\Apache although you can
change this to any other directory you wish)

●

the installation type. The "Complete" option installs everything, including the source code if you downloaded the -src.msi
package. Choose the "Custom" install if you choose not to install the documentation, or the source code from that package.

●

During the installation, Apache will configure the files in the conf directory for your chosen installation directory. However if any
of the files in this directory already exist they will not be overwritten. Instead the new copy of the corresponding file will be left
with the extension .default.conf. So, for example, if conf\httpd.conf already exists it will not be altered, but the version which would
have been installed will be left in conf\httpd.default.conf. After the installation has finished you should manually check to see what
in new in the .default.conf file, and if necessary update your existing configuration files.

Also, if you already have a file called htdocs\index.html then it will not be overwritten (no index.html.default file will be installed
either). This should mean it is safe to install Apache over an existing installation (but you will have to stop the existing server
running before doing the installation, then start the new one after the installation is finished).

After installing Apache, you should edit the configuration files in the conf directory as required. These files will be configured
during the install ready for Apache to be run from the directory where it was installed, with the documents served from the
subdirectory htdocs. There are lots of other options which should be set before you start really using Apache. However to get started

Using Apache with Microsoft Windows

http://httpd.apache.org/docs/windows.html (2 of 6) [12/05/2001 4:49:38 PM]

http://www.microsoft.com/windows95/downloads/contents/WUAdminTools/S_WUNetworkingTools/W95Sockets2/Default.asp
http://www.microsoft.com/windows95/downloads/
http://httpd.apache.org/
http://httpd.apache.org/dist/httpd/binaries/win32/
http://httpd.apache.org/dist/httpd/

quickly the files should work as installed.

If you eventually uninstall Apache, your configuration and log files will not be removed. You will need to delete the installation
directory tree ("C:\Program Files\Apache Group" by default) yourself if you do not care to keep your configuration and other web
files. Since the httpd.conf file is your accumulated effort in using Apache, you need to take the effort to remove it. The same
happens for all other files you may have created, as well as any log files Apache created.

Running Apache for Windows

There are two ways you can run Apache:

As a "service". This is the best option if you want Apache to automatically start when your machine boots, and to keep
Apache running when you log-off.

●

From a console window. Closing this console window will terminate the Apache server.●

Complete the steps below before you attempt to start Apache as a Windows "service"!

To run Apache from a console window, select the "Start Apache as console app" option from the Start menu (in Apache 1.3.4 and
earlier, this option was called "Apache Server"). This will open a console window and start Apache running inside it. The window
will remain active until you stop Apache. To stop Apache running, either press select the "Shutdown Apache console app" icon
option from the Start menu (this is not available in Apache 1.3.4 or earlier), or see Controlling Apache in a Console Window for
commands to control Apache in a console window.

In Apache 1.3.13 and above it is now quite safe to press Ctrl+C or Ctrl+Break to stop the Apache in the console window. And on
Windows NT/2000 with version 1.3.13, Apache will stop if you select 'Close' from the system menu (clicking the icon on the
top-left corner of the console window) or click the close (X) button on the top-right corner. The Close menu item and close (X)
button also work on Windows 95/98 as of Apache version 1.3.15. But do not try any of these approaches on earlier versions of the
Apache server, since Apache would not clean up.

Testing Apache for Windows

If you have trouble starting Apache please use the following steps to isolate the problem. This applies if you started Apache using
the "Start Apache as a console app" shortcut from the Start menu and the Apache console window closes immediately (or
unexpectedly) or if you have trouble starting Apache as a service.

Run the "Command Prompt" from the Start Menu - Programs list. Change to the folder to which you installed Apache, type the
command apache, and read the error message. Then review the error.log file for configuration mistakes. If you accepted the defaults
when you installed Apache, the commands would be:

 c:
 cd "\program files\apache group\apache"
 apache
 Wait for Apache to exit, or press Ctrl+C
 more <logs\error.log

After looking at the error.log you will probably have a good chance of working out what went wrong and be able to fix the problem
and try again. If you are unable to work it out then please follow the guidelines for assistance at the top of this document or in the
FAQ. Many users discover that the nature of the httpd.conf file is easier to manage and audit than page after page of configuration
dialog boxes.

After starting Apache running (either in a console window or as a service) if will be listening to port 80 (unless you changed the
Port, Listen or BindAddress directives in the configuration files). To connect to the server and access the default page, launch a
browser and enter this URL:

 http://localhost/

This should respond with a welcome page, and a link to the Apache manual. If nothing happens or you get an error, look in the
error.log file in the logs directory. If your host isn't connected to the net, you may have to use this URL:

Using Apache with Microsoft Windows

http://httpd.apache.org/docs/windows.html (3 of 6) [12/05/2001 4:49:38 PM]

 http://127.0.0.1/

Once your basic installation is working, you should configure it properly by editing the files in the conf directory.

Because Apache CANNOT share the same port with another TCP/IP application, you may need to stop or uninstall certain services
first. These include (but are not limited to) other web servers, and firewall products such as BlackIce. If you can only start Apache
with these services disabled, reconfigure either Apache or the other product so that they do not listen on the same TCP/IP ports. You
may find the Windows "netstat -an" command useful in finding out what ports are in use.

Configuring Apache for Windows

Apache is configured by files in the conf directory. These are the same as files used to configure the Unix version, but there are a
few different directives for Apache on Windows. See the Apache documentation for all the available directives.

Begin configuring the Apache server by reviewing httpd.conf and its directives. Although the files access.conf and
srm.conf both exist, these are old files which are no longer used by most administrators, and you will find no directives there.

httpd.conf contains a great deal of documentation itself, followed by the default configuration directives recommended when
starting with the Apache server. Begin by reading these comments to understand the configuration file, and make small changes,
starting Apache in a console window with each change. If you make a mistake, it will be easier to back up to configuration that last
worked. You will have a better idea of which change caused the server to fail.

The main differences in Apache for Windows are:

Because Apache for Windows is multithreaded, it does not use a separate process for each request, as Apache does with
Unix. Instead there are usually only two Apache processes running: a parent process, and a child which handles the
requests. Within the child each request is handled by a separate thread. So, "process"-management directives are different:

MaxRequestsPerChild - Like the Unix directive, this controls how many requests a process will serve before
exiting. However, unlike Unix, a process serves all the requests at once, not just one, so if this is set, it is
recommended that a very high number is used. The recommended default, MaxRequestsPerChild 0, does not
cause the process to ever exit.

❍

ThreadsPerChild - This directive is new, and tells the server how many threads it should use. This is the maximum
number of connections the server can handle at once; be sure and set this number high enough for your site if you
get a lot of hits. The recommended default is ThreadsPerChild 50.

❍

●

The directives that accept filenames as arguments now must use Windows filenames instead of Unix ones. However,
because Apache uses Unix-style names internally, you must use forward slashes, not backslashes. Drive letters can be used;
if omitted, the drive with the Apache executable will be assumed.

●

Apache for Windows has the ability to load modules at runtime, without recompiling the server. If Apache is compiled
normally, it will install a number of optional modules in the \modules directory. To activate these, or other modules, the
new LoadModule directive must be used. For example, to active the status module, use the following (in addition to the
status-activating directives in access.conf):

 LoadModule status_module modules/mod_status.so

Information on creating loadable modules is also available. Note that some 3rd party modules may be distributed in the old
style names, ApacheModuleFoo.dll. Always set the LoadModule command as directed as documented by the 3rd party
module's own documentation.

●

Apache for Windows version 1.3 series is implemented in synchronous calls. This poses an enormous problem for CGI
authors, who won't see unbuffered results sent immediately to the browser. This is not the behavior described for CGI in
Apache, but it is a side-effect of the Windows port. Apache 2.0 is making progress to implement the expected asynchronous
behavior, and we hope to discover that the NT/2000 implementation allows CGI's to behave as documented.

●

Apache can also load ISAPI Extensions (i.e., Internet Server Applications), such as those used by Microsoft's IIS, and other
Windows servers. More information is available. Note that Apache CANNOT load ISAPI Filters.

●

When running CGI scripts, the method Apache uses to find the interpreter for the script is configurable using the
ScriptInterpreterSource directive.

●

Using Apache with Microsoft Windows

http://httpd.apache.org/docs/windows.html (4 of 6) [12/05/2001 4:49:38 PM]

Since it is often difficult to manage files with names like .htaccess under windows, you may find it useful to change the
name of this configuration file using the AccessFilename directive.

●

Running Apache in a Console Window

The Start menu icons and the NT Service manager can provide a simple interface for administering Apache. But in some cases it is
easier to work from the command line.

When working with Apache it is important to know how it will find the configuration files. You can specify a configuration file on
the command line in two ways:

-f specifies a path to a particular configuration file:●

 apache -f "c:\my server\conf\my.conf"

 apache -f test\test.conf

-n specifies the configuration file of an installed Apache service (Apache 1.3.7 and later):●

 apache -n "service name"

In these cases, the proper ServerRoot should be set in the configuration file.

If you don't specify a configuration file name with -f or -n, Apache will use the file name compiled into the server, usually
"conf/httpd.conf". Invoking Apache with the -V switch will display this value labeled as SERVER_CONFIG_FILE. Apache will
then determine its ServerRoot by trying the following, in this order:

A ServerRoot directive via a -C switch.●

The -d switch on the command line.●

The current working directory●

A registry entry, created if you did a binary install.●

The server root compiled into the server.●

The server root compiled into the server is usually "/apache". invoking apache with the -V switch will display this value labeled as
HTTPD_ROOT.

When invoked from the start menu, Apache is usually passed no arguments, so using the registry entry is the preferred technique for
console Apache.

During a binary installation, a registry key will have been installed, for example:

 HKEY_LOCAL_MACHINE\Software\Apache Group\Apache\1.3.13\ServerRoot

This key is compiled into the server and can enable you to test new versions without affecting the current version. Of course you
must take care not to install the new version on top of the old version in the file system.

If you did not do a binary install then Apache will in some scenarios complain about the missing registry key. This warning can be
ignored if it otherwise was able to find its configuration files.

The value of this key is the "ServerRoot" directory, containing the conf directory. When Apache starts it will read the httpd.conf file
from this directory. If this file contains a ServerRoot directive which is different from the directory obtained from the registry key
above, Apache will forget the registry key and use the directory from the configuration file. If you copy the Apache directory or
configuration files to a new location it is vital that you update the ServerRoot directory in the httpd.conf file to the new location.

To run Apache from the command line as a console application, use the following command:

 apache

Apache will execute, and will remain running until it is stopped by pressing control-C.

Using Apache with Microsoft Windows

http://httpd.apache.org/docs/windows.html (5 of 6) [12/05/2001 4:49:38 PM]

Controlling Apache in a Console Window

You can tell a running Apache to stop by opening another console window and running:

 apache -k shutdown

Note: This option is only available with Apache 1.3.3 and later.

For earlier versions, you must use Control-C in the Apache console window to shut down the server.

From version 1.3.3 through 1.3.12, this should be used instead of pressing Control-C in a running Apache console window, because
it allowed Apache to end any current transactions and cleanup gracefully.

As of version 1.3.13 pressing Control-C in the running window will cleanup Apache quite gracefully, and you may use -k stop as an
alias for -k shutdown. Earlier versions do not understand -k stop.

You can also tell Apache to restart. This makes it re-read the configuration files. Any transactions in progress are allowed to
complete without interruption. To restart Apache, run:

 apache -k restart

Note: This option is only available with Apache 1.3.3 and later. For earlier versions, you need to use Control-C in the
Apache console window to shut down the server, and then restart the server with the Apache command.

Another very useful feature is the configuration files test option. To test the Apache configuration files, run:

 apache -t

This is especially useful following alterations to the configuration files while Apache is still running. You can make the changes,
confirm that the syntax is good by issuing the "apache -t" command, then restart Apache with "apache -k restart". Apache will
re-read the configuration files, allowing any transactions in progress to complete without interruption. Any new request will then be
served using the new configuration.

Note: for people familiar with the Unix version of Apache, these commands provide a Windows equivalent to kill -TERM pid
and kill -USR1 pid. The command line option used, -k, was chosen as a reminder of the "kill" command used on Unix.

Apache HTTP Server

Using Apache with Microsoft Windows

http://httpd.apache.org/docs/windows.html (6 of 6) [12/05/2001 4:49:38 PM]

Apache HTTP Server

Compiling Apache for Microsoft Windows

There are many important points before you begin compiling Apache. See Using Apache with Microsoft Windows before you
begin.

Compiling Apache requires Microsoft Visual C++ 5.0 or 6.0 to be properly installed. It can be built with command-line tools, or
within the Visual Studio environment. Consult the VC++ manual to determine how to install them. Be especially aware that the
vcvars32.bat file from the Program Files/DevStudio/VC/bin folder, and the setenv.bat file from the Platform SDK, may be required
to prepare the command-line tools for command-line builds (e.g. using nmake). To install apache with the Makefile.win or the
InstallBin project in the Visual Studio IDE, the awk utility is also required.

First, you should install awk.exe where it can be found in the path and the DevStudio environment, if you plan to use the IDE. There
are many versions of awk available for Windows; the easiest to install is available from Brian Kernighan's
http://cm.bell-labs.com/cm/cs/who/bwk/ site. When downloading http://cm.bell-labs.com/cm/cs/who/bwk/awk95.exe from this site,
you must save it with the name awk.exe rather than awk95.exe.

Note that DevStudio will only find awk.exe if its location is listed under the Tools menu Options... Directories settings for the
Executable files. Add the path where awk.exe resides to this list, as needed.

Then unpack the Apache distribution into an appropriate directory. Open a command-line prompt, and change to the src
subdirectory of the Apache distribution.

The master Apache makefile instructions are contained in the Makefile.win file. To compile Apache on Windows NT, simply
use one of the following commands:

nmake /f Makefile.win _apacher (release build)●

nmake /f Makefile.win _apached (debug build)●

These will both compile Apache. The latter will include debugging information in the resulting files, making it easier to find bugs
and track down problems.

If you get an error such as "the name specified is not recognized..." then you need to run vcvars32.bat first. Enter the following
command;

 "c:\Program Files\DevStudio\VC\Bin\VCVARS32.BAT"

(you will need to adjust this command so it matches the directory where your VC was installed.)

If you are a Visual C++ 5.0 user, and have installed a recent Platform SDK, you may also need to enter the following command
(adjusted for the install directory of the Platform SDK update);

 "c:\Program Files\Platform SDK\SETENV.BAT"

Then try the nmake command again.

Note that the Windows Platform SDK update is required to enable all supported mod_isapi features. The SDK files distributed with
Microsoft Visual C++ 5.0 are out of date. Without a recent update, Apache will issue warnings under MSVC++ 5.0 that some
mod_isapi features will be disabled. Look for the update at http://msdn.microsoft.com/platformsdk/.

Apache can also be compiled using VC++'s Visual Studio development environment. To simplify this process, a Visual Studio
workspace, Apache.dsw, is provided in the src folder. This workspace exposes the entire list of working .dsp projects that are

Compiling Apache for Microsoft Windows

http://httpd.apache.org/docs/win_compiling.html (1 of 3) [12/05/2001 4:49:39 PM]

http://cm.bell-labs.com/cm/cs/who/bwk/
http://cm.bell-labs.com/cm/cs/who/bwk/awk95.exe
http://msdn.microsoft.com/platformsdk/

required for the complete Apache binary release. It includes dependencies between the projects to assure that they are built in the
appropriate order. InstallBin is the top-level project that will build all other projects, and install the compiled files into their proper
locations.

These .dsp project files are distributed in Visual C++ 6.0 format. Visual C++ 5.0 (97) will recognize them with the single exception
of the /ZI flag, which corresponds to the VC 5.0 /Zi flag for debugging symbols. To quickly prepare the .dsp files for the Visual
Studio 5.0 (97), you can use the perl scripts distributed in the src\helpers folder:

 cd src\helpers
 cvstodsp5.pl

This command assumes you have a Perl interpreter installed and registered for files of type .pl. The list of converted .dsp project
files will be displayed as they are converted. If you contribute back a patch that offers revised project files, please convert them
back with the script dsp5tocvs.pl, which puts the projects back to Visual Studio 6.0 format.

The core .dsp projects built by Apache.dsw and makefile.win are:

os\win32\ApacheOS.dsp●

os\win32\Win9xConHook.dsp●

regex\regex.dsp●

ap\ap.dsp●

lib\expat-lite\xmltok.dsp●

lib\expat-lite\xmlparse.dsp requires xmltok●

lib\sdbm.dsp●

main\gen_uri_delims.dsp●

main\gen_test_char.dsp●

ApacheCore.dsp requires all of the above●

Apache.dsp requires ApacheCore●

In addition, the os\win32 subdirectory contains project files for the optional modules, all of which require ApacheCore.

os\win32\mod_auth_anon.dsp●

os\win32\mod_auth_dbm.dsp also requires sdbm●

os\win32\mod_auth_digest.dsp●

os\win32\mod_cern_meta.dsp●

os\win32\mod_digest.dsp●

os\win32\mod_expires.dsp●

os\win32\mod_headers.dsp●

os\win32\mod_info.dsp●

os\win32\mod_mime_magic.dsp●

os\win32\mod_proxy.dsp●

os\win32\mod_rewrite.dsp●

os\win32\mod_speling.dsp●

os\win32\mod_status.dsp●

os\win32\mod_unique_id.dsp●

os\win32\mod_usertrack.dsp●

os\win32\mod_vhost_alias.dsp●

The support\ folder contains project files for additional programs that are not part of the Apache runtime, but are used by the
administrator to maintain password and log files.

support\htdigest.dsp●

support\htpasswd.dsp●

Compiling Apache for Microsoft Windows

http://httpd.apache.org/docs/win_compiling.html (2 of 3) [12/05/2001 4:49:39 PM]

support\logresolve.dsp●

support\rotatelogs.dsp●

Once Apache has been compiled, it needs to be installed in its server root directory. The default is the \Apache directory, on the
current hard drive.

To install the files into the c:\ServerRoot directory automatically, use one the following nmake commands (see above):

nmake /f Makefile.win installr INSTDIR=c:\ServerRoot (for release build)●

nmake /f Makefile.win installd INSTDIR=c:\ServerRoot (for debug build)●

The c:\ServerRoot argument to INSTDIR gives the installation directory (it can be omitted if Apache is to be installed into
\Apache).

This will install the following:

c:\ServerRoot\Apache.exe - Apache program●

c:\ServerRoot\ApacheCore.dll - Apache runtime [shared library]●

c:\ServerRoot\Win9xConHook.dll - Win9x console fixups [shared library]●

c:\ServerRoot\xmlparse.dll - XML parser [shared library]●

c:\ServerRoot\xmltok.dll - XML token engine [shared library]●

c:\ServerRoot\bin*.exe - Administration programs●

c:\ServerRoot\cgi-bin - Example CGI scripts●

c:\ServerRoot\conf - Configuration files directory●

c:\ServerRoot\icons - Icons for FancyIndexing●

c:\ServerRoot\include*.h - Apache header files●

c:\ServerRoot\htdocs - Welcome index.html pages●

c:\ServerRoot\htdocs\manual - Apache documentation●

c:\ServerRoot\lib - Static library files●

c:\ServerRoot\libexec - Dynamic link libraries●

c:\ServerRoot\logs - Empty logging directory●

c:\ServerRoot\modules\mod_*.dll - Loadable Apache modules●

If you do not have nmake, or wish to install in a different directory, be sure to use a similar naming scheme.

To simplify the process, dependencies between all projects are defined in the Microsoft Visual Studio workspace file:

 src/Apache.dsw

This assures that lower-level sources are rebuilt from within Visual Studio. The top level project is InstallBin, which invokes
Makefile.win to move the compiled executables and dlls. You may personalize the INSTDIR= setting by changing the Settings for
InstallBin, Build command line entry under the General tab. The default from within the InstallBin.dsp project is one level up (..)
from the src tree. Modify the InstallBin settings and edit the INSTDIR=.. entry to the desired target directory.

Apache HTTP Server

Compiling Apache for Microsoft Windows

http://httpd.apache.org/docs/win_compiling.html (3 of 3) [12/05/2001 4:49:39 PM]

Apache HTTP Server

Running Apache for Windows as a Service

Apache can be run as a service on Windows NT/2000. (There is also some experimental support for similar behavior on Windows
95/98, introduced with Apache 1.3.13).

Installing Apache as a service should only be done once you can successfully run it in a console window. See Using Apache with
Microsoft Windows before you attempt to install or run Apache as a service. Changes to the httpd.conf file should always be
followed by starting Apache as a console window. If this succeeds, the service should succeed.

NOTE: Prior to version 1.3.13, the configuration was not tested prior to performing the installation, and a lack of service
dependencies often caused the console window to succeed, but the service would still fail. See below if you are having problems
running a version of Apache prior to 1.3.13 to resolve the issue. If you have this problem with version 1.3.13 or greater, first try
uninstalling (-u) and re-installing (-i) the Apache service. Better yet, upgrade to the most recent version.

To start Apache as a service, you first need to install it as a service. Multiple Apache services can be installed, each with a different
name and configuration. To install the default Apache service named "Apache", choose the "Install as Service for All Users" option
when launching the Apache installation package. Once this is done you can start the "Apache" service by opening the Services
window (in the Control Panel, hidden in "Administrative Tools" on Windows 2000), selecting Apache, then clicking on Start.
Apache will now be running, hidden in the background. You can later stop Apache by clicking on Stop. As an alternative to using
the Services window, you can start and stop the "Apache" service from the command line with

 NET START APACHE
 NET STOP APACHE

See Controlling Apache as a Service for more information on installing and controlling Apache services.

Apache, unlike many other Windows NT/2000 services, logs most errors to its own error.log file, in the logs folder within the
Apache server root folder. You will find few Apache error details in the Windows NT Event Log. Only errors as Apache
attempts to start are captured in the Application Event Log.

After starting Apache as a service (or if you have trouble starting it) you can test it using the same procedure as for running in a
console window. Remember to use the command:

 apache -n "service name"

to assure you are using the service's default configuration.

Running Apache for Windows as a Service

Note: The -n option to specify a service name is only available with Apache 1.3.7 and later. Earlier versions of Apache only
support the default service name 'Apache'. Only version 1.3.21 supports Windows 2000 ability to 'rename' the display name of a
service.

You can install Apache as a Windows NT service as follows:

 apache -i -n "service name"

Running Apache for Windows as a Service

http://httpd.apache.org/docs/win_service.html (1 of 5) [12/05/2001 4:49:41 PM]

To install a service to use a particular configuration, specify the configuration file when the service is installed:

 apache -i -n "service name" -f "\my server\conf\my.conf"

You can pass any other arguments, such as -d to change the default server root directory, -D, -C or -c to change config file
processing, etc. Since these are stored in the registry and are difficult to modify, use this command to clear the options and replace
them with a new list of options;

 apache -k config -n "service name" -f "\my server\conf\my.conf"

To remove an Apache service, use:

 apache -u -n "service name"

The default "service name", if one is not specified, is "Apache".

Once a service is installed, you can use the -n option, in conjunction with other options, to refer to a service's configuration file. For
example:

To test a service's configuration file and report the default options for the service (configured with -i, -k install or -k config) use:

 apache -n "service name" -t

To start a console Apache using a service's configuration file and its default options, use:

 apache -n "service name"

Effective with Apache release 1.3.15, the -k install option was added as an alias to -i, and the -k uninstall option was added as an
alias to -u. The original -i and -u options are deprecated in Apache 2.0. These aliases were added to ease the transition for
administrators running both versions.

Important Note on service dependencies:

Prior to Apache release 1.3.13, the dependencies required to successfully start an installed service were not configured. After
installing a service using earlier versions of Apache, you must follow these steps:

 Run regedt32
 Select Window - "HKEY_LOCAL_MACHINE on Local Machine" from the menu
 Double-click to open the SYSTEM, then the CurrentControlSet keys
 Scroll down and click on the Apache servicename
 Select Edit - Add Value... from the menu
 Fill in the Add Value dialog with
 Value Name: DependOnGroup
 Data Type: REG_MULTI_SZ
 and click OK
 Leave the Multi-String Editor dialog empty and click OK
 Select Edit - Add Value... from the menu
 Fill in the Add Value dialog with
 Value Name: DependOnService
 Data Type: REG_MULTI_SZ
 and click OK
 Type the following list (one per line) in the Multi-String Editor dialog
 Tcpip
 Afd
 and click OK

If you are using COM or DCOM components from a third party module, ISAPI, or other add-in scripting technologies such as
ActiveState Perl, you may also need to add the entry Rpcss to the DependOnService list. To avoid exposing the TCP port 135 when
it is unnecessary, Apache does not create that entry upon installation. Follow the directions above to find or create the

Running Apache for Windows as a Service

http://httpd.apache.org/docs/win_service.html (2 of 5) [12/05/2001 4:49:41 PM]

DependOnService value, double click that value if it already exists, and add the Rpcss entry to the list.

Other installations may require additional dependencies. If any files required at startup reside on a network drive, you may need to
first configure the service to depend on the network redirector (usually lanmanworkstation) and follow the directions below under
the "User Account for Apache Service to Run As" section.

Attempting to use both IIS and Apache, on the same port but on two different IP addresses may require the W3SVC (IIS) to start
prior to Apache, because IIS tries to glom onto all IP addresses (0.0.0.0) as it starts, and will fail if Apache has already started on a
specific IP address.

Apache 1.3.21 introduces a MUCH simpler way to add a dependency. The -W "servicename" argument modifies the -k install or -k
config commands to configure a dependency for Apache. Multiple -W arguments may be given, but they should all occur after the
-k option. For example, to add the LanmanWorkstation dependency to an installed "Apache" service, use this command:

 apache -k config -n Apache -W LanmanWorkstation

User Account for Apache Service to Run As (NT/2000)

When Apache is first installed as a service (e.g. with the -i option) it will run as user "System" (the LocalSystem account). There
should be few issues if all resources for the web server reside on the local system, but it has broad security privileges to affect the
local machine!

LocalSystem is a very privileged account locally, so you shouldn't run any shareware applications there. However,
it has no network privileges and cannot leave the machine via any NT-secured mechanism, including file system,
named pipes, DCOM, or secure RPC.

NEVER grant network privileges to the SYSTEM account! Create a new user account instead, grant the appropriate privileges to
that user, and use the 'Log On As:' option. Select the Start Menu -> Settings -> Control Panel -> Services -> apache service ... and
click the "Startup" button to access this setting.

A service that runs in the context of the LocalSystem account inherits the security context of the SCM. It is not
associated with any logged-on user account and does not have credentials (domain name, user name, and password)
to be used for verification.

The SYSTEM account has no privileges to the network, so shared pages or a shared installation of Apache is invisible to the
service. If you intend to use any network resources, the following steps should help:

Select Apache from the Control Panel's Service dialog and click Startup.●

Verify that the service account is correct. You may wish to create an account for your Apache services.●

Retype the password and password confirmation.●

Go to User Manager for Domains.●

Click on Policies from the title bar menu, and select User Rights.●

Select the option for Advanced User Rights.●

In the drop-down list, verify that the following rights have been granted to the selected account:

Act as part of the operating system❍

Back up files and directories❍

Log on as a service❍

Restore files and directories❍

●

Confirm that the selected account is a member of the Users group.●

Confirm the selected account has access to all document and script directories (minimally read and browse access).●

Confirm the selected account has read/write/delete access to the Apache logs directory!●

If you allow the account to log in as a user, then you can log in yourself and test that the account has the privileges to execute the
scripts, read the web pages, and that you can start Apache in a console window. If this works, and you have followed the steps
above, Apache should execute as a service with no problems.

Note: error code 2186 is a good indication that you need to review the 'Log On As' configuration, since the server can't access a

Running Apache for Windows as a Service

http://httpd.apache.org/docs/win_service.html (3 of 5) [12/05/2001 4:49:41 PM]

required network resource.

Troubleshooting Apache for Windows as a Service

When starting Apache as a service you may encounter an error message from Windows service manager. For example if you try to
start Apache using the Services applet in Windows Control Panel you may get the following message;

 Could not start the apache service on \\COMPUTER
 Error 1067; The process terminated unexpectedly.

You will get this error if there is any problem starting Apache. In order to see what is causing the problem you should follow the
instructions for Testing Apache at the Command Prompt.

Also, Apache 1.3.13 now records startup errors in the Application Event Log under Windows NT/2000, if Apache is run as a
service. Run the Event Viewer and select Log ... Application to see these events.

Check the Application Event Log with the Event Viewer in case of any problems, even if no error message pops up to warn
you that an error occurred.

Running Apache for Windows from the Command Line

For details on controlling Apache service from the command line, please refer to console command line section.

Controlling Apache as a Service

Multiple instances of Apache can be installed and run as services. Signal an installed Apache service to start, restart, or
shutdown/stop as follows:

 apache -n "service name" -k start
 apache -n "service name" -k restart
 apache -n "service name" -k shutdown
 apache -n "service name" -k stop

For the default "Apache" service, the -n Apache option is still required, since the -k commands without the -n option are directed at
Apache running in a console window. The quotes are only required if the service name contains spaces.

Note: the -k stop alias for the -k shutdown command was introduced in Apache version 1.3.13. Earlier versions of Apache will
only recognize the -k shutdown option. Prior to 1.3.3, Apache did not recognize any -k options at all!

Note that you may specify startup options on the apache -k start command line, including the -D, -C and -c options. These affect the
processing of the service configuration, and may be used with an <IfDefine> block to conditionally process directives. You may
also override the server root path or configuration file with the -d or -f options. The options should also be passed to the -k restart
command, but they are ignored if the service is running, and only processed if the service is started.

The service also appears in the Service Control applet on Windows NT/2000. For NT, this is found in the Settings -> Control Panel
-> Services entry, and on 2000 it is found in the Settings -> Control Panel -> Administrative Tools -> Services entry. Here you can
select the desired Apache service to start or stop it. Pass additional options such as -D, -C and -c, or override the default -d or -f
options in the Start Parameters box before clicking the Start button. These options behave identically to the apache -k start
command.

In addition, you can use the native Windows NT/2000 command NET to start and stop Apache services:

 NET START "service name"
 NET STOP "service name"

Again, quotes are only required if the service name contains spaces. There is no way using the NET START command to pass
additional options such as -D, -c or -C using the NET START command. If options are required, use one of the other two methods

Running Apache for Windows as a Service

http://httpd.apache.org/docs/win_service.html (4 of 5) [12/05/2001 4:49:41 PM]

instead.

Experimental Windows 95/98 Service

Note: The service options for Windows 95 and 98 are only available with Apache 1.3.13 and later. Earlier versions of Apache
only supported Apache in a console window for Windows 95/98.

There is some support for Apache on Windows 95/98 to behave in a similar manner as a service on Windows NT/2000. It is
experimental, if it works (at all) the Apache Software Foundation will not attest to its reliability or future support. Proceed at your
own risk!

Once you have confirmed that Apache runs correctly at the Command Prompt you can install, control and uninstall it with the same
commands as the Windows NT/2000 version.

There are, however, significant differences that you should note:

Apache will attempt to start and if successful it will run in the background. If you run the command

 Apache -n "service name" -k start

via a shortcut on your desktop, for example, then if the service starts successfully a console window will flash up but immediately
disappears. If Apache detects any errors on startup such as a incorrect entries in the httpd.conf file, then the console window will
remain visible. This may display an error message which will be useful in tracking down the cause of the problem, and you should
also review the error.log file in the Apache logs directory.

Windows 95/98 does not support NET START or NET STOP commands so you must use Apache's Service Control options at a
command prompt. You may wish to set up a shortcut for each of these commands so that you can just choose it from the start menu
or desktop to perform the required action.

Apache and Windows 95/98 offer no support for running the Apache service as a specific user with network privileges. In fact,
Windows 95/98 offers no security on the local machine, either. This is the simple reason that the Apache Software Foundation never
endorses the use of Windows 95/98 as a public httpd server. These facilities exist only to assist the user in developing web content
and learning the Apache server, and perhaps as a intranet server on a secured, private network.

Apache HTTP Server

Running Apache for Windows as a Service

http://httpd.apache.org/docs/win_service.html (5 of 5) [12/05/2001 4:49:41 PM]

Apache HTTP Server

Using Apache with Cygwin

This document explains how to install, configure and run Apache 1.3 under the Cygwin layer for Microsoft Windows. Cygwin is a
POSIX.1 emulation layer for 32-bit Microsoft Windows operating systems.

The Apache Group does not guarantee that this software will work as documented, or even at all. If you find any bugs, please
document them on our bug reporting page.

Latest development news, pre-compiled distribution binaries, and third-party modules as DLLs, may be found at
http://apache.dev.wapme.net/. Contributions are highly welcome (please see TODO list); please submit your code or suggestions to
the bug report page, or join the dev@httpd.apache.org mailing list.

The Win32 port of Apache is built on its own, custom code within Apache to assure interoperability with Windows operating
systems. While it is considered release quality, it is slower and less thoroughly tested than the Unix ports. The Cygwin alternative
uses the well tested Unix code by using the Cygwin portability layer for POSIX.1 emulation. The Cygwin port may suffer from gaps
in security or reliability due to the interaction of the Cygwin compatibility layer with the native Windows API.

The Win32 port will be more familiar to most Windows users. The Cygwin port (including the build environment) will be more
familiar to Unix admins and developers. Due to these two different code bases, the security and reliability of the two ports are
unrelated to each other. The Win32 port should be considered the more secure of the two at this time. The Win32 port is
recommended for most Windows users, however the Cygwin port offers an extra layer of compatibility for Unix developers.

Apache still performs best, and is most reliable, on Unix platforms. First benchmarks have shown that the same Apache setup on
Cygwin performs about 30% slower than the corresponding native Windows version.

Most of this document assumes that you have a working Cygwin installation and want to compile Apache yourself from the original
distribution sources.

History of Apache for Cygwin●

Differences from Apache for Windows (native)●

Requirements●

Downloading Apache for Cygwin●

Configuring and Installing Apache for Cygwin●

Running Apache for Cygwin●

Running Apache for Cygwin as a Service●

History of Apache for Cygwin

Cygwin support for Apache began with Apache 1.2.6 and Cygwin b18.

Due to licensing issues there has not been an official binary distribution until Red Hat Inc. (who merged with Cygnus Solutions
Inc.) changed their Cygwin license to ensure compiled executables do not fall under GPL license if the distributed software is
considered as open source.

Cygwin is supported in the official source distributions from Apache 1.3.20 and later. Pre-compiled binaries for the Cygwin

Using Apache with Cygwin

http://httpd.apache.org/docs/cygwin.html (1 of 6) [12/05/2001 4:49:44 PM]

http://www.cygwin.com/
http://httpd.apache.org/bug_report.html
http://apache.dev.wapme.net/
http://apache.dev.wapme.net/TODO.cygwin

platform (without the cygwin1.dll) will be supplied at http://www.apache.org/httpd for each released version.

Differences from Apache for Windows (native)

Both versions, Apache for Windows and Apache for Cygwin, are designed to run on the same operating systems, the Windows NT
and Windows 2000 family. But there are considerable differences between the two flavors.

While Apache for Windows is a native Windows port, Apache for Cygwin relies on the Cygwin POSIX.1 emulation layer provided
by the cygwin1.dll dynamic library to create a Unix compatible environment. Therefore we consider Apache for Cygwin closer
to the Unix side then to the Windows side, even while it runs on Windows.

Most significant differences are the amount of changes to the source code needed to compile and run Apache on the Cygwin
platform. While the native Windows port needs major changes and platform specific additions, the Cygwin based port changes are
very small and most of the Unix source code can be used without major changes on the Cygwin platform.

When to use Apache for Cygwin and/or Apache versus Windows?
Apache for Cygwin is intended to be most useful if you want a seamless transition from Unix systems to Windows systems for your
HTTP services.

If you are using Windows NT or Windows 2000 for development and office purposes, but your productive HTTP server
environments are Unix based systems, you may use Apache for Cygwin to develop on Windows and simply copy whole Apache
configurations (i.e., httpd.conf) and Perl (mod_perl), PHP (mod_php) or Python (mod_snake) applications to your
productive Unix systems.

What about modules (mod_foo) for Apache for Cygwin?
Apache for Cygwin can be built with most of the available Apache modules with no or minimal changes. Many popular modules
have been compiled and tested with Apache for Cygwin, including mod_dav, mod_ssl, mod_php, mod_perl, mod_gzip,
and mod_jserv.

While there are developers who directly support the Windows native port of Apache, very few module developers do. That is why it
is can be difficult to make a Unix-based Apache installation with third-party modules work the same way on the Windows side
using the native port. Apache for Cygwin makes this much easier.

What are the differences in the configuration files?
While the Apache for Windows port uses Windows native path names to refer files and directorys, like

 # httpd.conf (for Windows)
 DocumentRoot "c:/apache/htdocs"

Apache for Cygwin can use unmodified POSIX style path names like

 # httpd.conf (for Cygwin)
 DocumentRoot "/usr/local/apache/htdocs"

What about performance?
Apache for Cygwin is not as high-performance as Apache for Windows on the same hardware.

This is to be expected, because Cygwin emulates a Unix environment on a "foreign" operating system, while Apache for Windows
uses Windows code in its own native environment. First benchmark results have shown that Apache for Cygwin is about 30%
slower than native Apache for Windows counterpart.

Requirements

This Apache 1.3 port for Cygwin is designed to run on Windows NT 4.0 and Windows 2000, NOT on Windows 95 or 98. Windows
NT 4.0 and Windows 2000 have both been successfully tested and approved. In all cases TCP/IP networking must be installed.

Cygwin 1.x is required to compile and run this version. Cygwin 1.1.8 and 1.3.2 have been tested and approved on both supported
OSes.

Note:If you want to compile shared DLL modules using apxs you will need a patched version of ld.exe with

Using Apache with Cygwin

http://httpd.apache.org/docs/cygwin.html (2 of 6) [12/05/2001 4:49:44 PM]

http://www.apache.org/httpd

--auto-import support, which can be found at http://sourceforge.net/projects/kde-cygwin/.

Downloading Apache for Cygwin

The Cygwin platform is supported out of the box by Apache 1.3.20 and later. This means there is no extra download required for the
Cygwin platform. The latest version of Apache can be found on the Apache httpd web site at http://httpd.apache.org/. The site lists
the current release, any more recent development versions, and information on any mirror sites.

Configuring and Installing Apache for Cygwin

Apache on Cygwin is configured and compiled the same way as on Unix systems. Refer to the general configuration and installation
documents for details.

There are three ways to configure and build Apache for Cygwin, depending on how additional Apache modules should be used:

Static linked version

To build a static linked version of httpd including additional modules, use the following commands in the shell:

 $ cd apache_1.3.x
 $./configure [--enable-module=module|--add-module=/path/to/module]
 $ make

This will produce the required extra libraries or object files for module and link everything to src/httpd.exe.

●

Shared core, DLL linked version ('one-for-all' version)

To build a DLL version of httpd including additional modules, use the following commands:

 $ cd apache_1.3.x
 $./configure --enable-rule=SHARED_CORE \
 [--enable-module=module|--add-module=/path/to/module]
 $ make
 $ make install

This will produce the required extra libraries or object files which hold all static linked code. Then dllwrap and
dlltool will export all of those (including any additional module code) to the shared libhttpd.dll and create the
libhttpd.a import library which is required for linking httpd.exe.

Note: After make install is performed you will find the resulting core DLL module libhttpd.dll within
/usr/local/apache/libexec. This is due to the installation process. Please move the file to Apache's bin
directory, i.e.

 $ mv /usr/local/apache/libexec/libhttpd.dll /usr/local/apache/bin

The core DLL module libhttpd.dll is the only file that should reside in /usr/local/apache/bin directory. All
other shared DLL modules mod_foo.dll should be located in /usr/local/apache/libexec.

●

Shared DLL modules linked version

This method is currently ONLY supported using a patched version of ld.exe which support the --auto-import
option. Please see the requirements section for where to get that version.

To build a dynamic loadable DLL version of httpd which can load DLL modules on the fly (at runtime), proceed as
follows:

First build Apache's shared core as follows:

 $ cd apache_1.3.x
 $./configure --enable-rule=SHARED_CORE --enable-module=so \

❍

●

Using Apache with Cygwin

http://httpd.apache.org/docs/cygwin.html (3 of 6) [12/05/2001 4:49:44 PM]

http://sourceforge.net/projects/kde-cygwin/
http://httpd.apache.org/

 [--enable-module=module|--add-module=/path/to/module] \
 [--enable-shared=module]
 $ make

You will notice that there is a warning message shown which lets you know that the shared core DLL library
src/libhttpd.dll is missing while trying to link the shared DLL modules mod_foo.dll.

Unfortunatly while Apache's build process the shared modules are linked before the shared core import library
src/libhttpd.dll has been made. The shared modules depend on this import library, so they can not link for
the first time you run make.

Re-run make to build the shared module DLLs and install the whole package to the installation directory:

 $ make
 $ make install

All shared modules are placed into libexec, including the shared core DLL libhttpd.dll. When Apache's
/bin/httpd is started it has to dynamicly link libhttpd.dll while runtime. That is why you have to place
the shared core DLL libhttpd.dll to the same direcotry where httpd.exe resides, i.e.
/usr/local/apache/bin.

❍

Add configuration directives to conf/httpd.conf to load and activate shared DLL modules at runtime:

 # httpd.conf
 [...]
 LoadModule foo_module libexec/mod_foo.dll
 AddModule mod_foo.c
 [...]

❍

Using apxs to create shared DLL modules

To make the extending httpd with shared DLL modules easier, you can use apxs.

Make sure you have configured $CFG_LDFLAGS_SHLIB within apxs to include the --shared directive and the path
to the shared code DLL libhttpd.dll.

After performing make install you will probably have the following lines within your apxs:

 # apxs
 [...]
 my $CFG_LD_SHLIB = q(dllwrap --export-all --output-def libhttpd.def --implib
libhttpd.a --driver-name gcc); # substituted via Makefile.tmpl
 my $CFG_LDFLAGS_SHLIB = q(-g); # substituted via Makefile.tmpl
 my $CFG_LIBS_SHLIB = q(); # substituted via Makefile.tmpl
 [...]

Change these to reflect the new compile options needed for shared DLL modules as follows:

 # apxs
 [...]
 my $CFG_LD_SHLIB = q(gcc); # substituted via Makefile.tmpl
 my $CFG_LDFLAGS_SHLIB = q(-g --shared); # substituted via Makefile.tmpl
 my $CFG_LIBS_SHLIB = q(/path/to/libhttpd.dll); # substituted via
Makefile.tmpl
 [...]

Now you should be able to create a shared DLL module from a mod_foo.c source file with:

 $ apxs -c mod_foo.c -o mod_foo.dll

Place the resulting DLL in Apache's libexec directory, so the dlopen() function within the compiled in mod_so.c
module can find and load it at runtime.

●

Using Apache with Cygwin

http://httpd.apache.org/docs/cygwin.html (4 of 6) [12/05/2001 4:49:44 PM]

Running Apache for Cygwin

Apache on Cygwin can be started and stopped in the same manner as on Unix systems. You may also use the apachectl tool for
starting and stopping Apache.

Starting Apache

If installed with the default Apache directory layout, you can start httpd as follows:

 $ /usr/local/apache/bin/httpd

An explicit background indicator (&) is not required. The parent process is automatically detached from the current
terminal. Check the global error_log to see if Apache started cleanly without any major problems.

●

Stopping Apache

To stop Apache send at least a SIGTERM signal to the parent httpd process:

 $ kill -TERM `cat /usr/local/apache/logs/httpd.pid`

●

Gracefully Restarting Apache

In order to update configuration directives and reload the httpd.conf configuration file, send a SIGHUP to the parent
httpd process:

 $ kill -HUP `cat /usr/local/apache/logs/httpd.pid`

●

Running Apache for Cygwin as a Service

Apache on Cygwin can be invoked as a Windows NT or Windows 2000 service. Cygwin has its own cygrunsrv.exe facility to
define, remove, start, and stop services as follows:

Installing Apache as a new Service

Use the following statement to install httpd.exe as a new service:

 $ cygrunsrv -I service_name-p /usr/local/apache/bin/httpd.exe [-a arguments] \
 [-e VAR=VALUE] [-t auto|manual] [-u user] [-w passwd]

Where -a is used to pass command line arguments (such as -DFOO defines) to httpd.exe, and -e is used to pass
environment variables. If necessary you may use the -t options to set the autostart configuration for the service. If you
want the new service to run under a different userid, you will have to supply the -u and -w options.

●

Starting Apache as a Service

After the new service is installed it can be started using the following command:

 $ cygrunsrv -S service_name

Check your process table and global error_log file to ensure Apache has started without any major problems.

●

Stopping an Apache Service

A running Apache service may be stopped using the following command:

 $ cygrunsrv -E service_name

This will stop all running httpd.exe processes and shutdown the HTTP service for the machine.

●

Removing an Apache Service

An installed Apache service may be removed from Windows NT or Windows 2000 using the following command:

●

Using Apache with Cygwin

http://httpd.apache.org/docs/cygwin.html (5 of 6) [12/05/2001 4:49:44 PM]

http://httpd.apache.org/docs/programs/apachctl.html

 $ cygrunsrv -R service_name

This will remove your previously defined and installed service from the machine.

Please refer to the man page for cygrunsrv and the Cygwin mailing list for further details of how services are invoked.

Any additional contributions to this document and the Cygwin support for Apache are highly welcome. Please send them to Stipe
Tolj <tolj@wapme-systems.de>.

Apache HTTP Server

Using Apache with Cygwin

http://httpd.apache.org/docs/cygwin.html (6 of 6) [12/05/2001 4:49:44 PM]

mailto:tolj@wapme-systems.de

Apache HTTP Server

Overview of the Apache EBCDIC Port

As of Version 1.3, the Apache HTTP Server includes a port to (non-ASCII) mainframe machines which use the EBCDIC character
set as their native codeset.
(Initially, that support covered only the Fujitsu-Siemens family of mainframes running the BS2000/OSD operating system, a
mainframe OS which features a SVR4-derived POSIX subsystem. Later, the two IBM mainframe operating systems TPF and
OS/390 were added).

EBCDIC-related conversion functions

The EBCDIC related directives EBCDICConvert, EBCDICConvertByType, and EBCDICKludge are available only if the
platform's character set is EBCDIC (This is currently only the case on Fujitsu-Siemens' BS2000/OSD and IBM's OS/390 and
TPF operating systems). EBCDIC stands for Extended Binary-Coded-Decimal Interchange Code and is the codeset used on
mainframe machines, in contrast to ASCII which is ubiquitous on almost all micro computers today. ASCII (or its extension latin1)
is the basis for the HTTP transfer protocol, therefore all EBCDIC-based platforms need a way to configure the code set conversion
rules required between the EBCDIC based mainframe host and the HTTP socket protocol.

On an EBCDIC based system, HTML files and other text files are usually saved encoded in the native EBCDIC code set, while
image files and other binary data are stored with identical encoding as on ASCII based machines. When the Apache server accesses
documents, it must therefore make a distinction between text files (to be converted to/from ASCII, depending on the transfer
direction) and binary files (to be delivered unconverted). Such a distinction can be made based on the assigned MIME type, or based
on the file extension (i.e., files sharing a common file suffix).

By default, the configuration is symmetric for input and output (i.e., when a PUT request is executed for a document which was
returned by a previous GET request, then the resulting uploaded copy should be identical to the original file). However, the
conversion directives allow for specifying different conversions for input and output.

The directives EBCDICConvert and EBCDICConvertByType are used to assign the conversion setting (On or Off) based on file
extensions or MIME types. Each configuration setting can be defined for input only (e.g., PUT method), output only (e.g., GET
method), or both input and output. By default, the conversion setting is applied for input and output.

Note that after modifying the conversion settings for a group of files, it is not sufficient to restart the server. The reason for this is
the fact that a cached copy of a document (in a browser or proxy cache) will not get revalidated by contents, but only by date. Since
the modification time of the document did not change, browsers will assume they can reuse the cached copy.
To recover from this situation, you must either clear all cached copies (browser and proxy cache!), or update the modification time
of the documents (using the touch command on the server).

Note also that server-parsed documents (CGI scripts, .shtml files, and other interpreted files like PHP scripts etc.) are not subject to
any input conversion and must therefore be stored in EBCDIC form on the server side.

In absense of any EBCDICConvertByType directive, and if no matching EBCDICConvert was found, Apache falls back to an
internal heuristic which assumes that all documents with MIME types starting with "text/", "message/" or "multipart/" as well as the
MIME type "application/x-www-form-urlencoded" are text documents stored in EBCDIC, whereas all other documents are binary
files.

In order to provide backward compatibility with older versions of apache, the EBCDICKludge directive allows for a less powerful
mechanism to control the conversion of documents to and from EBCDIC.

Note:

The Apache EBCDIC Port

http://httpd.apache.org/docs/ebcdic.html (1 of 4) [12/05/2001 4:49:46 PM]

http://www.fujitsu-siemens.com/servers/bs2osd/osdbc_us.htm

The EBCDICKludge directive is deprecated, since its functionality is superseded by the more powerful
EBCDICConvert and EBCDICConvertByType directives.

The directives are applied in the following order:

First, the configured EBCDICConvert directives in the current context are evaluated in configuration file order. As soon as
a matching file extension is found, the search stops and the configured conversion is applied.
EBCDICConvert settings inherited from parent directories are tested after the more specific (deeper) directory levels.

1.

If the EBCDICKludge is in effect, the next step tests for a MIME type of the format type/x-ascii-subtype. If the document
has such a type, then the "x-ascii-" substring is removed and the conversion set to Off.

2.

In the next step, the configured EBCDICConvertByType directives are evaluated in configuration file order. If the
document has a matching MIME type, the search stops and the configured conversion is applied.
EBCDICConvertByType settings inherited from parent directories are tested after the more specific (deeper) directory
levels.
If no EBCDICConvertByType directive at all exists in the current context, the server falls back to the simple heuristics
which assume that MIME types starting with "text/", "message/" or "multipart/" (plus the special type
"application/x-www-form-urlencoded" used in simple POST requests) imply a conversion, while all the rest is delivered
unconverted (i.e., binary).

3.

Technical Details

Since all Apache input and output is based upon the BUFF data type and its methods, the easiest solution was to add the actual
conversion to the BUFF handling routines. The conversion must be settable at any time, so BUFF flags were added which define
whether a BUFF object has currently enabled conversion or not. Two such flags exist: one for data read from the client (ASCII to
EBCDIC conversion) and one for data returned to the client (EBCDIC to ASCII conversion).

During sending of the header, Apache determines (based on the returned MIME type for the request) whether conversion should be
used or the document returned unconverted. It uses this decision to initialize the BUFF flag when the response output begins.
Modules should therefore determine the MIME type for the current request before initiating the response by calling
ap_send_http_headers().

The BUFF flag is modified at several points in the HTTP protocol:

set (In and Out) before a request is received (because the request and the request header lines are always in ASCII format)●

set/unset (for Input data) when the request body is received - depending on the content type of the request body (because
the request body may contain ASCII text or a binary file)

●

set (for returned Output) before a response header is sent (because the response header lines are always in ASCII format)●

set/unset (for returned Output) when the response body is sent - depending on the content type of the response body
(because the response body may contain text or a binary file)

●

Additional transparent transitions may occur for extracting/inserting the HTTP/1.1 chunking information from/into the input/output
body data stream, and for generating multipart headers for range requests. (See RFC2616 and src/main/http_protocol.c for details.)

Porting Notes

The relevant changes in the source are #ifdef'ed into two categories:

#ifdef CHARSET_EBCDIC

Code which is needed for any EBCDIC based machine. This includes character translations, differences in
contiguity of the two character sets, flags which indicate which part of the HTTP protocol has to be converted and
which part doesn't etc.

#ifdef _OSD_POSIX | TPF | OS390

1.

The Apache EBCDIC Port

http://httpd.apache.org/docs/ebcdic.html (2 of 4) [12/05/2001 4:49:46 PM]

Code which is needed for the Fujitsu-Siemens BS2000/OSD | IBM TPF | IBM OS390 mainframe platforms only.
This deals with include file differences and socket and fork implementation topics which are only required on the
respective platform.

The possibility to translate between ASCII and EBCDIC at the socket level (on BS2000 POSIX, there is a socket option
which supports this) was intentionally not chosen, because the byte stream at the HTTP protocol level consists of a mixture
of protocol related strings and non-protocol related raw file data. HTTP protocol strings are always encoded in ASCII (the
GET request, any Header: lines, the chunking information etc.) whereas the file transfer parts (i.e., GIF images, CGI output
etc.) should usually be just "passed through" by the server. This separation between "protocol string" and "raw data" is
reflected in the server code by functions like bgets() or rvputs() for strings, and functions like bwrite() for binary data. A
global translation of everything would therefore be inadequate.
(In the case of text files of course, provisions must be made so that EBCDIC documents are always served in ASCII)
This port therefore features a built-in protocol level conversion for the server-internal strings (which the compiler translated
to EBCDIC strings) and thus for all server-generated documents.

2.

By examining the call hierarchy for the BUFF management routines, I added an "ebcdic/ascii conversion layer" which
would be crossed on every puts/write/get/gets, and conversion flags which allowed enabling/disabling the conversions
on-the-fly. Usually, a document crosses this layer twice from its origin source (a file or CGI output) to its destination (the
requesting client): file -> Apache, and Apache -> client.
The server can now read the header lines of a CGI-script output in EBCDIC format, and then find out that the remainder of
the script's output is in ASCII (like in the case of the output of a WWW Counter program: the document body contains a
GIF image). All header processing is done in the native EBCDIC format; the server then determines, based on the type of
document being served, whether the document body (except for the chunking information, of course) is in ASCII already or
must be converted from EBCDIC.

3.

By default, Apache assumes that documents with the MIME types "text/*", "message/*", "multipart/*" and
"application/x-www-form-urlencoded" are text documents and are stored as EBCDIC files, whereas all other files are binary
files (and stored in a byte-identical encoding as on an ASCII machine).
These defaults can be overridden on a by-MIME-type and/or by-file-extension basis, using the directives

 EBCDICConvertByType {On|Off}[={In|Out|InOut}] mimetype [...]
 EBCDICConvert {On|Off}[={In|Out|InOut}] fileext [...]

where the mimetype argument may contain wildcards.

4.

Before adding the flexible conversion, non-text documents were always served "binary" without conversion. This seemed to
be the most sensible choice for, .e.g., GIF/ZIP/AU file types (It of course requires the user to copy them to the mainframe
host using the "rcp -b" binary switch), but proved to be inadequate for MIME types like model/vrml, application/postscript
and application/x-javascript.

5.

Server parsed files are always assumed to be in native (i.e., EBCDIC) format as used on the machine (because they do not
cross the conversion layer when being read), and are converted after processing.

6.

For CGI output, the CGI script determines whether a conversion is needed or not: by setting the appropriate Content-Type,
text files can be converted, or GIF output can be passed through unmodified (depending on the conversion configured in the
script's context).

7.

Document Storage Notes

Binary Files

When exchanging binary files between the mainframe host and a Unix machine or Windows PC, be sure to use the ftp "binary"
(TYPE I) command, or use the rcp -b command from the mainframe host (the -b switch is not supported in unix rcp's).

Text Documents

The default assumption of the server is that Text Files (i.e., all files whose Content-Type: starts with text/) are stored in the native
character set of the host, EBCDIC.

The Apache EBCDIC Port

http://httpd.apache.org/docs/ebcdic.html (3 of 4) [12/05/2001 4:49:46 PM]

Server Side Included Documents

SSI documents must currently be stored in EBCDIC only. No provision is made to convert them from ASCII before processing. The
same holds for other interpreted languages, like mod_perl or mod_php.

Apache HTTP Server

The Apache EBCDIC Port

http://httpd.apache.org/docs/ebcdic.html (4 of 4) [12/05/2001 4:49:46 PM]

Overview of the Apache TPF Port

[Configuration Files | What's Available | CGI Scripts | Options | Porting Notes]

This version of Apache includes changes allowing it to run on IBM's EBCDIC-based TPF (Transaction Processing Facility)
operating system.
Unless otherwise noted TPF version 4.1 PUT09 is required.

Refer to install-tpf.html for step-by-step installation instructions.

This port builds upon the EBCDIC changes previously made to Apache.

Apache Configuration Files

The distributed configuration files (httpd.conf-dist and mime.types, both located in the conf subdirectory) work on TPF.
Performance considerations may dictate setting KeepAlive to "Off" (the default is "On") or lowering the Timeout value from the
default 300 seconds (5 minutes) in order to reduce the number of active ECBs on your system.

What's Available in this Version

The Apache organization provides online documentation describing the various modules and components of the server.

Components/modules tested on TPF:

alloc.c ●

ap_base64.c ●

ap_checkpass.c ●

ap_cpystrn.c ●

ap_ebcdic.c ●

ap_fnmatch.c ●

ap_md5c.c ●

ap_sha1.c ●

ap_signal.c ●

ap_slack.c ●

ap_snprintf.c ●

buff.c ●

buildmark.c ●

gen_test.char.c ●

gen_uri_delims.c ●

htpasswd.c (requires PUT10) ●

http_config.c ●

http_core.c ●

http_log.c ●

http_main.c ●

http_protocol.c ●

http_request.c ●

The Apache TPF Port

http://httpd.apache.org/docs/readme-tpf.html (1 of 6) [12/05/2001 4:49:48 PM]

http://www.ibm.com/software/ts/tpf/index.html

http_vhost.c ●

logresolve.c (requires PUT10) ●

mod_access.c (Use of mod_access directives "allow from" & "deny from" with host names (verses ip addresses)
requires PUT10)

●

mod_actions.c ●

mod_alias.c ●

mod_asis.c ●

mod_auth.c ●

mod_auth_anon.c ●

mod_autoindex.c ●

mod_cern_meta.c ●

mod_cgi.c (requires PUT10) ●

mod_digest.c ●

mod_dir.c ●

mod_env.c ●

mod_example.c ●

mod_expires.c ●

mod_headers.c ●

mod_imap.c ●

mod_include.c (CGI execution requires TPF version 4.1 PUT10) ●

mod_info.c ●

mod_log_agent.c ●

mod_log_config.c ●

mod_log_referer.c ●

mod_mime.c ●

mod_mime_magic.c ●

mod_negotiation.c ●

mod_put.c (third party module) ●

mod_proxy.c ●

mod_setenvif.c ●

mod_speling.c ●

mod_status.c ●

mod_tpf_shm_static.c (third party module, requires PUT10) ●

mod_unique_id.c (requires PUT10) ●

mod_userdir.c ●

mod_usertrack.c ●

os.c ●

os-inline.c ●

proxy_cache.c ●

proxy_connect.c ●

proxy_ftp.c ●

proxy_http.c ●

proxy_util.c ●

regular expression parser ●

The Apache TPF Port

http://httpd.apache.org/docs/readme-tpf.html (2 of 6) [12/05/2001 4:49:48 PM]

http://hpwww.ec-lyon.fr/~vincent/apache/mod_put.html

regular expression test tool (requires PUT10) ●

rfc1413.c ●

rotatelogs.c (requires PUT10) ●

util.c ●

util_date.c ●

util_md5.c ●

util_script.c ●

util_uri.c ●

Components/modules not yet supported on TPF:

htdigest.c ●

lib/expat-lite ●

mod_auth_digest.c ●

mod_rewrite.c ●

mod_vhost_alias.c ●

Components/modules that don't apply or that probably won't ever be available on TPF:

ab.c ●

ap_getpass.c ●

mod_auth_db.c ●

mod_auth_dbm.c ●

mod_auth_db.module ●

mod_mmap_static.c ●

mod_so.c ●

suexec.c ●

How to Use CGI Scripts

The following is a very simple example of a CGI script ("Hello World") and the necessary steps to run it.
Refer to the mod_cgi module for additional information.

Add necessary directives to httpd.conf:

Example:

ScriptLog logs/script_log
ScriptAlias /cgi-bin/ /usr/local/apache/cgi-bin/

A request for http://myserver/cgi-bin/filename.cgi would cause the server to run the script
/usr/local/apache/cgi-bin/filename.cgi

Create the CGI script:

For this example QZZ1 is the name of the TPF program that will be executed by the CGI script.
The directory path must match what is in the httpd.conf file for ScriptAlias directive.

zfile echo "#!QZZ1" > /usr/local/apache/cgi-bin/filename.cgi
zfile cat /usr/local/apache/cgi-bin/filename.cgi (this should display #!QZZ1)

The Apache TPF Port

http://httpd.apache.org/docs/readme-tpf.html (3 of 6) [12/05/2001 4:49:48 PM]

Mark the script as executable:

zfile chmod 755 /usr/local/apache/cgi-bin/filename.cgi

Create, load, and activate a loadset containing the CGI program (QZZ1xx):

/** QZZ1-- simple "Hello world" program to demonstrate basic CGI output **/

#include <stdio.h>

void main() {

/** Print the CGI response header, required for all HTML output. **/
/** Note the extra \n, to send the blank line. **/

printf("Content-type: text/html\n\n");

/** Print the HTML response page to stdout. **/
printf("<html>\n");
printf("<head><title> CGI Output </title></head>\n");
printf("<body>\n");
printf("<h1> Hello world </h1> \n");
printf("</body>\n");
printf("</html>\n");

}

Request the CGI script from a browser:

http://myserver/cgi-bin/filename.cgi

How to Use Apache Command Line Options

You cannot run Apache from the command line on TPF. However you can use those Apache command line options which don't
actually start the server. This requires PJ27277 which shipped on PUT13.

Supported Apache options:

-d directory
Specify an alternate initial ServerRoot directory. Default is /usr/local/apache.

-f file
Specify an alternate server configuration file. Default is conf/httpd.conf.

-h
List a short summary of available command line options. (Note that this outputs all options, not just those supported on TPF.)

-l
List modules compiled into the server.

-L
List available configuration directives. (Note that this outputs all configuration directives, not just those supported on TPF.)

-S
Show the settings as parsed from the configuration file. Currently only shows the virtualhost settings.

The Apache TPF Port

http://httpd.apache.org/docs/readme-tpf.html (4 of 6) [12/05/2001 4:49:48 PM]

-t
Run syntax tests for configuration files (with document root checks)

-T
Run syntax tests for configuration files (without document root checks)

-v
Show the version number.

-V
Show the version number and various compile settings.

See http://httpd.apache.org/docs/programs/httpd.html for more information about these command line options.

Note: On TPF Apache arguments are supported only on the command line, not through the ZINET XPARM field.

Setup

Ensure Apache (CHTA) is loaded

Create the httpd script:

zfile echo "#!CHTA" > /bin/httpd
zfile cat /bin/httpd (this should display #!CHTA)

Mark the script as executable:

zfile chmod 755 /bin/httpd

(See "ZFILE-Activate a TPF Segment or Script" in the Operations guide for more information:
http://www.ibm.com/tpf/pubs/tpfpubs.htm.)

Example 1

zfile httpd -v

FILE0001I 11.43.09 START OF DISPLAY FROM httpd -v
Server version: Apache/1.3.20 (TPF)
Server built: May 23 2001 09:39:22
END OF DISPLAY

Example 2

zfile httpd -t -f /usr/local/apache/conf/httpd.conf.new

FILE0002I 11.47.26 START OF ERROR DISPLAY FROM httpd -t ...
Syntax OK
END OF DISPLAY

Porting Notes

The Apache TPF Port

http://httpd.apache.org/docs/readme-tpf.html (5 of 6) [12/05/2001 4:49:48 PM]

http://www.ibm.com/tpf/pubs/tpfpubs.htm

Changes made due to differences between UNIX and TPF's process models:

Signals: On TPF a signal that is sent to a process remains unhandled until the process explicitly requests that signals be
handled using the tpf_process_signals() function. Additionally, the default action for an alarm on TPF is to take
an OPR-7777 dump and exit. (On UNIX the default is the equivalent of exit() with no dump taken.) These differences
necessitated a few modifications:

●

bypass the use of ap_block_alarms() & ap_unblock_alarms() ❍

add tpf_process_signals() calls ❍

add select() calls to prevent blocking. ❍

●

Find that function...

Some simple functions & definitions initially needed to be added on TPF, such as FD_SET(). We've put these in src/os/tpf/os.h for
now.

EBCDIC changes:

TPF-specific conversion tables between US-ASCII and EBCDIC (character set IBM-1047 to be exact) were created.

Miscellaneous, minor changes:

Various minor changes (such as casting) were made due to differences in how some functions are implemented on TPF.

[top | Configuration Files | What's Available | CGI Scripts | Options | Porting Notes]

The Apache TPF Port

http://httpd.apache.org/docs/readme-tpf.html (6 of 6) [12/05/2001 4:49:48 PM]

Installing the Apache 1.3 HTTP Server on TPF

[Download | Compilation | Installation | VisualAge]

This document outlines the steps needed to install Apache onto a TPF system.

You should first read readme-tpf.html for basic information on the port of Apache to TPF including required PUT level and
supported modules.

Download

Releases of the Apache server are compressed into a "tarball" file which must be downloaded to your PC. Additionally the source
code from the tarball will need to be copied onto an OS/390 UNIX System Services machine (later referred to simply as "OS/390
UNIX") for compiling. Here are all the details on how to get Apache and how to get it where it needs to be:

Download the compressed Apache files (the "tarball") to your PC. The file name on the web site will be something like
apache_1.3.xx.tar.Z.
TIP: Be sure to keep the .tar.Z extension when choosing the name of the PC file.

1.

Decompress the tarball on your PC using WinZip or some other PC decompression tool.
TIP: If you are using WinZip verify that the "TAR File Smart CR/LF Conversion" option (under Options, Configuration) is
NOT checked.
This is what you can expect if you use WinZip:

open the tarball with WinZip (this can usually be done simply by double-clicking on the downloaded tarball) ❍

you will be told that the archive contains one file (such as apache_1.3.xx.tar) - allow WinZip to decompress it to a
temporary folder

❍

extract the archived files onto your PC - you'll be using files from the conf, htdocs, and icons directories
later in the install phase

❍

2.

FTP the tarball to your OS/390 UNIX machine using binary mode: 3.

activate FTP in an MSDOS window: ftp your.os390.unix.machine.com ❍

sign in ❍

set mode to binary: binary ❍

send the file to OS/390 UNIX:
 send c:\downloaded_filename.tar.Z os390_unix_filename.tar.Z

❍

exit FTP: bye ❍

TIP: UNIX file names are case sensitive. If you use an NFS client to transfer files from your PC to OS/390 UNIX (instead
of using FTP as described above) verify that the NFS drive will transfer the file names with upper/lower case preserved.

4.

Decompress the tarball on OS/390 UNIX: gunzip os390_unix_filename.tar.Z
Note that the .tar.Z file will be replaced by the decompressed .tar archive file.

5.

Extract the archived files necessary for compiling Apache:
pax -rvkf os390_unix_filename.tar -o from=ISO8859-1,to=IBM-1047 "*/src"

6.

Remove unnecessary subdirectories:7.

Installing Apache on TPF

http://httpd.apache.org/docs/install-tpf.html (1 of 6) [12/05/2001 4:49:51 PM]

cd apache_1.3.xx/src/os❍

rm -r bs2000 cygwin mpeix netware os2 os390 win32❍

❍

Compilation

Apache supports the notion of "optional modules". However, the server has to know which modules are compiled into it. In order
for those modules to be effective, it is necessary to generate a short bit of code (modules.c) which simply has a list of them. If you
are using the Configure utility and make, modules.c and other necessary files will be created for you automatically.

The provided instructions assume a c89 compiler and have been tested on an OS/390 UNIX machine running at version 2.6 that
contained both OS/390 UNIX and TPF C header files. If you are using a platform other that OS/390 UNIX you may need to modify
src/os/tpf/TPFExport and src/Configure to match your environment.

TIP: Editing files on your PC prior to moving them to OS/390 UNIX may result in the loss/addition of unprintable characters. Files
of concern include shell scripts and src/Configuration. The most common problems are with tab characters and CR/LF characters.
Most editors will handle the CR/LF problem correctly but none seem to handle tab characters. If you need to edit files prior to
moving them to OS/390 UNIX, edit them in a UNIX editor such as vi or emacs.

Note that OS/390 UNIX commands in this section are shown in bold, are case sensitive, and must be made from the "src"
directory.

Switch to the source code subdirectory: cd apache_1.3.xx/src

1.

Overlay src/Configuration with src/Configuration.tmpl: cp Configuration.tmpl Configuration

2.

Edit src/Configuration. It contains the list and settings of various "Rules" and an additional section at the bottom that
determines which modules to compile:

3.

Adjust the Rules and EXTRA_CFLAGS|LIBS|LDFLAGS|INCLUDES if you feel so inclined.

❍

Comment out (by preceding the line with a "#") lines corresponding to those modules you DO NOT wish to
include.

❍

Uncomment (by removing the initial "#", if present) lines corresponding to those modules you wish to include or
add new lines corresponding to any custom modules you have written. The readme-tpf.html document lists the
modules that have been tested on TPF.

❍

The modules placed in the Apache distribution are the ones that have been tested and are used regularly by various
members of the Apache development group. Additional modules contributed by members or third parties with specific
needs or functions are available at http://modules.apache.org/. There are instructions on that page for linking these modules
into the core Apache code.

4.

Indicate whether the non_socket_select function is implemented on your system.

If you are on a PUT12 or higher system, or have PJ26895 installed, then you probably support non_socket_select.
You can verify this by looking for the non_socket_select prototype in your system header files (specifically
i$pwbl.h).

If your TPF system supports non_socket_select do one of the following:

add "#define TPF_HAVE_NONSOCKET_SELECT" to src/os/tpf/os.h or❍

add "-DTPF_HAVE_NONSOCKET_SELECT" to the _C89_OPTIONS export in src/os/tpf/TPFExport❍

Otherwise:

5.

Installing Apache on TPF

http://httpd.apache.org/docs/install-tpf.html (2 of 6) [12/05/2001 4:49:51 PM]

http://modules.apache.org/

add "#define TPF_NO_NONSOCKET_SELECT" to src/os/tpf/os.h or❍

add "-DTPF_NO_NONSOCKET_SELECT" to the _C89_OPTIONS export in src/os/tpf/TPFExport❍

Without non_socket_select CGI output is buffered and only sent to the browser when the CGI program finishes.

Indicate whether the tpf_sawnc function is implemented on your system.

If you are on a PUT10 or higher system, or have PJ27387/PJ26188 installed, then you probably support tpf_sawnc.
You can verify this by looking for the tpf_sawnc prototype in your system header files (either tpfapi.h or
i$fsdd.h).

If your TPF system supports tpf_sawnc do one of the following:

add "#define TPF_HAVE_SAWNC" to src/os/tpf/os.h or❍

add "-DTPF_HAVE_SAWNC" to the _C89_OPTIONS export in src/os/tpf/TPFExport❍

Otherwise:

add "#define TPF_NO_SAWNC" to src/os/tpf/os.h or❍

add "-DTPF_NO_SAWNC" to the _C89_OPTIONS export in src/os/tpf/TPFExport❍

The use of tpf_sawnc allows for a cleaner shutdown of Apache.

6.

7.

Set the TPF environment variables: . os/tpf/TPFExport

TIP: The initial period and blank on the command are required to ensure the environment variables exist beyond the scope
of the shell script.

This script will set the environment variables required to compile the programs for TPF. Verify that the export variables are
valid for your installation, in particular, the system include file directories. The system include files must reside on your
OS/390 UNIX system in the appropriate file structure similar to /usr/include and /usr/include/sys. DO NOT modify the
TPF=YES export variable. If this is changed, the "Configure" script will not recognize TPF.

8.

Run the "Configure" script: Configure

This generates modules.c, include/ap_config_auto.h, and necessary Makefiles:

 Using config file: Configuration
 Creating Makefile
 + configured for TPF platform
 + setting C compiler to c89
 + setting C pre-processor to c89 -E
 + checking for system header files
 + adding selected modules
 + checking sizeof various data types
 Creating Makefile in support
 Creating Makefile in regex
 Creating Makefile in os/tpf
 Creating Makefile in ap
 Creating Makefile in main
 Creating Makefile in lib/expat-lite
 Creating Makefile in modules/standard
 $ _

9.

Installing Apache on TPF

http://httpd.apache.org/docs/install-tpf.html (3 of 6) [12/05/2001 4:49:51 PM]

If you want to maintain multiple configurations, you can say, for example,
Configure -file Configuration.2nd

 Using config file: Configuration.2nd
 Creating Makefile
 + configured for <whatever> platform
 + setting C compiler to <whatever>
 et cetera

If you receive an error such as "Configure 146: FSUM7351 not found" the most likely explanation is that one or
more of the make related files were edited on a non-UNIX platform, corrupting the end-of-line marks. Verify that lines
ending with "\" in the flagged file do not have trailing spaces. Using the vi editor and the sample error above as an
example...

 pull up the flagged file: vi Configure
 turn on punctuation: :set list
 go to the line in question: 146G
 or find a line with a "\": /\\

The end of line should display as "\$". If it is displayed as "\ $" (with a blank between \ and $) then you should revert to
the distributed version of the file and make the site-specific changes again using a UNIX compatible editor such as vi or
emacs. Then try the Configure command again.

 close the file: :q (or :quit!)

Edit include/ap_config.h if you do not want the scoreboard kept in shared memory.

The default behavior for Apache on all platforms except TPF is to use the file system for maintaining the scoreboard (which
holds current Apache children status). The default behavior for Apache on TPF is to use shared memory. This reduces file
activity for the parent Apache ECB and improves performance. If you are on a pre-PUT10 system you must change
ap_config.h to use either system heap or the file system.

To use system heap for the scoreboard replace #define USE_SHMGET_SCOREBOARD with
#define USE_TPF_SCOREBOARD in the TPF section of ap_config.h.

If you prefer instead to use the file system, remove both #define USE_SHMGET_SCOREBOARD and
#define USE_TPF_SCOREBOARD from the TPF section of ap_config.h

The change will only take effect after Apache is (re)compiled.

10.

Now compile the programs: make

Besides compiling, make also runs src/main/gen_test_char.c and src/main/gen_uri_delims.c in order to create
src/main/test_char.h and src/main/uri_delims.h respectively

The following compilation warning is expected and can be ignored:

util_uri.c: Function argument assignment between types "unsigned char*" and
"const unsigned char*" is not allowed.

❍

If during compilation you get a warning about a missing 'regex.h', set WANTHSREGEX=yes in the
src/Configuration file and start back at the Configure step.

❍

If you get a 'Duplicate type specifier "long" ignored' error, add
"-W 0,langlvl(extended)" to the _C89_OPTIONS export in src/os/tpf/TPFExport and start back at the
export step

❍

11.

Installing Apache on TPF

http://httpd.apache.org/docs/install-tpf.html (4 of 6) [12/05/2001 4:49:51 PM]

Installation

Link the compiled object files into a DLL. Sample link JCL has been included as src/os/tpf/samples/linkhttp.jcl. You will
need to modify this JCL:

Change the IDs, data set names, and libraries for your particular site. ❍

Add/remove mod_xxx.o files so they correspond to the mod_xxx.o lines in your src/Configuration file. ❍

TIP: Do NOT include gen_test_char.o or gen_uri_delims.o in the link JCL since these files are only used during the make
step.

1.

Create a loadset. Sample loadset JCL has been included as src/os/tpf/samples/loadset.jcl. You will need to modify this JCL
for your particular site.

A JCL condition code of 4 is expected since the C load module will contain no link map data.

2.

Load (ZOLDR LOAD) and activate (ZOLDR ACT) the loadset on your test system.

3.

Ensure that the program name you are using for Apache has RESTRICT and KEY0 authorization. zdpat chta (c-c)
will display allocation information. You can use zapat chta restrict key0 (c-c) to alter the authorization.
Note that if the program name is unallocated, you must have the loadset for it activated or you will receive INVALID
PROGRAM NAME from the zdpat/zapat entries.

4.

Create the Apache run-time configuration file. The server requires a configuration file to initialize itself during activation.
(Previously three configuration files were used.) Copy the distribution version, /conf/httpd.conf-dist, to /conf/httpd.conf and
then edit the /conf/httpd.conf copy with your site specific information.

At a minimum you must change every occurrence of "@@ServerRoot@@" to your document server root (for example
"/usr/local/apache")

5.

General documentation for Apache is located at http://httpd.apache.org/docs/ and in the HTML pages included with the
distribution (tarball) under the /htdocs/manual directory.

6.

On TPF activate ZCLAW

Refer to the TCP/IP Offload Support section of the TPF TCP/IP publication for more information:
http://www.ibm.com/tpf/pubs/tpfpubs.htm.

Note: Apache does not currently work with Native Stack.

7.

Using either TFTP or FTP, transfer the configuration file, icons, and web pages to your TPF system. A typical directory
structure for Apache is as follows:

 /usr/local/apache/conf
 /usr/local/apache/logs
 /usr/local/apache/icons
 /usr/local/apache/htdocs

All gif, jpg, and zip files should be transferred as binary; the configuration file and html pages should be transferred as text.

The logs directory must exist in order to avoid an fopen error while running Apache:

If you're running a PUT10 or higher version of TPF make the directory using the zfile
mkdir /usr/local/apache/logs functional entry.

If you're running TPF version PUT09 TFTP an empty file into the logs subdirectory to create it.

8.

Installing Apache on TPF

http://httpd.apache.org/docs/install-tpf.html (5 of 6) [12/05/2001 4:49:51 PM]

http://www.ibm.com/tpf/pubs/tpfpubs.htm

Make sure Apache can write into the logs subdirectory by doing a zfile chmod on it with the appropriate permission
settings.

Refer to the TFTP and FTP sections of the TPF TCP/IP publication for more information:
http://www.ibm.com/tpf/pubs/tpfpubs.htm.

On TPF add Apache to the Internet Daemon's tables using ZINET entries, the common case:

For PUT11 and later use the DAEMON model for
Apache:ZINET ADD S-APACHE PGM-chta MODEL-DAEMON USER-root

❍

On pre-PUT11 systems use the NOLISTEN model
instead:ZINET ADD S-APACHE PGM-chta MODEL-NOLISTEN

❍

TIP: Logic changes implemented with PUT11 cause ZINET to not restart NOLISTEN servers after ZOLDR ACT and
ZOLDR DEACT entries. This means that Apache running as NOLISTEN on a PUT11 or later system will exit whenever
any ZOLDR ACT or ZOLDR DEACT entry is made. Therefore at PUT11 you should switch to the DAEMON model and
ensure that you have APARs PJ25761 and PJ27363 applied.

Refer to the Internet Daemon section of the TPF TCP/IP publication for more information:
http://www.ibm.com/tpf/pubs/tpfpubs.htm.

9.

Start the server using the ZINET START S-APACHE command.10.

Request a page from your browser: http://xx.xx.xx.xx (where xx.xx.xx.xx is your IP address)11.

Compiling with VisualAge TPF

It is not required that make be used to compile Apache for TPF: Individual programs may be compiled using IBM's VisualAge TPF
product. This is particularly useful when compiling selected programs for the Debug Tool.

The following VisualAge compile settings are required:

"DEFINE - Define preprocessor macro name(s)" must include TPF, CHARSET_EBCDIC, _POSIX_SOURCE, and
USE_HSREGEX

●

"LSEARCH - Path for user include files" must include ../src/include and ../src/os/tpf

●

"DLL - Generate DLL code" must be checked

●

"LONGNAME - Support long names" must be checked

●

[top | Download | Compilation | Installation | VisualAge]

Installing Apache on TPF

http://httpd.apache.org/docs/install-tpf.html (6 of 6) [12/05/2001 4:49:51 PM]

http://www.ibm.com/tpf/pubs/tpfpubs.htm
http://www.ibm.com/tpf/pubs/tpfpubs.htm

Apache HTTP Server

Using Apache With HP MPE/iX

This document explains how to compile, install, configure and run Apache 1.3 under HP MPE/iX.

The bug reporting page and new-httpd mailing list are NOT provided to answer questions about configuration or running Apache.
Before you submit a bug report or request, first consult this document, the Frequently Asked Questions page and the other relevant
documentation topics. If you still have a question or problem, post it to the comp.sys.hp.mpe newsgroup or the associated
HP3000-L mailing list, where many Apache users and several contributors are more than willing to answer new and obscure
questions about using Apache on MPE/iX.

groups.google.com's newsgroup archive offers easy browsing of previous questions. Searching the newsgroup archives, you will
usually find your question was already asked and answered by other users!

Requirements●

Implementation Considerations●

Binary Distributions●

Create the Accounting Structure●

Downloading Apache●

Compiling Apache●

Installing Apache●

Configuring Apache●

Running Apache●

Controlling Apache●

Requirements

Apache 1.3 requires MPE/iX 6.0 or greater. It will NOT run on earlier releases of MPE/iX. The following MPE/iX patches (or
their superseding descendants) are relevant to Apache:

MPE/iX 6.0:●

MPEKXT3B - fixes an MPE bug that results in transient "permission denied" errors being returned by the server to
the browser.

❍

MPELX36A - enhances the kill() function so that MPE users with SM capability can send signals to Apache for
shutdown, restart, etc.

❍

MPELX44C - fixes an MPE bug that prevents DSO modules from being dynamically loaded.❍

MPELX51C - enhances the kill() function so that Apache can use it when the Apache parent UID is different from
the Apache children UID (strongly recommended).

❍

NSTxxxxx - the latest network transport patch should always be installed when using TCP/IP applications such as
Apache.

❍

●

MPE/iX 6.5:●

Using Apache with HP MPE/iX

http://httpd.apache.org/docs/mpeix.html (1 of 5) [12/05/2001 4:49:53 PM]

news:comp.sys.hp.mpe
http://jazz.external.hp.com/papers/hp3000-info.html
http://groups.google.com/groups?hl=en&lr=&safe=off&group=comp.sys.hp.mpe

MPELX44D - fixes an MPE bug that prevents DSO modules from being dynamically loaded.❍

MPELX51D - enhances the kill() function so that Apache can use it when the Apache parent UID is different from
the Apache children UID (strongly recommended).

❍

NSTxxxxx - the latest network transport patch should always be installed when using TCP/IP applications such as
Apache.

❍

●

Implementation Considerations

While MPE has a very good POSIX implementation that enables fairly simple porting of Unix applications such as Apache, there
are some Unix concepts which just don't exist or aren't fully implemented in MPE, and so this may force some functionality changes
in the package being ported.

Significant MPE vs. Unix OS differences

MPE lacks the concept of a Unix UID=0 root user with special privileges. Where Unix functions require a user to be
executing as root, MPE requires the user to be executing in priv mode, so the program file must be linked with PM (Priv
Mode) capability, and the Unix function calls must be bracketed by GETPRIVMODE() and GETUSERMODE() calls. The
following Unix functions used by Apache are affected:

●

bind() for ports less than 1024❍

setgid()❍

setuid()❍

●

MPE's support for UIDs and GIDs is more limited than Unix. Every MPE account maps to a unique GID. Each MPE
account can contain multiple MPE users, and every MPE user maps to a unique UID (UID 0 is not supported). The current
UID for a process must correspond to an MPE user within the MPE account that corresponds to the current GID of the
process.

●

MPE child processes cannot survive the death of their parent. When the parent terminates, any remaining children will be
killed.

●

MPE doesn't initialize the envp parameter when invoking the main() of a new process. Use the global variable environ
instead of envp.

●

MPE link() exists, but always returns EIMPL. Use rename() or symlinks instead of hard links.●

MPE doesn't allow the @ character in filenames.●

MPE lacks support for TCP_NODELAY, but that's the default anyway.●

MPE lacks support for SO_KEEPALIVE.●

MPE lacks support for process groups.●

MPE inetd only passes stdin (and NOT stdout) to the invoked service. But you can write to stdin just fine.●

Major Apache functionality issues

Beginning with HP-supported Apache 1.3.9 and HP WebWise MPE/iX Secure Web Server A.01.00 (based on Apache
1.3.9), the User and Group directives in httpd.conf are now unconditionally executed as corresponding setuid()/setgid()
calls. Previously this was only done if HTTPD was being run as MANAGER.SYS. This functionality change was
submitted back to the 1.3.13-dev source tree at www.apache.org. The Apache for Unix behavior is to only honor User and
Group if running as root.

●

Beginning with HP-supported Apache 1.3.9 and HP WebWise MPE/iX Secure Web Server A.01.00 (based on Apache
1.3.9), the SVIPC shared memory macros SHM_R and SHM_W have been modified from their traditional owner-only-read
and owner-only-write values to be owner-and-group-read and owner-and-group-write on MPE/iX in order to allow
increased parent/child flexibility in spite of MPE's limited POSIX UID/GID support. This functionality change was
submitted back to the 1.3.13-dev source tree at www.apache.org. The Apache for Unix behavior uses the traditional
owner-only values of SHM_R and SHM_W.

●

Using Apache with HP MPE/iX

http://httpd.apache.org/docs/mpeix.html (2 of 5) [12/05/2001 4:49:53 PM]

Minor Apache functionality issues

Apache for Unix must be run as root to bind to TCP ports 1-1023. Apache for MPE must call GETPRIVMODE() to bind to
TCP ports 1-1023; PM is not used for ports greater than 1023. The standard web server HTTP port is 80.

●

Apache for Unix in standalone mode will detach itself and run in the background as a system-type process. Apache for MPE
in standalone mode cannot detach itself and run in the background because MPE POSIX doesn't allow this (the detached
child would be killed when the parent terminated). Therefore you must use an MPE batch job to run Apache in standalone
mode.

●

Apache for Unix uses process groups to manage child processes. Apache for MPE cannot use process groups because MPE
POSIX doesn't support this. The implications of this are unknown.

●

Apache for Unix uses the setsockopt() option TCP_NODELAY. Apache for MPE does not, because MPE doesn't support it.
But TCP_NODELAY is the default MPE behavior anyway.

●

Apache for Unix uses the setsockopt() option SO_KEEPALIVE. Apache for MPE does not, because MPE doesn't support
it.

●

Apache for Unix under inetd reads from the socket via stdin and writes via stdout. Apache for MPE under inetd reads
AND writes the socket via stdin. I consider MPE 5.5 inetd to be broken and poorly documented, so I submitted SR
5003355016 to address this. If HP ever alters the MPE inetd to pass the socket the way HPUX inetd does (not likely in the
grand scheme of things), the existing Apache for MPE code will break.

●

Apache for Unix will use the @ character in proxy cache filenames, but since @ is illegal in MPE filenames, Apache for
MPE uses the % character instead.

●

Binary Distributions

HP ships a fully supported Apache binary distribution with the Fundamental Operating System (FOS) in MPE/iX 6.5 and later.
This distribution can be found in the APACHE account.

HP supplies fully supported Apache binary distributions for MPE/iX 6.0 or later available for downloading from
http://jazz.external.hp.com/src/apache/.

Mark Bixby supplies Apache binary distributions for MPE/iX available for downloading from
http://www.bixby.org/mark/apacheix.html. Binaries from bixby.org are NOT supported by HP. HP only supports binaries
distributed by HP.

All of the binary distributions mentioned above may possibly include functionality that hasn't yet been submitted back to the
Apache Software Foundation (though submitting back is the intended goal). Please read the documentation that comes with these
binaries in order to determine functionality differences (if any) compared to the latest sources available from the ASF.

If you will be using one of these binary distributions, please stop reading this document and start reading the specific distribution
documentation for installation details.

Create the Accounting Structure

Apache can be installed under the account of your choice. For the purposes of this document, the APACHE account will be used:

:HELLO MANAGER.SYS1.

:NEWACCT APACHE,MGR2.

:ALTACCT APACHE;PASS=xxxxxxxx;CAP=AM,AL,ND,SF,BA,IA,PM,PH3.

:ALTGROUP PUB.APACHE;CAP=BA,IA,PM,PH;ACCESS=(R,L,X:AC;W,A,S:AL)4.

Using Apache with HP MPE/iX

http://httpd.apache.org/docs/mpeix.html (3 of 5) [12/05/2001 4:49:53 PM]

http://jazz.external.hp.com/src/apache/
http://www.bixby.org/mark/apacheix.html

:ALTUSER MGR.APACHE;CAP=AM,AL,ND,SF,BA,IA,PM,PH;HOME=PUB5.

:NEWUSER SERVER.APACHE6.

:ALTUSER SERVER.APACHE;CAP=ND,SF,BA,IA,PH;HOME=PUB7.

Downloading Apache

Use your web browser to download the Apache source tarball from http://www.apache.org/dist/httpd/. Then ftp upload the tarball to
your e3000 as show below:

C:\Temp>ftp 3000.host.name
Connected to 3000.host.name.
220 HP ARPA FTP Server [A0009H09] (C) Hewlett-Packard Co. 1990
User (3000.host.name:(none)): MGR.APACHE
331 Password required for MGR.APACHE. Syntax: acctpass
Password:xxxxxxxx
230 User logged on
ftp> quote type L 8
200 Type set to L (byte size 8).
ftp> put apache_v.u.ff.tar.Z /tmp/apache.tar.Z
200 PORT command ok.
150 File: /tmp/apache.tar.Z opened; data connection will be opened
226 Transfer complete.
ftp: 2685572 bytes sent in 2.75Seconds 976.57Kbytes/sec.
ftp> quit
221 Server is closing command connection

Unpack the tarball:

:HELLO MGR.APACHE1.

:XEQ SH.HPBIN.SYS -L2.

$ mkdir src3.

$ chmod 700 src4.

$ cd src5.

$ tar xvfopz /tmp/apache.tar.Z6.

Compiling Apache

It is STRONGLY recommended to use gcc instead of the HP C/iX compiler. You can obtain gcc from
http://jazz.external.hp.com/src/gnu/gnuframe.html.

$ cd apache_v.uu.ff1.

$./configure --prefix=/APACHE/PUB --enable-module=xxx --enable-module=yyy
...etc...

2.

$ make3.

Installing Apache

$ make install1.

$ cd /APACHE/PUB2.

$ mv bin/httpd HTTPD3.

$ ln -s HTTPD bin/httpd4.

Using Apache with HP MPE/iX

http://httpd.apache.org/docs/mpeix.html (4 of 5) [12/05/2001 4:49:53 PM]

http://www.apache.org/dist/httpd/
http://jazz.external.hp.com/src/gnu/gnuframe.html

$ callci "xeq linkedit.pub.sys 'altprog HTTPD;cap=ia,ba,ph,pm'"5.

Configuring Apache

Edit /APACHE/PUB/conf/httpd.conf and customize as needed for your environment. Be sure to make the following mandatory
changes:

User SERVER.APACHE●

Group APACHE●

Running Apache

Simply create and :STREAM the following standalone server job in order to start Apache:

!JOB JHTTPD,MGR.APACHE;OUTCLASS=,2
!XEQ SH.HPBIN.SYS "-c 'umask 007; ./HTTPD -f /APACHE/PUB/conf/httpd.conf'"
!eoj

Controlling Apache

Log on as MGR.APACHE (or MANAGER.SYS or any other SM user if you've installed MPELX36A on 6.0) in order to shutdown
or restart Apache via the use of signals.

To shut down Apache from the POSIX shell:

$ kill `cat /APACHE/PUB/logs/httpd.pid`

To shut down Apache from the CI:

:XEQ SH.HPBIN.SYS '-c "kill `cat /APACHE/PUB/logs/httpd.pid`"'

Apache HTTP Server

Using Apache with HP MPE/iX

http://httpd.apache.org/docs/mpeix.html (5 of 5) [12/05/2001 4:49:53 PM]

Apache HTTP Server Version 1.3

Using Apache With Novell NetWare

This document explains how to install, configure and run Apache 1.3 under Novell NetWare 5.x and above. If you find any bugs, or
wish to contribute in other ways, please use our bug reporting page.

The bug reporting page and new-httpd mailing list are not provided to answer questions about configuration or running Apache.
Before you submit a bug report or request, first consult this document, the Frequently Asked Questions page and the other relevant
documentation topics. If you still have a question or problem, post it to the novell.devsup.webserver newsgroup, where many
Apache users are more than willing to answer new and obscure questions about using Apache on NetWare.

Most of this document assumes that you are installing Apache from a binary distribution. If you want to compile Apache yourself
(possibly to help with development, or to track down bugs), see the section on Compiling Apache for NetWare below.

Requirements●

Downloading Apache for NetWare●

Installing Apache for NetWare●

Running Apache for NetWare●

Configuring Apache for NetWare●

Compiling Apache for NetWare●

Requirements

Apache 1.3 is designed to run on NetWare 5.x and above and is installed by default on all NetWare 6 servers.

If running on NetWare 5.0 you must install Service Pack 5 or above.

If running on NetWare 5.1 you must install Service Pack 1 or above.

NetWare service packs are available here.

Downloading Apache for NetWare

Information on the latest version of Apache can be found on the Apache web server at http://www.apache.org/. This will list the
current release, any more recent alpha or beta-test releases, together with details of mirror web and anonymous ftp sites.

Installing Apache for NetWare

There is no Apache install program for NetWare currently. You will need to compile apache and copy the files over to the server
manually. An install program will be posted at a later date. If you are running NetWare 6, Apache for NetWare has been installed by
default.

Follow these steps to install Apache on NetWare from the binary download (assuming you will install to sys:/apache):

Unzip the binary download file to the root of the SYS: volume (may be installed to any volume)●

Using Apache with Novell NetWare

http://httpd.apache.org/docs/netware.html (1 of 4) [12/05/2001 4:49:55 PM]

http://www.apache.org/bug_report.html
news://devforums.novell.com/novell.devsup.webserver
http://support.novell.com/misc/patlst.htm#nw
http://www.apache.org/

Edit the httpd.conf file setting ServerRoot and ServerName to reflect your correct server settings●

Add SYS:/APACHE to the search path. EXAMPLE: SEARCH ADD SYS:\APACHE●

Follow these steps to install Apache on NetWare manually from your own build source (assuming you will install to sys:/apache):

Create a directory called Apache on a NetWare volume●

Copy Apache.nlm, Apachec.nlm, htdigest.nlm, htpasswd.nlm, xmlparse.nlm, and xmltok.nlm to sys:/apache●

Create a directory under SYS:/APACHE called CONF●

Copy all the *.CONF-DIST-NW files to the SYS:/APACHE/CONF directory and rename them all as *.CONF files●

Copy the MIME.TYPES and magic files to SYS:/APACHE/CONF directory●

Copy all files and subdirectories in \apache-1.3\icons to SYS:/APACHE/ICONS●

Create the directory SYS:/APACHE/LOGS on the server●

Create the directory SYS:/APACHE/CGI-BIN on the server●

Create the directory SYS:/APACHE/MODULES and copy all nlm modules built into the modules directory●

Edit the HTTPD.CONF file setting ServerRoot and ServerName to reflect your correct server settings●

Add SYS:/APACHE to the search path. EXAMPLE: SEARCH ADD SYS:\APACHE●

Apache may be installed to other volumes besides the default sys volume.

Running Apache for NetWare

To start Apache just type apache at the console. This will load apache in the OS address space. If you prefer to load Apache in a
protected address space you may specify the address space with the load statement as follows:

 load address space = apache apache

This will load Apache into an address space called apache. Running multiple instances of Apache concurrently on NetWare is
possible by loading each instance into its own protected address space.

After starting Apache it will be listening to port 80 (unless you changed the Port, Listen or BindAddress directives in the
configuration files). To connect to the server and access the default page, launch a browser and enter the server's name or address.
This should respond with a welcome page, and a link to the Apache manual. If nothing happens or you get an error, look in the
error_log file in the logs directory.

Once your basic installation is working, you should configure it properly by editing the files in the conf directory.

To unload Apache running in the OS address space just type the following at the console:

 unload apache

If apache is running in a protected address space specify the address space in the unload statement:

 unload address space = apache apache

When working with Apache it is important to know how it will find the configuration files. You can specify a configuration file on
the command line in two ways:

-f specifies a path to a particular configuration file●

 apache -f "vol:/my server/conf/my.conf"

 apache -f test/test.conf

In these cases, the proper ServerRoot should be set in the configuration file.

If you don't specify a configuration file name with -f, Apache will use the file name compiled into the server, usually
"conf/httpd.conf". Invoking Apache with the -V switch will display this value labeled as SERVER_CONFIG_FILE. Apache will

Using Apache with Novell NetWare

http://httpd.apache.org/docs/netware.html (2 of 4) [12/05/2001 4:49:55 PM]

then determine its ServerRoot by trying the following, in this order:

A ServerRoot directive via a -C switch.●

The -d switch on the command line.●

Current working directory●

The server root compiled into the server.●

The server root compiled into the server is usually "sys:/apache". invoking apache with the -V switch will display this value labeled
as HTTPD_ROOT.

Configuring Apache for NetWare

Apache is configured by files in the conf directory. These are the same as files used to configure the Unix version, but there are a
few different directives for Apache on NetWare. See the Apache documentation for all the available directives.

The main differences in Apache for NetWare are:

Because Apache for NetWare is multithreaded, it does not use a separate process for each request, as Apache does with
Unix. Instead there are only threads running: a parent thread, and a child which handles the requests. Within the child each
request is handled by a separate thread.

So the "process"-management directives are different:

MaxRequestsPerChild - Like the Unix directive, this controls how many requests a process will serve before exiting.
However, unlike Unix, a process serves all the requests at once, not just one, so if this is set, it is recommended that a very
high number is used. The recommended default, MaxRequestsPerChild 0, does not cause the process to ever exit.

ThreadsPerChild - This directive is new, and tells the server how many threads it should use. This is the maximum number
of connections the server can handle at once; be sure and set this number high enough for your site if you get a lot of hits.
The recommended default is ThreadsPerChild 50.

ThreadStackSize - This directive tells the server what size of stack to use for the individual threads. The recommended
default is ThreadStackSize 65536.

●

The directives that accept filenames as arguments now must use NetWare filenames instead of Unix ones. However,
because Apache uses Unix-style names internally, you must use forward slashes, not backslashes. Volumes can be used; if
omitted, the drive with the Apache executable will be assumed.

●

Apache for NetWare has the ability to load modules at runtime, without recompiling the server. If Apache is compiled
normally, it will install a number of optional modules in the \Apache\modules directory. To activate these, or other
modules, the new LoadModule directive must be used. For example, to active the status module, use the following (in
addition to the status-activating directives in access.conf):

 LoadModule status_module modules/status

Information on creating loadable modules is also available.

●

Compiling Apache for NetWare

Compiling Apache requires MetroWerks CodeWarrior 4.04 or higher to be properly installed.

First, unpack the Apache distribution into an appropriate directory. Then go to the src subdirectory of the Apache distribution and
unzip ApacheNW.mcp.gz. You may use a recent version of WinZip to accomplish this or gzip for Windows. The main
Metrowerks project file for Apache (ApacheNW.mcp) is now ready to use. Just double click on it from within explorer and it
should automatically launch MetroWerks CodeWarrior.

All major pieces of Apache may be built using the ApacheNW.mcp project file. This includes modules such as status, info, and
proxy.

Using Apache with Novell NetWare

http://httpd.apache.org/docs/netware.html (3 of 4) [12/05/2001 4:49:55 PM]

Once Apache has been built, it needs to be installed in its server root directory. The default is the sys:/Apache directory.

Before running the server you must fill out the conf directory. Copy the *.conf-dist-nw from the distribution conf directory and
rename *.conf. Edit the ServerRoot entries to your actual server root (for example "sys:/apache"). Copy over the conf/magic and
conf/mime.types files as well.

Apache HTTP Server Version 1.3

Using Apache with Novell NetWare

http://httpd.apache.org/docs/netware.html (4 of 4) [12/05/2001 4:49:55 PM]

Apache HTTP Server

Compiling Apache under UnixWare

To compile a working copy of Apache under UnixWare, there are several other steps you may need to take. These prevent such
problems as zombie processes, bind errors, and accept errors, to name a few.

UnixWare 1.x

Make sure that USE_FCNTL_SERIALIZE_ACCEPT is defined (if not defined by Apache autoconfiguration). If using the
UnixWare cc compiler, and you still see accept() errors, don't use compiler optimization, or get gcc.

UnixWare 2.0.x

SCO patch tf2163 is required in order for Apache to work correctly on UnixWare 2.0.x. See http://www.sco.com for UnixWare
patch information.

In addition, make sure that USE_FCNTL_SERIALIZE_ACCEPT is defined (if not defined by Apache autoconfiguration). To
reduce instances of connections in FIN_WAIT_2 state, you may also want to define NO_LINGCLOSE (Apache 1.2 only).

UnixWare 2.1.x

SCO patch ptf3123 is required in order for Apache to work correctly on UnixWare 2.1.x. See http://www.sco.com for UnixWare
patch information.

NOTE: Unixware 2.1.2 and later already have patch ptf3123 included

In addition, make sure that USE_FCNTL_SERIALIZE_ACCEPT is defined (if not defined by Apache autoconfiguration). To
reduce instances of connections in FIN_WAIT_2 state, you may also want to define NO_LINGCLOSE (Apache 1.2 only).

Thanks to Joe Doupnik <JRD@cc.usu.edu> and Rich Vaughn <rvaughn@aad.com> for additional info for UnixWare builds.

Apache HTTP Server

Compiling Apache under UnixWare

http://httpd.apache.org/docs/unixware.html [12/05/2001 4:49:56 PM]

ftp://ftp.sco.com/UW20/tf2163.txt
http://www.sco.com/
ftp://ftp.sco.com/UW21/ptf3123b.txt
http://www.sco.com/

Apache HTTP Server Version 1.3

Running a High-Performance Web Server for BSD

Like other OS's, the listen queue is often the first limit hit. The following are comments from "Aaron Gifford
<agifford@InfoWest.COM>" on how to fix this on BSDI 1.x, 2.x, and FreeBSD 2.0 (and earlier):

Edit the following two files:

/usr/include/sys/socket.h
/usr/src/sys/sys/socket.h

In each file, look for the following:

 /*
 * Maximum queue length specifiable by listen.
 */
 #define SOMAXCONN 5

Just change the "5" to whatever appears to work. I bumped the two machines I was having problems with up to 32 and haven't
noticed the problem since.

After the edit, recompile the kernel and recompile the Apache server then reboot.

FreeBSD 2.1 seems to be perfectly happy, with SOMAXCONN set to 32 already.

Addendum for very heavily loaded BSD servers
from Chuck Murcko <chuck@telebase.com>

If you're running a really busy BSD Apache server, the following are useful things to do if the system is acting sluggish:

Run vmstat to check memory usage, page/swap rates, etc.●

Run netstat -m to check mbuf usage●

Run fstat to check file descriptor usage●

These utilities give you an idea what you'll need to tune in your kernel, and whether it'll help to buy more RAM. Here are some
BSD kernel config parameters (actually BSDI, but pertinent to FreeBSD and other 4.4-lite derivatives) from a system getting heavy
usage. The tools mentioned above were used, and the system memory was increased to 48 MB before these tuneups. Other system
parameters remained unchanged.

maxusers 256

Maxusers drives a lot of other kernel parameters:

Maximum # of processes●

Maximum # of processes per user●

System wide open files limit●

Per-process open files limit●

Maximum # of mbuf clusters●

Proc/pgrp hash table size●

The actual formulae for these derived parameters are in /usr/src/sys/conf/param.c. These calculated parameters can also be
overridden (in part) by specifying your own values in the kernel configuration file:

Network options. NMBCLUSTERS defines the number of mbuf clusters and

Running a High-Performance Web Server for BSD

http://httpd.apache.org/docs/misc/perf-bsd44.html (1 of 4) [12/05/2001 4:49:58 PM]

defaults to 256. This machine is a server that handles lots of traffic,
so we crank that value.
options NMBCLUSTERS=4096 # mbuf clusters at 4096

#
Misc. options
#
options CHILD_MAX=512 # maximum number of child processes
options OPEN_MAX=512 # maximum fds (breaks RPC svcs)

In many cases, NMBCLUSTERS must be set much larger than would appear necessary at first glance. The reason for this is that if
the browser disconnects in mid-transfer, the socket fd associated with that particular connection ends up in the TIME_WAIT state
for several minutes, during which time its mbufs are not yet freed. Another reason is that, on server timeouts, some connections end
up in FIN_WAIT_2 state forever, because this state doesn't time out on the server, and the browser never sent a final FIN. For more
details see the FIN_WAIT_2 page.

Some more info on mbuf clusters (from sys/mbuf.h):

/*
 * Mbufs are of a single size, MSIZE (machine/machparam.h), which
 * includes overhead. An mbuf may add a single "mbuf cluster" of size
 * MCLBYTES (also in machine/machparam.h), which has no additional overhead
 * and is used instead of the internal data area; this is done when
 * at least MINCLSIZE of data must be stored.
 */

CHILD_MAX and OPEN_MAX are set to allow up to 512 child processes (different than the maximum value for processes per
user ID) and file descriptors. These values may change for your particular configuration (a higher OPEN_MAX value if you've got
modules or CGI scripts opening lots of connections or files). If you've got a lot of other activity besides httpd on the same machine,
you'll have to set NPROC higher still. In this example, the NPROC value derived from maxusers proved sufficient for our load.

To increase the size of the listen() queue, you need to adjust the value of SOMAXCONN. SOMAXCONN is not derived from
maxusers, so you'll always need to increase that yourself. We use a value guaranteed to be larger than Apache's default for the
listen() of 128, currently. The actual value for SOMAXCONN is set in sys/socket.h. The best way to adjust this parameter is
run-time, rather than changing it in this header file and thus hardcoding a value in the kernel and elsewhere. To do this, edit
/etc/rc.local and add the following line:

 /usr/sbin/sysctl -w kern.somaxconn=256

We used 256 but you can tune it for your own setup. In many cases, however, even the default value of 128 (for later versions of
FreeBSD) is OK.

Caveats

Be aware that your system may not boot with a kernel that is configured to use more resources than you have available system
RAM. ALWAYS have a known bootable kernel available when tuning your system this way, and use the system tools beforehand
to learn if you need to buy more memory before tuning.

RPC services will fail when the value of OPEN_MAX is larger than 256. This is a function of the original implementations of the
RPC library, which used a byte value for holding file descriptors. BSDI has partially addressed this limit in its 2.1 release, but a real
fix may well await the redesign of RPC itself.

Finally, there's the hard limit of child processes configured in Apache.

For versions of Apache later than 1.0.5 you'll need to change the definition for HARD_SERVER_LIMIT in httpd.h and recompile
if you need to run more than the default 150 instances of httpd.

From conf/httpd.conf-dist:

Limit on total number of servers running, i.e., limit on the number
of clients who can simultaneously connect --- if this limit is ever

Running a High-Performance Web Server for BSD

http://httpd.apache.org/docs/misc/perf-bsd44.html (2 of 4) [12/05/2001 4:49:58 PM]

reached, clients will be LOCKED OUT, so it should NOT BE SET TOO LOW.
It is intended mainly as a brake to keep a runaway server from taking
Unix with it as it spirals down...

MaxClients 150

Know what you're doing if you bump this value up, and make sure you've done your system monitoring, RAM expansion, and
kernel tuning beforehand. Then you're ready to service some serious hits!

Thanks to Tony Sanders and Chris Torek at BSDI for their helpful suggestions and information.

"M. Teterin" <mi@ALDAN.ziplink.net> writes:

It really does help if your kernel and frequently used utilities are fully optimized. Rebuilding the FreeBSD kernel on
an AMD-133 (486-class CPU) web-server with
-m486 -fexpensive-optimizations -fomit-frame-pointer -O2
helped reduce the number of "unable" errors, because the CPU was often maxed out.

Accept filtering on FreeBSD

Versions of FreeBSD from August 2000 onwards include a feature called "accept filters" which delay the return from accept() until
a condition has been met, e.g. an HTTP request has arrived. This postpones the requirement for a child process to handle the new
connection which therefore increases the number of connections that a given number of child processes can handle. It also allows a
child process to accomplish more immediately after accept() returns (because the request is already available to be read) so there is
less context switching.

There are two filters in FreeBSD at the time of writing: "dataready" and "httpready". The former just waits for the first packet to
arrive from the client; the latter waits for the end of the HTTP headers. Unfortunately the "httpready" filter breaks support for
HTTP/0.9 (which doesn't have headers) so Apache doesn't use it, but the "dataready" filter gives the same benefit in the majority of
cases so Apache attempts to use that instead.

Accept filters provide the most benefit on servers that are already so busy that they are configured with "KeepAlive Off".
HTTP KeepAlive (aka persistent connections) avoids the cost of setting up a new connection for every request, but connections that
are being kept alive use up one of the available child processes. Since there is a limited number of child processes this can
significantly reduce the capacity of the server. The viewers of a web site will still get a lot of the benefit of persistent connections
even with a very small KeepAliveTimeout so you should try reducing it before turning it off altogether.

To enable accept filtering, you must either load the appropriate accept filter module, e.g. with the command kldload
accf_data, or compile a kernel with options ACCEPT_FILTER_DATA. Apache will then enable filtering when it is
restarted.

Accept filters ar compiled in if the symbol SO_ACCEPTFILTER is defined on the machine apache is build.

Additionally there is a directive AcceptFilter to switch the filters on or off. The default is on; except when apache is compiled with
-D AP_ACCEPTFILTER_ON.

If you are more concerned about performance than compatibility with absurdly obsolete HTTP/0.9 user agents then you can
recompile Apache to use the "httpready" filter. This may be particularly helpful if your web site uses really big cookies, for
example. If you are using src/Configure then add -DACCEPT_FILTER_NAME=\"httpready\" to the EXTRA_CFLAGS
line in the src/Configuration file. If you are using APACI (aka ./configure) then use the command
CFLAGS=-DACCEPT_FILTER_NAME=\'\"httpready\"\' ./configure (with all the funky backslashed quotes).

More welcome!

If you have tips to contribute, send mail to apache@apache.org

Running a High-Performance Web Server for BSD

http://httpd.apache.org/docs/misc/perf-bsd44.html (3 of 4) [12/05/2001 4:49:58 PM]

mailto:apache@apache.org

Apache HTTP Server Version 1.3

Running a High-Performance Web Server for BSD

http://httpd.apache.org/docs/misc/perf-bsd44.html (4 of 4) [12/05/2001 4:49:58 PM]

http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Performance Tuning Tips for Digital Unix

Below is a set of newsgroup posts made by an engineer from DEC in response to queries about how to modify DEC's Digital Unix
OS for more heavily loaded web sites. Copied with permission.

Update

From: Jeffrey Mogul <mogul@pa.dec.com>
Date: Fri, 28 Jun 96 16:07:56 MDT

The advice given in the README file regarding the "tcbhashsize" variable is incorrect. The largest value this should be set
to is 1024. Setting it any higher will have the perverse result of disabling the hashing mechanism.

1.

Patch ID OSF350-146 has been superseded by

Patch ID OSF350-195 for V3.2C
Patch ID OSF360-350195 for V3.2D

Patch IDs for V3.2E and V3.2F should be available soon. There is no known reason why the Patch ID OSF360-350195
won't work on these releases, but such use is not officially supported by Digital. This patch kit will not be needed for V3.2G
when it is released.

2.

From mogul@pa.dec.com (Jeffrey Mogul)
Organization DEC Western Research
Date 30 May 1996 00:50:25 GMT
Newsgroups comp.unix.osf.osf1
Message-ID <4oirch$bc8@usenet.pa.dec.com>
Subject Re: Web Site Performance
References 1

In article <skoogDs54BH.9pF@netcom.com> skoog@netcom.com (Jim Skoog) writes:
>Where are the performance bottlenecks for Alpha AXP running the
>Netscape Commerce Server 1.12 with high volume internet traffic?
>We are evaluating network performance for a variety of Alpha AXP
>runing DEC UNIX 3.2C, which run DEC's seal firewall and behind
>that Alpha 1000 and 2100 webservers.

Our experience (running such Web servers as altavista.digital.com
and www.digital.com) is that there is one important kernel tuning
knob to adjust in order to get good performance on V3.2C. You
need to patch the kernel global variable "somaxconn" (use dbx -k
to do this) from its default value of 8 to something much larger.

How much larger? Well, no larger than 32767 (decimal). And
probably no less than about 2048, if you have a really high volume
(millions of hits per day), like AltaVista does.

This change allows the system to maintain more than 8 TCP

Performance Tuning Tips for Digital Unix

http://httpd.apache.org/docs/misc/perf-dec.html (1 of 5) [12/05/2001 4:50:00 PM]

news:comp.unix.osf.osf1
http://altavista.digital.com/
http://www.digital.com/

connections in the SYN_RCVD state for the HTTP server. (You
can use "netstat -An |grep SYN_RCVD" to see how many such
connections exist at any given instant).

If you don't make this change, you might find that as the load gets
high, some connection attempts take a very long time. And if a lot
of your clients disconnect from the Internet during the process of
TCP connection establishment (this happens a lot with dialup
users), these "embryonic" connections might tie up your somaxconn
quota of SYN_RCVD-state connections. Until the kernel times out
these embryonic connections, no other connections will be accepted,
and it will appear as if the server has died.

The default value for somaxconn in Digital UNIX V4.0 will be quite
a bit larger than it has been in previous versions (we inherited
this default from 4.3BSD).

Digital UNIX V4.0 includes some other performance-related changes
that significantly improve its maximum HTTP connection rate. However,
we've been using V3.2C systems to front-end for altavista.digital.com
with no obvious performance bottlenecks at the millions-of-hits-per-day
level.

We have some Webstone performance results available at
 http://www.digital.com/info/alphaserver/news/webff.html

[The document referenced above is no longer at that URL -- Ed.]

I'm not sure if these were done using V4.0 or an earlier version
of Digital UNIX, although I suspect they were done using a test
version of V4.0.

-Jeff

--

From mogul@pa.dec.com (Jeffrey Mogul)
Organization DEC Western Research
Date 31 May 1996 21:01:01 GMT
Newsgroups comp.unix.osf.osf1
Message-ID <4onmmd$mmd@usenet.pa.dec.com>
Subject Digital UNIX V3.2C Internet tuning patch info

--

Something that probably few people are aware of is that Digital
has a patch kit available for Digital UNIX V3.2C that may improve
Internet performance, especially for busy web servers.

This patch kit is one way to increase the value of somaxconn,
which I discussed in a message here a day or two ago.

I've included in this message the revised README file for this
patch kit below. Note that the original README file in the patch
kit itself may be an earlier version; I'm told that the version
below is the right one.

Sorry, this patch kit is NOT available for other versions of Digital
UNIX. Most (but not quite all) of these changes also made it into V4.0,
so the description of the various tuning parameters in this README
file might be useful to people running V4.0 systems.

Performance Tuning Tips for Digital Unix

http://httpd.apache.org/docs/misc/perf-dec.html (2 of 5) [12/05/2001 4:50:00 PM]

news:comp.unix.osf.osf1

This patch kit does not appear to be available (yet?) from
 http://www.service.digital.com/html/patch_service.html
so I guess you'll have to call Digital's Customer Support to get it.

-Jeff

DESCRIPTION: Digital UNIX Network tuning patch

 Patch ID: OSF350-146

 SUPERSEDED PATCHES: OSF350-151, OSF350-158

 This set of files improves the performance of the network
 subsystem on a system being used as a web server. There are
 additional tunable parameters included here, to be used
 cautiously by an informed system administrator.

TUNING

 To tune the web server, the number of simultaneous socket
 connection requests are limited by:

 somaxconn Sets the maximum number of pending requests
 allowed to wait on a listening socket. The
 default value in Digital UNIX V3.2 is 8.
 This patch kit increases the default to 1024,
 which matches the value in Digital UNIX V4.0.

 sominconn Sets the minimum number of pending connections
 allowed on a listening socket. When a user
 process calls listen with a backlog less
 than sominconn, the backlog will be set to
 sominconn. sominconn overrides somaxconn.
 The default value is 1.

 The effectiveness of tuning these parameters can be monitored by
 the sobacklog variables available in the kernel:

 sobacklog_hiwat Tracks the maximum pending requests to any
 socket. The initial value is 0.

 sobacklog_drops Tracks the number of drops exceeding the
 socket set backlog limit. The initial
 value is 0.

 somaxconn_drops Tracks the number of drops exceeding the
 somaxconn limit. When sominconn is larger
 than somaxconn, tracks the number of drops
 exceeding sominconn. The initial value is 0.

 TCP timer parameters also affect performance. Tuning the following
 require some knowledge of the characteristics of the network.

 tcp_msl Sets the tcp maximum segment lifetime.
 This is the maximum lifetime in half
 seconds that a packet can be in transit
 on the network. This value, when doubled,
 is the length of time a connection remains
 in the TIME_WAIT state after a incoming
 close request is processed. The unit is
 specified in 1/2 seconds, the initial
 value is 60.

Performance Tuning Tips for Digital Unix

http://httpd.apache.org/docs/misc/perf-dec.html (3 of 5) [12/05/2001 4:50:00 PM]

http://www.service.digital.com/html/patch_service.html

 tcp_rexmit_interval_min
 Sets the minimum TCP retransmit interval.
 For some WAN networks the default value may
 be too short, causing unnecessary duplicate
 packets to be sent. The unit is specified
 in 1/2 seconds, the initial value is 1.

 tcp_keepinit This is the amount of time a partially
 established connection will sit on the listen
 queue before timing out (e.g., if a client
 sends a SYN but never answers our SYN/ACK).
 Partially established connections tie up slots
 on the listen queue. If the queue starts to
 fill with connections in SYN_RCVD state,
 tcp_keepinit can be decreased to make those
 partial connects time out sooner. This should
 be used with caution, since there might be
 legitimate clients that are taking a while
 to respond to SYN/ACK. The unit is specified
 in 1/2 seconds, the default value is 150
 (ie. 75 seconds).

 The hashlist size for the TCP inpcb lookup table is regulated by:

 tcbhashsize The number of hash buckets used for the
 TCP connection table used in the kernel.
 The initial value is 32. For best results,
 should be specified as a power of 2. For
 busy Web servers, set this to 2048 or more.

 The hashlist size for the interface alias table is regulated by:

 inifaddr_hsize The number of hash buckets used for the
 interface alias table used in the kernel.
 The initial value is 32. For best results,
 should be specified as a power of 2.

 ipport_userreserved The maximum number of concurrent non-reserved,
 dynamically allocated ports. Default range
 is 1025-5000. The maximum value is 65535.
 This limits the numer of times you can
 simultaneously telnet or ftp out to connect
 to other systems.

 tcpnodelack Don't delay acknowledging TCP data; this
 can sometimes improve performance of locally
 run CAD packages. Default is value is 0,
 the enabled value is 1.

 Digital UNIX version:

 V3.2C
Feature V3.2C patch V4.0
======= ===== ===== ====
somaxconn X X X
sominconn - X X
sobacklog_hiwat - X -
sobacklog_drops - X -
somaxconn_drops - X -
tcpnodelack X X X
tcp_keepidle X X X

Performance Tuning Tips for Digital Unix

http://httpd.apache.org/docs/misc/perf-dec.html (4 of 5) [12/05/2001 4:50:00 PM]

tcp_keepintvl X X X
tcp_keepcnt - X X
tcp_keepinit - X X
TCP keepalive per-socket - - X
tcp_msl - X -
tcp_rexmit_interval_min - X -
TCP inpcb hashing - X X
tcbhashsize - X X
interface alias hashing - X X
inifaddr_hsize - X X
ipport_userreserved - X -
sysconfig -q inet - - X
sysconfig -q socket - - X

Apache HTTP Server Version 1.3

Performance Tuning Tips for Digital Unix

http://httpd.apache.org/docs/misc/perf-dec.html (5 of 5) [12/05/2001 4:50:00 PM]

http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Running a High-Performance Web Server for HPUX

Date: Wed, 05 Nov 1997 16:59:34 -0800
From: Rick Jones <raj@cup.hp.com>
Reply-To: raj@cup.hp.com
Organization: Network Performance
Subject: HP-UX tuning tips

Here are some tuning tips for HP-UX to add to the tuning page.

For HP-UX 9.X: Upgrade to 10.20
For HP-UX 10.[00|01|10]: Upgrade to 10.20

For HP-UX 10.20:

Install the latest cumulative ARPA Transport Patch. This will allow you to configure the size of the TCP connection lookup hash
table. The default is 256 buckets and must be set to a power of two. This is accomplished with adb against the *disc* image of the
kernel. The variable name is tcp_hash_size. Notice that it's critically important that you use "W" to write a 32 bit quantity, not "w"
to write a 16 bit value when patching the disc image because the tcp_hash_size variable is a 32 bit quantity.

How to pick the value? Examine the output of ftp://ftp.cup.hp.com/dist/networking/tools/connhist and see how many total TCP
connections exist on the system. You probably want that number divided by the hash table size to be reasonably small, say less than
10. Folks can look at HP's SPECweb96 disclosures for some common settings. These can be found at http://www.specbench.org/. If
an HP-UX system was performing at 1000 SPECweb96 connections per second, the TIME_WAIT time of 60 seconds would mean
60,000 TCP "connections" being tracked.

Folks can check their listen queue depths with ftp://ftp.cup.hp.com/dist/networking/misc/listenq.

If folks are running Apache on a PA-8000 based system, they should consider "chatr'ing" the Apache executable to have a large
page size. This would be "chatr +pi L <BINARY>." The GID of the running executable must have MLOCK privileges.
Setprivgrp(1m) should be consulted for assigning MLOCK. The change can be validated by running Glance and examining the
memory regions of the server(s) to make sure that they show a non-trivial fraction of the text segment being locked.

If folks are running Apache on MP systems, they might consider writing a small program that uses mpctl() to bind processes to
processors. A simple pid % numcpu algorithm is probably sufficient. This might even go into the source code.

If folks are concerned about the number of FIN_WAIT_2 connections, they can use nettune to shrink the value of tcp_keepstart.
However, they should be careful there - certainly do not make it less than oh two to four minutes. If tcp_hash_size has been set well,
it is probably OK to let the FIN_WAIT_2's take longer to timeout (perhaps even the default two hours) - they will not on average
have a big impact on performance.

There are other things that could go into the code base, but that might be left for another email. Feel free to drop me a message if
you or others are interested.

sincerely,

rick jones
http://www.cup.hp.com/netperf/NetperfPage.html

Running a High-Performance Web Server on HPUX

http://httpd.apache.org/docs/misc/perf-hp.html (1 of 2) [12/05/2001 4:50:01 PM]

mailto:raj@cup.hp.com
ftp://ftp.cup.hp.com/dist/networking/tools/connhist
http://www.specbench.org/
ftp://ftp.cup.hp.com/dist/networking/misc/listenq
http://www.cup.hp.com/netperf/NetperfPage.html

Apache HTTP Server Version 1.3

Running a High-Performance Web Server on HPUX

http://httpd.apache.org/docs/misc/perf-hp.html (2 of 2) [12/05/2001 4:50:01 PM]

http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Hints on Running a High-Performance Web Server

Running Apache on a heavily loaded web server, one often encounters problems related to the machine and OS configuration.
"Heavy" is relative, of course - but if you are seeing more than a couple hits per second on a sustained basis you should consult the
pointers on this page. In general the suggestions involve how to tune your kernel for the heavier TCP load, hardware/software
conflicts that arise, etc.

A/UX (Apple's UNIX)●

BSD-based (BSDI, FreeBSD, etc)●

Digital UNIX●

HPUX●

Linux●

Solaris●

SunOS 4.x●

SVR4●

A/UX (Apple's UNIX)

If you are running Apache on A/UX, a page that gives some helpful performance hints (concerning the listen() queue and using
virtual hosts) can be found here

BSD-based (BSDI, FreeBSD, etc)

Quick and detailed performance tuning hints for BSD-derived systems. Accept filtering on FreeBSD.

Digital UNIX

DIGITAL UNIX Tuning Parameters for Web Servers●

We have some newsgroup postings on how to tune Digital UNIX 3.2 and 4.0.●

Linux

There are no known problems with heavily loaded systems running Linux kernels 2.0.32 or later. Earlier kernels have some
problems, and an upgrade to the latest 2.0.x is a good idea to eliminate various security and denial of service attacks.

Hints on Running a High-Performance Web Server

http://httpd.apache.org/docs/misc/perf.html (1 of 2) [12/05/2001 4:50:02 PM]

http://www.jagunet.com/apache.html
http://www.digital.com/info/internet/document/ias/tuning.html

Solaris 2.4

The Solaris 2.4 TCP implementation has a few inherent limitations that only became apparent under heavy loads. This has been
fixed to some extent in 2.5 (and completely revamped in 2.6), but for now consult the following URL for tips on how to expand the
capabilities if you are finding slowdowns and lags are hurting performance.

Other links:

World Wide Web Server Performance, <http://www.sun.com/sun-on-net/performance.html>●

Solaris 2.x - tuning your TCP/IP stack contains some good technical information about tuning various Solaris TCP/IP
parameters.

●

SunOS 4.x

More information on tuning SOMAXCONN on SunOS can be found at http://www.islandnet.com/~mark/somaxconn.html.

SVR4

Some SVR4 versions waste three system calls on every gettimeofday() call. Depending on the syntactic form of the TZ environment
variable, these systems have several different algorithms to determine the local time zone (presumably compatible with something).
The following example uses the central european time zone to demonstrate this:

TZ=:MET

This form delegates the knowledge of the time zone information to an external compiled zoneinfo file (à la BSD).
Caveat: Each time the gettimeofday() function is called, the external zone info is read in again (at least on some SVR4
systems). That results in three wasted system calls with every apache request served.

 open("/usr/lib/locale/TZ/MET", O_RDONLY) = 3
 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 7944) = 778
 close(3) = 0

TZ=MET-1MDT,M3.5.0/02:00:00,M10.5.0/03:00:00

This syntax form (à la SYSV) contains all the knowledge about time zone beginning and ending times in its external
representation. It has to be parsed each time it is evaluated, resulting in a slight computing overhead, but it requires no
system call. Though the table lookup à la BSD is the more sophisticated technical solution, the bad SVR4 implementation
makes this the preferred syntax on systems which otherwise access the external zone info file repeatedly.

You should use the truss utility on a single-process apache server (started with the -X debugging switch) to determine whether your
system can profit from the second form of the TZ environment variable. If it does, you could integrate the setting of the preferred
TZ syntax into the httpd startup script, which is usually simply a copy of (or symbolic link to) the apachectl utility script, or into the
system's /etc/TIMEZONE script.

More welcome!

If you have tips to contribute, send mail to apache@apache.org

Apache HTTP Server Version 1.3

Hints on Running a High-Performance Web Server

http://httpd.apache.org/docs/misc/perf.html (2 of 2) [12/05/2001 4:50:02 PM]

http://www.sun.com/sun-on-net/performance.html
http://www.rvs.uni-hannover.de/people/voeckler/tune/EN/tune.html
http://www.islandnet.com/~mark/somaxconn.html
mailto:apache@apache.org
http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Server and Supporting Programs

This page documents all the executable programs included with the Apache HTTP Server.

httpd

Apache hypertext transfer protocol server

apachectl

Apache HTTP server control interface

ab

Apache HTTP server benchmarking tool

apxs

APache eXtenSion tool

dbmmanage

Create and update user authentication files in DBM format for basic authentication

htdigest

Create and update user authentication files for digest authentication

htpasswd

Create and update user authentication files for basic authentication

logresolve

Resolve hostnames for IP-addresses in Apache logfiles

rotatelogs

Rotate Apache logs without having to kill the server

suexec

Switch User For Exec

Other Programs

Apache HTTP Server Version 1.3

Apache HTTP Server and Supporting Programs

http://httpd.apache.org/docs/programs/index.html [12/05/2001 4:50:03 PM]

http://httpd.apache.org/docs/programs/

Apache HTTP Server Version 1.3

Manual Page: httpd

NAME
 httpd - Apache hypertext transfer protocol server

SYNOPSIS
 httpd [-X] [-R libexecdir] [-d serverroot] [-f config
] [-C directive] [-c directive] [-D parameter]

 httpd [-h] [-l] [-L] [-v] [-V] [-S] [-t] [-T
]

DESCRIPTION
 httpd is the Apache HyperText Transfer Protocol (HTTP)
 server program. It is designed to be run as a standalone
 daemon process. When used like this it will create a pool of
 child processes to handle requests. To stop it, send a TERM
 signal to the initial (parent) process. The PID of this pro-
 cess is written to a file as given in the configuration
 file. Alternatively httpd may be invoked by the Internet
 daemon inetd(8) each time a connection to the HTTP service
 is made.

 This manual page only lists the command line arguments. For
 details of the directives necessary to configure httpd see
 the Apache manual, which is part of the Apache distribution
 or can be found at http://www.apache.org/. Paths in this
 manual may not reflect those compiled into httpd.

OPTIONS
 -R libexecdir
 This option is only available if Apache was
 built with the SHARED_CORE rule enabled which
 forces the Apache core code to be placed into a
 dynamic shared object (DSO) file. This file is
 searched in a hardcoded path under ServerRoot
 per default. Use this option if you want to
 override it.

 -d serverroot
 Set the initial value for the ServerRoot direc-
 tive to serverroot. This can be overridden by
 the ServerRoot command in the configuration
 file. The default is /usr/local/apache.

 -f config Execute the commands in the file config on
 startup. If config does not begin with a /, then
 it is taken to be a path relative to the Server-
 Root. The default is conf/httpd.conf.

 -C directive

Manual Page: httpd - Apache HTTP Server

http://httpd.apache.org/docs/programs/httpd.html (1 of 3) [12/05/2001 4:50:04 PM]

 Process the configuration directive before read-
 ing config files.

 -c directive
 Process the configuration directive after read-
 ing config files.

 -D parameter
 Sets a configuration parameter which can be used
 with <IfDefine>...</IfDefine> sections in the
 configuration files to conditionally skip or
 process commands.

 -h Output a short summary of available command line
 options.

 -l Output a list of modules compiled into the
 server.

 -L Output a list of directives together with
 expected arguments and places where the direc-
 tive is valid.

 -S Show the settings as parsed from the config file
 (currently only shows the virtualhost settings).

 -t Run syntax tests for configuration files only.
 The program immediately exits after these syntax
 parsing with either a return code of 0 (Syntax
 OK) or return code not equal to 0 (Syntax
 Error).

 -T Same as option -t but does not check the config-
 ured document roots.

 -X Run in single-process mode, for internal debug-
 ging purposes only; the daemon does not detach
 from the terminal or fork any children. Do NOT
 use this mode to provide ordinary web service.

 -v Print the version of httpd , and then exit.

 -V Print the version and build parameters of httpd
 , and then exit.

FILES
 /usr/local/apache/conf/httpd.conf
 /usr/local/apache/conf/srm.conf
 /usr/local/apache/conf/access.conf
 /usr/local/apache/conf/mime.types
 /usr/local/apache/conf/magic
 /usr/local/apache/logs/error_log
 /usr/local/apache/logs/access_log
 /usr/local/apache/logs/httpd.pid

SEE ALSO
 inetd(8).

Manual Page: httpd - Apache HTTP Server

http://httpd.apache.org/docs/programs/httpd.html (2 of 3) [12/05/2001 4:50:04 PM]

Apache HTTP Server Version 1.3

Manual Page: httpd - Apache HTTP Server

http://httpd.apache.org/docs/programs/httpd.html (3 of 3) [12/05/2001 4:50:04 PM]

http://httpd.apache.org/docs/programs/

Apache HTTP Server Version 1.3

Manual Page: apxs

NAME
 apxs - APache eXtenSion tool

SYNOPSIS
 apxs -g [-S variable=value] -n name

 apxs -q [-S variable=value] query ...

 apxs -c [-S variable=value] [-o dsofile] [-I incdir] [
 -D variable[=value]] [-L libdir] [-l libname] [
 -Wc,compiler-flags] [-Wl,linker-flags] files ...

 apxs -i [-S variable=value] [-n name] [-a] [-A] dso-
 file ...

 apxs -e [-S variable=value] [-n name] [-a] [-A] dso-
 file ...

DESCRIPTION
 apxs is a tool for building and installing extension modules
 for the Apache HyperText Transfer Protocol (HTTP) server.
 This is achieved by building a Dynamic Shared Object (DSO)
 from one or more source or object files which then can be
 loaded into the Apache server under runtime via the LoadMo-
 dule directive from mod_so.

 So to use this extension mechanism, your platform has to
 support the DSO feature and your Apache httpd binary has to
 be built with the mod_so module. The apxs tool automati-
 cally complains if this is not the case. You can check this
 yourself by manually running the command

 $ httpd -l

 The module mod_so should be part of the displayed list. If
 these requirements are fulfilled, you can easily extend your
 Apache server's functionality by installing your own modules
 with the DSO mechanism by the help of this apxs tool:

 $ apxs -i -a -c mod_foo.c
 gcc -fpic -DSHARED_MODULE -I/path/to/apache/include -c mod_foo.c
 ld -Bshareable -o mod_foo.so mod_foo.o
 cp mod_foo.so /path/to/apache/libexec/mod_foo.so
 chmod 755 /path/to/apache/libexec/mod_foo.so
 [activating module `foo' in /path/to/apache/etc/httpd.conf]
 $ apachectl restart
 /path/to/apache/sbin/apachectl restart: httpd not running, trying to start
 [Tue Mar 31 11:27:55 1998] [debug] mod_so.c(303): loaded module foo_module
 /path/to/apache/sbin/apachectl restart: httpd started

Manual Page: apxs - Apache HTTP Server

http://httpd.apache.org/docs/programs/apxs.html (1 of 5) [12/05/2001 4:50:06 PM]

 $ _

 The arguments files can be any C source file (.c), a object
 file (.o) or even a library archive (.a). The apxs tool
 automatically recognizes these extensions and automatically
 uses the C source files for compilation while it just uses
 the object and archive files for the linking phase. But when
 using such pre-compiled objects, make sure they are compiled
 for Position Independent Code (PIC) to be able to use them
 for a DSO. For instance with GCC you always just have to use
 -fpic. For other C compilers please consult its manual page
 or watch for the flags apxs uses to compile the object
 files.

 For more details about DSO support in Apache, first read the
 background information about DSO in htdocs/manual/dso.html,
 then read the documentation of mod_so.

OPTIONS
 Common options:

 -n name This explicitly sets the module name for the -i
 (install) and -g (template generation) option.
 Use this to explicitly specify the module name.
 For option -g this is required, for option -i
 the apxs tool tries to determine the name from
 the source or (as a fallback) at least by guess-
 ing it from the filename.

 Query options:

 -q Performs a query for apxs's knowledge about cer-
 tain settings. The query parameters can be one
 or more of the following variable names:
 CC TARGET
 CFLAGS SBINDIR
 CFLAGS_SHLIB INCLUDEDIR
 LD_SHLIB LIBEXECDIR
 LDFLAGS_SHLIB SYSCONFDIR
 LIBS_SHLIB PREFIX
 Use this for manually determining settings. For
 instance use
 INC=-I`apxs -q INCLUDEDIR`
 inside your own Makefiles if you need manual
 access to Apache's C header files.

 Configuration options:

 -S variable=value
 This option changes the apxs settings described
 above.

 Template Generation options:
 -g This generates a subdirectory name (see option
 -n) and there two files: A sample module source
 file named mod_name.c which can be used as a
 template for creating your own modules or as a
 quick start for playing with the apxs mechanism.
 And a corresponding Makefile for even easier
 building and installing of this module.

 DSO compilation options:

Manual Page: apxs - Apache HTTP Server

http://httpd.apache.org/docs/programs/apxs.html (2 of 5) [12/05/2001 4:50:06 PM]

 -c This indicates the compilation operation. It
 first compiles the C source files (.c) of files
 into corresponding object files (.o) and then
 builds a DSO in dsofile by linking these object
 files plus the remaining object files (.o and
 .a) of files If no -o option is specified the
 output file is guessed from the first filename
 in files and thus usually defaults to
 mod_name.so

 -o dsofile Explicitly specifies the filename of the created
 DSO file. If not specified and the name cannot
 be guessed from the files list, the fallback
 name mod_unknown.so is used.

 -D variable[=value]
 This option is directly passed through to the
 compilation command(s). Use this to add your
 own defines to the build process.

 -I incdir This option is directly passed through to the
 compilation command(s). Use this to add your
 own include directories to search to the build
 process.

 -L libdir This option is directly passed through to the
 linker command. Use this to add your own
 library directories to search to the build pro-
 cess.

 -l libname This option is directly passed through to the
 linker command. Use this to add your own
 libraries to search to the build process.

 -Wc,compiler-flags
 This option passes compiler-flags as additional
 flags to the compiler command. Use this to add
 local compiler-specific options.

 -Wl,linker-flags
 This option passes linker-flags as additional
 flags to the linker command. Use this to add
 local linker-specific options.

 DSO installation and configuration options:

 -i This indicates the installation operation and
 installs one or more DSOs into the server's
 libexec directory.

 -a This activates the module by automatically
 adding a corresponding LoadModule line to
 Apache's httpd.conf configuration file, or by
 enabling it if it already exists.

 -A Same as option -a but the created LoadModule
 directive is prefixed with a hash sign (#), i.e.
 the module is just prepared for later activation
 but initially disabled.

 -e This indicates the editing operation, which can

Manual Page: apxs - Apache HTTP Server

http://httpd.apache.org/docs/programs/apxs.html (3 of 5) [12/05/2001 4:50:06 PM]

 be used with the -a and -A options similarly to
 the -i operation to edit Apache's httpd.conf
 configuration file without attempting to install
 the module.

EXAMPLES
 Assume you have an Apache module named mod_foo.c available
 which should extend Apache's server functionality. To accom-
 plish this you first have to compile the C source into a DSO
 suitable for loading into the Apache server under runtime
 via the following command:

 $ apxs -c mod_foo.c
 gcc -fpic -DSHARED_MODULE -I/path/to/apache/include -c mod_foo.c
 ld -Bshareable -o mod_foo.so mod_foo.o
 $ _

 Then you have to update the Apache configuration by making
 sure a LoadModule directive is present to load this DSO. To
 simplify this step apxs provides an automatic way to install
 the DSO in the "libexec" directory and updating the
 httpd.conf file accordingly. This can be achieved by run-
 ning:

 $ apxs -i -a mod_foo.c
 cp mod_foo.so /path/to/apache/libexec/mod_foo.so
 chmod 755 /path/to/apache/libexec/mod_foo.so
 [activating module `foo' in /path/to/apache/etc/httpd.conf]
 $ _

 This way a line named

 LoadModule foo_module libexec/mod_foo.so

 is added to the configuration file if still not present. If
 you want to have this operation to be disabled, use the -A
 option, i.e.

 $ apxs -i -A mod_foo.c

 For a quick test of the apxs mechanism you can create a sam-
 ple Apache module template plus a corresponding Makefile
 via:

 $ apxs -g -n foo
 Creating [DIR] foo
 Creating [FILE] foo/Makefile
 Creating [FILE] foo/mod_foo.c
 $ _

 Then you can immediately compile this sample module into a
 DSO and load it into the Apache server:

 $ cd foo
 $ make all reload
 apxs -c mod_foo.c
 gcc -fpic -DSHARED_MODULE -I/path/to/apache/include -c mod_foo.c
 ld -Bshareable -o mod_foo.so mod_foo.o
 apxs -i -a -n "foo" mod_foo.so
 cp mod_foo.so /path/to/apache/libexec/mod_foo.so
 chmod 755 /path/to/apache/libexec/mod_foo.so
 [activating module `foo' in /path/to/apache/etc/httpd.conf]

Manual Page: apxs - Apache HTTP Server

http://httpd.apache.org/docs/programs/apxs.html (4 of 5) [12/05/2001 4:50:06 PM]

 apachectl restart
 /path/to/apache/sbin/apachectl restart: httpd not running, trying to start
 [Tue Mar 31 11:27:55 1998] [debug] mod_so.c(303): loaded module foo_module
 /path/to/apache/sbin/apachectl restart: httpd started
 $ _

 You can even use apxs to compile complex modules outside the
 Apache source tree, like PHP3, because apxs automatically
 recognized C source files and object files.

 $ cd php3
 $./configure --with-shared-apache=../apache-1.3
 $ apxs -c -o libphp3.so mod_php3.c libmodphp3-so.a
 gcc -fpic -DSHARED_MODULE -I/tmp/apache/include -c mod_php3.c
 ld -Bshareable -o libphp3.so mod_php3.o libmodphp3-so.a
 $ _

 Only C source files are compiled while remaining object
 files are used for the linking phase.

SEE ALSO
 apachectl(1), httpd(8).

Apache HTTP Server Version 1.3

Manual Page: apxs - Apache HTTP Server

http://httpd.apache.org/docs/programs/apxs.html (5 of 5) [12/05/2001 4:50:06 PM]

http://httpd.apache.org/docs/programs/

Apache HTTP Server Version 1.3

Manual Page: ab

NAME
 ab - Apache HTTP server benchmarking tool

SYNOPSIS
 ab [-k] [-i] [-n requests] [-t timelimit] [-c con-
 currency] [-p POST file] [-A Authenticate
 username:password] [-P Proxy Authenticate
 username:password] [-H Custom header] [-C Cookie
 name=value] [-T content-type] [-v verbosity]] [-w
 output HTML]] [-x <table> attributes]] [-y <tr> attri-
 butes]] [-z <td> attributes]
 [http://]hostname[:port]/path

 ab [-V] [-h]

DESCRIPTION
 ab is a tool for benchmarking the performance of your Apache
 HyperText Transfer Protocol (HTTP) server. It does this by
 giving you an indication of how many requests per second
 your Apache installation can serve.

OPTIONS
 -k Enable the HTTP KeepAlive feature; that is, per-
 form multiple requests within one HTTP session.
 Default is no KeepAlive.

 -i Use an HTTP 'HEAD' instead of the GET method.
 Cannot be mixed with POST.

 -n requests The number of requests to perform for the bench-
 marking session. The default is to perform just
 one single request, which will not give
 representative benchmarking results.

 -t timelimit
 The number of seconds to spend benchmarking.
 Using this option automatically set the number
 of requests for the benchmarking session to
 50000. Use this to benchmark the server for a
 fixed period of time. By default, there is no
 timelimit.

 -c concurrency
 The number of simultaneous requests to perform.
 The default is to perform one HTTP request at a
 time, that is, no concurrency.

 -p POST file
 A file containing data that the program will

Manual Page: ab - Apache HTTP Server

http://httpd.apache.org/docs/programs/ab.html (1 of 3) [12/05/2001 4:50:08 PM]

 send to the Apache server in any HTTP POST
 requests.

 -A Authorization username:password
 Supply Basic Authentication credentials to the
 server. The username and password are separated
 by a single ':', and sent as uuencoded data.
 The string is sent regardless of whether the
 server needs it; that is, has sent a 401 Authen-
 tication needed.

 -p Proxy-Authorization username:password
 Supply Basic Authentication credentials to a
 proxy en-route. The username and password are
 separated by a single ':', and sent as uuencoded
 data. The string is sent regardless of whether
 the proxy needs it; that is, has sent a 407
 Proxy authentication needed.

 -C Cookie name=value
 Add a 'Cookie:' line to the request. The argu-
 ment is typically a 'name=value' pair. This
 option may be repeated.

 -p Header string
 Append extra headers to the request. The argu-
 ment is typically in the form of a valid header
 line, usually a colon separated field value
 pair, for example, 'Accept-Encoding:
 zip/zop;8bit'.

 -T content-type
 The content-type header to use for POST data.

 -v Sets the verbosity level. Level 4 and above
 prints information on headers, level 3 and above
 prints response codes (for example, 404, 200),
 and level 2 and above prints warnings and infor-
 mational messages.

 -w Print out results in HTML tables. The default
 table is two columns wide, with a white back-
 ground.

 -x attributes
 The string to use as attributes for <table>.
 Attributes are inserted <table here >

 -y attributes
 The string to use as attributes for <tr>.

 -z attributes
 The string to use as attributes for <td>.

 -V Display the version number and exit.

 -h Display usage information.

BUGS
 There are various statically declared buffers of fixed
 length. Combined with inefficient parsing of the command
 line arguments, the response headers from the server, and

Manual Page: ab - Apache HTTP Server

http://httpd.apache.org/docs/programs/ab.html (2 of 3) [12/05/2001 4:50:08 PM]

 other external inputs, these buffers might overflow.

 Ab does not implement HTTP/1.x fully; instead, it only
 accepts some 'expected' forms of responses.

 The rather heavy use of strstr(3) by the program may skew
 performance results, since it uses significant CPU
 resources. Make sure that performance limits are not hit by
 ab before your server's limit is reached.

SEE ALSO
 httpd(8)

Apache HTTP Server Version 1.3

Manual Page: ab - Apache HTTP Server

http://httpd.apache.org/docs/programs/ab.html (3 of 3) [12/05/2001 4:50:08 PM]

http://httpd.apache.org/docs/programs/

Apache HTTP Server Version 1.3

Manual Page: apachectl

NAME
 apachectl - Apache HTTP server control interface

SYNOPSIS
 apachectl command [...]

DESCRIPTION
 apachectl is a front end to the Apache HyperText Transfer
 Protocol (HTTP) server. It is designed to help the adminis-
 trator control the functioning of the Apache httpd daemon.

 NOTE: If your Apache installation uses non-standard paths,
 you will need to edit the apachectl script to set the
 appropriate paths to your PID file and your httpd binary.
 See the comments in the script for details.

 The apachectl script returns a 0 exit value on success, and
 >0 if an error occurs. For more details, view the comments
 in the script.

 Full documentation for Apache is available at
 http://www.apache.org/

OPTIONS
 The command can be any one or more of the following options:

 start Start the Apache daemon. Gives an error if it
 is already running.

 stop Stops the Apache daemon.

 restart Restarts the Apache daemon by sending it a
 SIGHUP. If the daemon is not running, it is
 started. This command automatically checks the
 configuration files via configtest before ini-
 tiating the restart to make sure Apache doesn't
 die.

 fullstatus Displays a full status report from mod_status.
 For this to work, you need to have mod_status
 enabled on your server and a text-based browser
 such as lynx available on your system. The URL
 used to access the status report can be set by
 editing the STATUSURL variable in the script.

 status Displays a brief status report. Similar to the
 fullstatus option, except that the list of
 requests currently being served is omitted.

Manual Page: apachectl - Apache HTTP Server

http://httpd.apache.org/docs/programs/apachectl.html (1 of 2) [12/05/2001 4:50:09 PM]

 graceful Gracefully restarts the Apache daemon by sending
 it a SIGUSR1. If the daemon is not running, it
 is started. This differs from a normal restart
 in that currently open connections are not
 aborted. A side effect is that old log files
 will not be closed immediately. This means that
 if used in a log rotation script, a substantial
 delay may be necessary to ensure that the old
 log files are closed before processing them.
 This command automatically checks the configura-
 tion files via configtest before initiating the
 restart to make sure Apache doesn't die.

 configtest Run a configuration file syntax test. It parses
 the configuration files and either reports Syn-
 tax Ok or detailed information about the partic-
 ular syntax error.

 help Displays a short help message.

SEE ALSO
 httpd(8)

Apache HTTP Server Version 1.3

Manual Page: apachectl - Apache HTTP Server

http://httpd.apache.org/docs/programs/apachectl.html (2 of 2) [12/05/2001 4:50:09 PM]

http://httpd.apache.org/docs/programs/

Apache HTTP Server Version 1.3

Manual Page: dbmmanage

NAME
 dbmmanage - Create and update user authentication files in
 DBM format

SYNOPSIS
 dbmmanage filename [command] [username [encpasswd]]

DESCRIPTION
 dbmmanage is used to create and update the DBM format files
 used to store usernames and password for basic authentica-
 tion of HTTP users. Resources available from the httpd
 Apache web server can be restricted to just the users listed
 in the files created by dbmmanage. This program can only be
 used when the usernames are stored in a DBM file. To use a
 flat-file database see htpasswd.

 This manual page only lists the command line arguments. For
 details of the directives necessary to configure user
 authentication in httpd see the Apache manual, which is part
 of the Apache distribution or can be found at
 http://www.apache.org/.

OPTIONS
 filename
 The filename of the DBM format file. Usually without
 the extension .db, .pag, or .dir.

 command
 This selects the operation to perform:

 add Adds an entry for username to filename using the
 encrypted password encpassword.

 adduser Asks for a password and then adds an entry for
 username to filename .

 check Asks for a password and then checks if username
 is in filename and if it's password matches the
 specified one.

 delete Deletes the username entry from filename.

 import Reads username:password entries (one per line)
 from STDIN and adds them to filename. The pass-
 words already has to be crypted.

 update Same as the "adduser" command, except that it
 makes sure username already exists in filename.

Manual Page: dbmmanage - Apache HTTP Server

http://httpd.apache.org/docs/programs/dbmmanage.html (1 of 2) [12/05/2001 4:50:10 PM]

 view Just displays the complete contents of the DBM
 file.

 username The user for which the update operation is per-
 formed.

BUGS
 One should be aware that there are a number of different DBM
 file formats in existence, and with all likelihood,
 libraries for more than one format may exist on your system.
 The three primary examples are NDBM, the GNU project's GDBM,
 and Berkeley DB 2. Unfortunately, all these libraries use
 different file formats, and you must make sure that the file
 format used by filename is the same format that dbmmanage
 expects to see. dbmmanage currently has no way of determin-
 ing what type of DBM file it is looking at. If used against
 the wrong format, will simply return nothing, or may create
 a different DBM file with a different name, or at worst, it
 may corrupt the DBM file if you were attempting to write to
 it.

 dbmmanage has a list of DBM format preferences, defined by
 the @AnyDBM::ISA array near the beginning of the program.
 Since we prefer the Berkeley DB 2 file format, the order in
 which dbmmanage will look for system libraries is Berkeley
 DB 2, then NDBM, and then GDBM. The first library found
 will be the library dbmmanage will attempt to use for all
 DBM file transactions. This ordering is slightly different
 than the standard @AnyDBM::ISA ordering in perl, as well as
 the ordering used by the simple dbmopen() call in Perl, so
 if you use any other utilities to manage your DBM files,
 they must also follow this preference ordering. Similar
 care must be taken if using programs in other languages,
 like C, to access these files.

 Apache's mod_auth_db.c module corresponds to Berkeley DB 2
 library, while mod_auth_dbm.c corresponds to the NDBM
 library. Also, one can usually use the file program sup-
 plied with most Unix systems to see what format a DBM file
 is in.

SEE ALSO
 httpd(8)

Apache HTTP Server Version 1.3

Manual Page: dbmmanage - Apache HTTP Server

http://httpd.apache.org/docs/programs/dbmmanage.html (2 of 2) [12/05/2001 4:50:10 PM]

http://httpd.apache.org/docs/programs/

Apache HTTP Server Version 1.3

Manual Page: htdigest

NAME
 htdigest - Create and update user authentication files

SYNOPSIS
 htdigest [-c] passwdfile realm username

DESCRIPTION
 htdigest is used to create and update the flat-files used to
 store usernames, realm and password for digest authentica-
 tion of HTTP users. Resources available from the httpd
 Apache web server can be restricted to just the users listed
 in the files created by htdigest.

 This manual page only lists the command line arguments. For
 details of the directives necessary to configure digest
 authentication in httpd see the Apache manual, which is part
 of the Apache distribution or can be found at
 http://www.apache.org/.

OPTIONS
 -c Create the passwdfile. If passwdfile already exists, it
 is deleted first.

 passwdfile
 Name of the file to contain the username, realm and
 password. If -c is specified, this file is created if
 it does not already exist, or deleted and recreated if
 it does exist.

 realm
 The realm name to which the user name belongs.

 username
 The user name to create or update in passwdfile. If
 username does not exist is this file, an entry is
 added. If it does exist, the password is changed.

SEE ALSO
 httpd(8)

Apache HTTP Server Version 1.3

Manual Page: htdigest - Apache HTTP Server

http://httpd.apache.org/docs/programs/htdigest.html [12/05/2001 4:50:11 PM]

http://httpd.apache.org/docs/programs/

Apache HTTP Server Version 1.3

Manual Page: htpasswd

NAME
 htpasswd - Create and update user authentication files

SYNOPSIS
 htpasswd [-c] [-m | -d | -s | -p] passwdfile username
 htpasswd -b [-c] [-m | -d | -s | -p] passwdfile username
 password
 htpasswd -n [-m | -d | -s | -p] username
 htpasswd -nb [-m | -d | -s | -p] username password

DESCRIPTION
 htpasswd is used to create and update the flat-files used to
 store usernames and password for basic authentication of
 HTTP users. If htpasswd cannot access a file, such as not
 being able to write to the output file or not being able to
 read the file in order to update it, it returns an error
 status and makes no changes.

 Resources available from the httpd Apache web server can be
 restricted to just the users listed in the files created by
 htpasswd. This program can only manage usernames and pass-
 words stored in a flat-file. It can encrypt and display
 password information for use in other types of data stores,
 though. To use a DBM database see dbmmanage.

 htpasswd encrypts passwords using either a version of MD5
 modified for Apache, or the system's crypt() routine. Files
 managed by htpasswd may contain both types of passwords;
 some user records may have MD5-encrypted passwords while
 others in the same file may have passwords encrypted with
 crypt().

 This manual page only lists the command line arguments. For
 details of the directives necessary to configure user
 authentication in httpd see the Apache manual, which is part
 of the Apache distribution or can be found at
 <URL:http://www.apache.org/>.

OPTIONS
 -b Use batch mode; i.e., get the password from the command
 line rather than prompting for it. This option should
 be used with extreme care, since the password is
 clearly visible on the command line.

 -c Create the passwdfile. If passwdfile already exists, it
 is rewritten and truncated. This option cannot be com-
 bined with the -n option.

 -n Display the results on standard output rather than

Manual Page: htpasswd - Apache HTTP Server

http://httpd.apache.org/docs/programs/htpasswd.html (1 of 3) [12/05/2001 4:50:12 PM]

 updating a file. This is useful for generating pass-
 word records acceptable to Apache for inclusion in
 non-text data stores. This option changes the syntax
 of the command line, since the passwdfile argument
 (usually the first one) is omitted. It cannot be com-
 bined with the -c option.

 -m Use Apache's modified MD5 algorithm for passwords.
 Passwords encrypted with this algorithm are transport-
 able to any platform (Windows, Unix, BeOS, et cetera)
 running Apache 1.3.9 or later. On Windows and TPF,
 this flag is the default.

 -d Use crypt() encryption for passwords. The default on
 all platforms but Windows and TPF. Though possibly sup-
 ported by htpasswd on all platforms, it is not sup-
 ported by the httpd server on Windows and TPF.

 -s Use SHA encryption for passwords. Faciliates migration
 from/to Netscape servers using the LDAP Directory
 Interchange Format (ldif).

 -p Use plaintext passwords. Though htpasswd will support
 creation on all platforms, the httpd deamon will only
 accept plain text passwords on Windows and TPF.

 passwdfile
 Name of the file to contain the user name and password.
 If -c is given, this file is created if it does not
 already exist, or rewritten and truncated if it does
 exist.

 username
 The username to create or update in passwdfile. If
 username does not exist in this file, an entry is
 added. If it does exist, the password is changed.

 password
 The plaintext password to be encrypted and stored in
 the file. Only used with the -b flag.

EXIT STATUS
 htpasswd returns a zero status ("true") if the username and
 password have been successfully added or updated in the
 passwdfile. htpasswd returns 1 if it encounters some prob-
 lem accessing files, 2 if there was a syntax problem with
 the command line, 3 if the password was entered interac-
 tively and the verification entry didn't match, 4 if its
 operation was interrupted, 5 if a value is too long (user-
 name, filename, password, or final computed record), and 6
 if the username contains illegal characters (see the RES-
 TRICTIONS section).

EXAMPLES
 htpasswd /usr/local/etc/apache/.htpasswd-users jsmith

 Adds or modifies the password for user jsmith. The user
 is prompted for the password. If executed on a Windows
 system, the password will be encrypted using the modi-
 fied Apache MD5 algorithm; otherwise, the system's
 crypt() routine will be used. If the file does not
 exist, htpasswd will do nothing except return an error.

Manual Page: htpasswd - Apache HTTP Server

http://httpd.apache.org/docs/programs/htpasswd.html (2 of 3) [12/05/2001 4:50:12 PM]

 htpasswd -c /home/doe/public_html/.htpasswd jane

 Creates a new file and stores a record in it for user
 jane. The user is prompted for the password. If the
 file exists and cannot be read, or cannot be written,
 it is not altered and htpasswd will display a message
 and return an error status.

 htpasswd -mb /usr/web/.htpasswd-all jones Pwd4Steve

 Encrypts the password from the command line (Pwd4Steve)
 using the MD5 algorithm, and stores it in the specified
 file.

SECURITY CONSIDERATIONS
 Web password files such as those managed by htpasswd should
 not be within the Web server's URI space -- that is, they
 should not be fetchable with a browser.

 The use of the -b option is discouraged, since when it is
 used the unencrypted password appears on the command line.

RESTRICTIONS
 On the Windows and MPE platforms, passwords encrypted with
 htpasswd are limited to no more than 255 characters in
 length. Longer passwords will be truncated to 255 charac-
 ters.

 The MD5 algorithm used by htpasswd is specific to the Apache
 software; passwords encrypted using it will not be usable
 with other Web servers.

 Usernames are limited to 255 bytes and may not include the
 character ':'.

SEE ALSO
 httpd(8) and the scripts in support/SHA1 which come with the
 distribution.

Apache HTTP Server Version 1.3

Manual Page: htpasswd - Apache HTTP Server

http://httpd.apache.org/docs/programs/htpasswd.html (3 of 3) [12/05/2001 4:50:12 PM]

http://httpd.apache.org/docs/programs/

Apache HTTP Server Version 1.3

Manual Page: logresolve

NAME
 logresolve - resolve hostnames for IP-addresses in Apache
 logfiles

SYNOPSIS
 logresolve [-s filename] [-c] < access_log >
 access_log.new

DESCRIPTION
 logresolve is a post-processing program to resolve IP-
 addresses in Apache's access logfiles. To minimize impact on
 your nameserver, logresolve has its very own internal hash-
 table cache. This means that each IP number will only be
 looked up the first time it is found in the log file.

OPTIONS
 -s filename Specifies a filename to record statistics.

 -c This causes logresolve to apply some DNS checks:
 after finding the hostname from the IP address,
 it looks up the IP addresses for the hostname
 and checks that one of these matches the origi-
 nal address.

SEE ALSO
 httpd(8)

Apache HTTP Server Version 1.3

Manual Page: logresolve - Apache HTTP Server

http://httpd.apache.org/docs/programs/logresolve.html [12/05/2001 4:50:13 PM]

http://httpd.apache.org/docs/programs/

Apache HTTP Server Version 1.3

Manual Page: rotatelogs

NAME
 rotatelogs - rotate Apache logs without having to kill the
 server

SYNOPSIS
 rotatelogs logfile rotationtime

DESCRIPTION
 rotatelogs is a simple program for use in conjunction with
 Apache's piped logfile feature which can be used like this:

 TransferLog "|rotatelogs /path/to/logs/access_log 86400"

 This creates the files /path/to/logs/access_log.nnnn where
 nnnn is the system time at which the log nominally starts
 (this time will always be a multiple of the rotation time,
 so you can synchronize cron scripts with it). At the end of
 each rotation time (here after 24 hours) a new log is
 started.

OPTIONS
 logfile
 The path plus basename of the logfile. The suffix .nnnn
 is automatically added.

 rotationtime
 The rotation time in seconds.

SEE ALSO
 httpd(8)

Apache HTTP Server Version 1.3

Manual Page: rotatelogs - Apache HTTP Server

http://httpd.apache.org/docs/programs/rotatelogs.html [12/05/2001 4:50:14 PM]

http://httpd.apache.org/docs/programs/

Apache HTTP Server Version 1.3

Manual Page: suexec

NAME
 suexec - Switch User For Exec

SYNOPSIS
 No synopsis for usage, because this program is used inter-
 nally by Apache only.

DESCRIPTION
 suexec is the "wrapper" support program for the suEXEC
 behavior for Apache. It is run from within Apache automat-
 ically to switch the user when an external program has to be
 run under a different user. For more information about
 suEXEC see the document `Apache suEXEC Support' under
 http://www.apache.org/docs/suexec.html .

SEE ALSO
 httpd(8)

Apache HTTP Server Version 1.3

Manual Page: suexec - Apache HTTP Server

http://httpd.apache.org/docs/programs/suexec.html [12/05/2001 4:50:14 PM]

http://httpd.apache.org/docs/programs/

Apache HTTP Server Version 1.3

Other Programs

The following programs are simple support programs included with the Apache HTTP Server which do not have their own manual
pages.

log_server_status

This Perl script is designed to be run at a frequent interval by something like cron. It connects to the server and downloads the status
information. It reformats the information to a single line and logs it to a file. Adjust the variables at the top of the script to specify
the location of the resulting logfile.

split-logfile

This Perl script will take a combined Web server access log file and break its contents into separate files. It assumes that the first
field of each line is the virtual host identity (put there by "%v"), and that the logfiles should be named that+".log" in the current
directory.

The combined log file is read from stdin. Records read will be appended to any existing log files.

Apache HTTP Server Version 1.3

Other Programs - Apache HTTP Server

http://httpd.apache.org/docs/programs/other.html [12/05/2001 4:50:15 PM]

http://httpd.apache.org/docs/programs/

Apache HTTP Server Version 1.3

Apache modules

Below is a list of all of the modules that come as part of the Apache distribution. See also the list of modules sorted by type and the
complete alphabetical list of all Apache directives. For Apache modules that are not part of the Apache distribution, please see
http://modules.apache.org

Core

Core Apache features

mod_access

Access control based on client hostname or IP address

mod_actions Apache 1.1 and up

Executing CGI scripts based on media type or request method

mod_alias

Mapping different parts of the host filesystem in the document tree, and URL redirection

mod_asis

Sending files which contain their own HTTP headers

mod_auth

User authentication using text files

mod_auth_anon Apache 1.1 and up

Anonymous user access to authenticated areas

mod_auth_db Apache 1.1 and up

User authentication using Berkeley DB files

mod_auth_dbm

User authentication using DBM files

mod_auth_digest Apache 1.3.8 and up

MD5 authentication

mod_autoindex

Automatic directory listings

mod_browser Apache 1.2.* only

Set environment variables based on User-Agent strings. Replaced by mod_setenvif in Apache 1.3 and up

mod_cern_meta Apache 1.1 and up

Support for HTTP header metafiles

mod_cgi

Invoking CGI scripts

mod_cookies up to Apache 1.1.1

Support for Netscape-like cookies. Replaced in Apache 1.2 by mod_usertrack

mod_digest Apache 1.1 and up

Apache modules

http://httpd.apache.org/docs/mod/index.html (1 of 3) [12/05/2001 4:50:17 PM]

http://modules.apache.org/
http://httpd.apache.org/docs/mod/mod_browser.html
http://httpd.apache.org/docs/mod/mod_cookies.html

MD5 authentication (deprecated by mod_auth_digest)

mod_dir

Basic directory handling

mod_dld Apache 1.2.* and earlier

Start-time linking with the GNU libdld. Replaced in Apache 1.3 by mod_so

mod_env Apache 1.1 and up

Passing of environments to CGI scripts

mod_example Apache 1.2 and up

Demonstrates Apache API

mod_expires Apache 1.2 and up

Apply Expires: headers to resources

mod_headers Apache 1.2 and up

Add arbitrary HTTP headers to resources

mod_imap Apache 1.1 and up

The imagemap file handler

mod_include

Server-parsed documents

mod_info Apache 1.1 and up

Server configuration information

mod_isapi WIN32 only

Windows ISAPI Extension support

mod_log_agent

Logging of User Agents

mod_log_common up to Apache 1.1.1

Standard logging in the Common Logfile Format. Replaced by the mod_log_config module in Apache 1.2 and up

mod_log_config

User-configurable logging replacement for mod_log_common

mod_log_referer

Logging of document references

mod_mime

Determining document types using file extensions

mod_mime_magic

Determining document types using "magic numbers"

mod_mmap_static Apache 1.3 and up

Experimental file caching, mapping files into memory to improve performance

mod_negotiation

Content negotiation

mod_proxy Apache 1.1 and up

Caching proxy abilities

mod_rewrite Apache 1.2 and up

Powerful URI-to-filename mapping using regular expressions

Apache modules

http://httpd.apache.org/docs/mod/index.html (2 of 3) [12/05/2001 4:50:17 PM]

http://httpd.apache.org/docs/mod/mod_dld.html
http://httpd.apache.org/docs/mod/mod_log_common.html

mod_setenvif Apache 1.3 and up

Set environment variables based on client information

mod_so Apache 1.3 and up

Support for loading modules (.so's on Unix, .dll's on Win32) at runtime

mod_speling Apache 1.3 and up

Automatically correct minor typos in URLs

mod_status Apache 1.1 and up

Server status display

mod_unique_id Apache 1.3 and up

Generate unique request identifier for every request

mod_userdir

User home directories

mod_usertrack Apache 1.2 and up

User tracking using Cookies (replacement for mod_cookies.c)

mod_vhost_alias Apache 1.3.7 and up

Support for dynamically configured mass virtual hosting

Apache HTTP Server Version 1.3

Apache modules

http://httpd.apache.org/docs/mod/index.html (3 of 3) [12/05/2001 4:50:17 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Apache modules

Below is a list of all of the modules that come as part of the Apache distribution. See also the list of modules sorted alphabetically
and the complete alphabetical list of all Apache directives. For modules that are not part of the Apache distribution, please see
http://modules.apache.org.

Core

Core

Core Apache features

Environment Creation

mod_env

Passing of environments to CGI scripts

mod_setenvif Apache 1.3 and up

Set environment variables based on client information

mod_unique_id Apache 1.3 and up

Generate unique request identifier for every request

Content Type Decisions

mod_mime

Determining document types using file extensions

mod_mime_magic

Determining document types using "magic numbers"

mod_negotiation

Content negotiation

URL Mapping

mod_alias

Mapping different parts of the host filesystem in the document tree, and URL redirection

mod_rewrite Apache 1.2 and up

Powerful URI-to-filename mapping using regular expressions

mod_userdir

User home directories

Apache modules

http://httpd.apache.org/docs/mod/index-bytype.html (1 of 4) [12/05/2001 4:50:19 PM]

http://httpd.apache.org/docs/mod/
http://modules.apache.org/

mod_speling Apache 1.3 and up

Automatically correct minor typos in URLs

mod_vhost_alias Apache 1.3.7 and up

Support for dynamically configured mass virtual hosting

Directory Handling

mod_dir

Basic directory handling

mod_autoindex

Automatic directory listings

Access Control

mod_access

Access control based on client hostname or IP address

mod_auth

User authentication using text files

mod_auth_dbm

User authentication using DBM files

mod_auth_db

User authentication using Berkeley DB files

mod_auth_anon Apache 1.1 and up

Anonymous user access to authenticated areas

mod_auth_digest Apache 1.3.8 and up

Experimental MD5 authentication

mod_digest Apache 1.1 and up

MD5 authentication

HTTP Response

mod_headers Apache 1.2 and up

Add arbitrary HTTP headers to resources

mod_cern_meta Apache 1.1 and up

Support for HTTP header metafiles

mod_expires Apache 1.2 and up

Apply Expires: headers to resources

mod_asis

Sending files which contain their own HTTP headers

Apache modules

http://httpd.apache.org/docs/mod/index-bytype.html (2 of 4) [12/05/2001 4:50:19 PM]

Dynamic Content

mod_include

Server-parsed documents

mod_cgi

Invoking CGI scripts

mod_actions Apache 1.1 and up

Executing CGI scripts based on media type or request method

mod_isapi WIN32 only

Windows ISAPI Extension support

Internal Content Handlers

mod_status Apache 1.1 and up

Server status display

mod_info Apache 1.1 and up

Server configuration information

Logging

mod_log_config

User-configurable logging replacement for mod_log_common

mod_log_agent

Logging of User Agents

mod_log_referer

Logging of document references

mod_usertrack Apache 1.2 and up

User tracking using Cookies (replacement for mod_cookies.c)

Miscellaneous

mod_imap Apache 1.1 and up

The imagemap file handler

mod_proxy Apache 1.1 and up

Caching proxy abilities

mod_so Apache 1.3 and up

Support for loading modules (DLLs on Windows) at runtime

mod_mmap_static Apache 1.3 and up

Experimental file caching, mapping files into memory to improve performace

Apache modules

http://httpd.apache.org/docs/mod/index-bytype.html (3 of 4) [12/05/2001 4:50:19 PM]

Development

mod_example Apache 1.2 and up

Demonstrates Apache API

Obsolete

mod_browser Apache 1.2.* only

Set environment variables based on User-Agent strings. Replaced by mod_setenvif in Apache 1.3 and up

mod_cookies up to Apache 1.1.1

Support for Netscape-like cookies. Replaced in Apache 1.2 by mod_usertrack

mod_dld Apache 1.2.* and earlier

Start-time linking with the GNU libdld. Replaced in Apache 1.3 by mod_so

mod_log_common up to Apache 1.1.1

Standard logging in the Common Logfile Format. Replaced by the mod_log_config module in Apache 1.2 and up

Apache HTTP Server Version 1.3

Apache modules

http://httpd.apache.org/docs/mod/index-bytype.html (4 of 4) [12/05/2001 4:50:19 PM]

http://httpd.apache.org/docs/mod/mod_browser.html
http://httpd.apache.org/docs/mod/mod_cookies.html
http://httpd.apache.org/docs/mod/mod_dld.html
http://httpd.apache.org/docs/mod/mod_log_common.html
http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Apache Directives

Each Apache directive available in the standard Apache distribution is listed here. They are described using a consistent format, and
there is a dictionary of the terms used in their descriptions available.

AcceptFilter●

AcceptMutex●

AccessConfig●

AccessFileName●

Action●

AddAlt●

AddAltByEncoding●

AddAltByType●

AddCharset●

AddDefaultCharset●

AddDescription●

AddEncoding●

AddHandler●

AddIcon●

AddIconByEncoding●

AddIconByType●

AddLanguage●

AddModule●

AddModuleInfo●

AddType●

AgentLog●

Alias●

AliasMatch●

Allow●

AllowCONNECT●

AllowOverride●

Anonymous●

Anonymous_Authoritative●

Anonymous_LogEmail●

Anonymous_MustGiveEmail●

Apache directives

http://httpd.apache.org/docs/mod/directives.html (1 of 6) [12/05/2001 4:50:22 PM]

Anonymous_NoUserID●

Anonymous_VerifyEmail●

AuthAuthoritative●

AuthDBAuthoritative●

AuthDBGroupFile●

AuthDBMAuthoritative●

AuthDBMGroupFile●

AuthDBMGroupFile●

AuthDBUserFile●

AuthDBMUserFile●

AuthDigestFile●

AuthGroupFile●

AuthName●

AuthType●

AuthUserFile●

BindAddress●

BrowserMatch●

BrowserMatchNoCase●

BS2000Account●

CacheDefaultExpire●

CacheDirLength●

CacheDirLevels●

CacheForceCompletion●

CacheGcInterval●

CacheLastModifiedFactor●

CacheMaxExpire●

CacheNegotiatedDocs●

CacheRoot●

CacheSize●

CheckSpelling●

ClearModuleList●

ContentDigest●

CookieExpires●

CookieLog (mod_cookies)●

CookieLog (mod_log_config)●

CookieTracking●

CoreDumpDirectory●

CustomLog●

DefaultIcon●

Apache directives

http://httpd.apache.org/docs/mod/directives.html (2 of 6) [12/05/2001 4:50:22 PM]

http://httpd.apache.org/docs/mod/mod_cookies.html#cookielog

DefaultLanguage●

DefaultType●

Deny●

<Directory>●

<DirectoryMatch>●

DirectoryIndex●

DocumentRoot●

EBCDICConvert●

EBCDICConvertByType●

EBCDICKludge●

ErrorDocument●

ErrorLog●

Example●

ExpiresActive●

ExpiresByType●

ExpiresDefault●

ExtendedStatus●

FancyIndexing●

<Files>●

<FilesMatch>●

ForceType●

Group●

Header●

HeaderName●

HostNameLookups●

IdentityCheck●

<IfDefine>●

<IfModule>●

ImapBase●

ImapDefault●

ImapMenu●

Include●

IndexIgnore●

IndexOptions●

IndexOrderDefault●

ISAPIReadAheadBuffer●

ISAPILogNotSupported●

ISAPIAppendLogToErrors●

ISAPIAppendLogToQuery●

Apache directives

http://httpd.apache.org/docs/mod/directives.html (3 of 6) [12/05/2001 4:50:22 PM]

KeepAlive●

KeepAliveTimeout●

LanguagePriority●

<Limit>●

<LimitExcept>●

LimitRequestBody●

LimitRequestFields●

LimitRequestFieldsize●

LimitRequestLine●

Listen●

ListenBacklog●

LoadFile●

LoadModule●

<Location>●

<LocationMatch>●

LockFile●

LogFormat●

LogLevel●

MaxClients●

MaxKeepAliveRequests●

MaxRequestsPerChild●

MaxSpareServers●

MetaDir●

MetaFiles●

MetaSuffix●

MimeMagicFile●

MinSpareServers●

MMapFile●

NameVirtualHost●

NoCache●

Options●

Order●

PassEnv●

PidFile●

Port●

ProxyBlock●

ProxyDomain●

ProxyPass●

ProxyPassReverse●

Apache directives

http://httpd.apache.org/docs/mod/directives.html (4 of 6) [12/05/2001 4:50:22 PM]

ProxyReceiveBufferSize●

ProxyRemote●

ProxyRequests●

ProxyVia●

ReadmeName●

Redirect●

RedirectMatch●

RedirectPermanent●

RedirectTemp●

RefererIgnore●

RefererLog●

RemoveEncoding●

RemoveHandler●

RemoveType●

Require●

ResourceConfig●

RewriteBase●

RewriteCond●

RewriteEngine●

RewriteLock●

RewriteLog●

RewriteLogLevel●

RewriteMap●

RewriteOptions●

RewriteRule●

RLimitCPU●

RLimitMEM●

RLimitNPROC●

Satisfy●

ScoreBoardFile●

Script●

ScriptAlias●

ScriptAliasMatch●

ScriptInterpreterSource●

ScriptLog●

ScriptLogBuffer●

ScriptLogLength●

SendBufferSize●

ServerAdmin●

Apache directives

http://httpd.apache.org/docs/mod/directives.html (5 of 6) [12/05/2001 4:50:22 PM]

ServerAlias●

ServerName●

ServerPath●

ServerRoot●

ServerSignature●

ServerTokens●

ServerType●

SetEnv●

SetEnvIf●

SetEnvIfNoCase●

SetHandler●

StartServers●

ThreadsPerChild●

TimeOut●

TransferLog●

TypesConfig●

UnsetEnv●

UseCanonicalName●

User●

UserDir●

<VirtualHost>●

VirtualDocumentRoot●

VirtualDocumentRootIP●

VirtualScriptAlias●

VirtualScriptAliasIP●

XBitHack●

Apache HTTP Server Version 1.3

Apache directives

http://httpd.apache.org/docs/mod/directives.html (6 of 6) [12/05/2001 4:50:22 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Terms Used to Describe Apache Directives

Each Apache configuration directive is described using a common format that looks like this:

Syntax: directive-name some args
Default: directive-name default-value
Context: context-list
Override: override
Status: status
Module: module-name
Compatibility: compatibility notes

Each of the directive's attributes, complete with possible values where possible, are described in this document.

Directive Terms

Syntax●

Default●

Context●

Override●

Status●

Module●

Compatibility●

Syntax

This indicates the format of the directive as it would appear in a configuration file. This syntax is extremely directive-specific, and
is described in detail in the directive's definition. Generally, the directive name is followed by a series of one or more
space-separated arguments. If an argument contains a space, the argument must be enclosed in double quotes. Optional arguments
are enclosed in square brackets. Where an argument can take on more than one possible value, the possible values are separated by
vertical bars "|". Literal text is presented in the default font, while argument-types for which substitution is necessary are
emphasized. Directives which can take a variable number of arguments will end in "..." indicating that the last argument is repeated.

Directives use a great number of different argument types. A few common ones are defined below.

URL

A complete Uniform Resource Locator including a scheme, hostname, and optional pathname as in
http://www.example.com/path/to/file.html

URL-path

The part of a url which follows the scheme and hostname as in /path/to/file.html. The url-path represents a
web-view of a resource, as opposed to a file-system view.

file-path

Definitions of terms used to describe Apache directives

http://httpd.apache.org/docs/mod/directive-dict.html (1 of 4) [12/05/2001 4:50:24 PM]

The path to a file in the local file-system beginning with the root directory as in
/usr/local/apache/htdocs/path/to/file.html. Unless otherwise specified, a file-path which does not begin
with a slash will be treated as relative to the ServerRoot.

directory-path

The path to a directory in the local file-system beginning with the root directory as in
/usr/local/apache/htdocs/path/to/.

filename

The name of a file with no accompanying path information as in file.html.

regex

A regular expression, which is a way of describing a pattern to match in text. The directive definition will specify what the
regex is matching against.

extension

In general, this is the part of the filename which follows the last dot. However, Apache recognizes multiple filename
extensions, so if a filename contains more than one dot, each dot-separated part of the filename following the first dot is an
extension. For example, the filename file.html.en contains two extensions: .html and .en. For Apache directives,
you may specify extensions with or without the leading dot. In addition, extensions are not case sensitive.

MIME-type

A method of describing the format of a file which consists of a major format type and a minor format type, separated by a
slash as in text/html.

env-variable

The name of an environment variable defined in the Apache configuration process. Note this is not necessarily the same as
an operating system environment variable. See the environment variable documentation for more details.

Default

If the directive has a default value (i.e., if you omit it from your configuration entirely, the Apache Web server will behave as
though you set it to a particular value), it is described here. If there is no default value, this section should say "None". Note that the
default listed here is not necessarily the same as the value the directive takes in the default httpd.conf distributed with the server.

Context

This indicates where in the server's configuration files the directive is legal. It's a comma-separated list of one or more of the
following values:

server config

This means that the directive may be used in the server configuration files (e.g., httpd.conf, srm.conf, and access.conf), but
not within any <VirtualHost> or <Directory> containers. It is not allowed in .htaccess files at all.

virtual host

This context means that the directive may appear inside <VirtualHost> containers in the server configuration files.

directory

A directive marked as being valid in this context may be used inside <Directory>, <Location>, and <Files> containers in
the server configuration files, subject to the restrictions outlined in How Directory, Location and Files sections work.

.htaccess

If a directive is valid in this context, it means that it can appear inside per-directory .htaccess files. It may not be processed,
though depending upon the overrides currently active.

The directive is only allowed within the designated context; if you try to use it elsewhere, you'll get a configuration error that will
either prevent the server from handling requests in that context correctly, or will keep the server from operating at all -- i.e., the
server won't even start.

Definitions of terms used to describe Apache directives

http://httpd.apache.org/docs/mod/directive-dict.html (2 of 4) [12/05/2001 4:50:24 PM]

The valid locations for the directive are actually the result of a Boolean OR of all of the listed contexts. In other words, a directive
that is marked as being valid in "server config, .htaccess" can be used in the httpd.conf file and in .htaccess files, but not within any
<Directory> or <VirtualHost> containers.

Override

This directive attribute indicates which configuration override must be active in order for the directive to be processed when it
appears in a .htaccess file. If the directive's context doesn't permit it to appear in .htaccess files, this attribute should say "Not
applicable".

Overrides are activated by the AllowOverride directive, and apply to a particular scope (such as a directory) and all descendants,
unless further modified by other AllowOverride directives at lower levels. The documentation for that directive also lists the
possible override names available.

Status

This indicates how tightly bound into the Apache Web server the directive is; in other words, you may need to recompile the server
with an enhanced set of modules in order to gain access to the directive and its functionality. Possible values for this attribute are:

Core

If a directive is listed as having "Core" status, that means it is part of the innermost portions of the Apache Web server, and
is always available.

Base

A directive labeled as having "Base" status is supported by one of the standard Apache modules which is compiled into the
server by default, and is therefore normally available unless you've taken steps to remove the module from your
configuration.

Extension

A directive with "Extension" status is provided by one of the modules included with the Apache server kit, but the module
isn't normally compiled into the server. To enable the directive and its functionality, you will need to change the server
build configuration files and re-compile Apache.

Experimental

"Experimental" status indicates that the directive is available as part of the Apache kit, but you're on your own if you try to
use it. The directive is being documented for completeness, and is not necessarily supported. The module which provides
the directive may or may not be compiled in by default; check the top of the page which describes the directive and its
module to see if it remarks on the availability.

Module

This quite simply lists the name of the source module which defines the directive.

Compatibility

If the directive wasn't part of the original Apache version 1 distribution, the version in which it was introduced should be listed here.
If the directive has the same name as one from the NCSA HTTPd server, any inconsistencies in behavior between the two should
also be mentioned. Otherwise, this attribute should say "No compatibility issues."

Definitions of terms used to describe Apache directives

http://httpd.apache.org/docs/mod/directive-dict.html (3 of 4) [12/05/2001 4:50:24 PM]

Apache HTTP Server Version 1.3

Definitions of terms used to describe Apache directives

http://httpd.apache.org/docs/mod/directive-dict.html (4 of 4) [12/05/2001 4:50:24 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Terms Used to Describe Apache Modules

Each Apache module is described using a common format that looks like this:

Status: status
Source File: source-file
Module Identifier: module-identifier
Compatibility: compatibility notes

Each of the attributes, complete with values where possible, are described in this document.

Module Terms

Status●

Source File●

Module Identifier●

Compatibility●

Status

This indicates how tightly bound into the Apache Web server the module is; in other words, you may need to recompile the server
in order to gain access to the module and its functionality. Possible values for this attribute are:

Base

A module labeled as having "Base" status is compiled and loaded into the server by default, and is therefore normally
available unless you have taken steps to remove the module from your configuration.

Extension

A module with "Extension" status is not normally compiled and loaded into the server. To enable the module and its
functionality, you may need to change the server build configuration files and re-compile Apache.

Experimental

"Experimental" status indicates that the module is available as part of the Apache kit, but you are on your own if you try to
use it. The module is being documented for completeness, and is not necessarily supported.

External

Modules which are not included with the base Apache distribution ("third-party modules") may use the "External" status.
We are not responsible, nor do we support such modules.

Definitions of terms used to describe Apache modules

http://httpd.apache.org/docs/mod/module-dict.html (1 of 2) [12/05/2001 4:50:25 PM]

Source File

This quite simply lists the name of the source file which contains the code for the module. This is also the name used by the
<IfModule> directive.

Module Identifier

This is a string which identifies the module for use in the LoadModule directive when dynamically loading modules. In particular, it
is the name of the external variable of type module in the source file.

Compatibility

If the module was not part of the original Apache version 1 distribution, the version in which it was introduced should be listed here.

Apache HTTP Server Version 1.3

Definitions of terms used to describe Apache modules

http://httpd.apache.org/docs/mod/module-dict.html (2 of 2) [12/05/2001 4:50:25 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Apache Core Features

These configuration parameters control the core Apache features, and are always available.

Directives

AcceptFilter●

AcceptMutex●

AccessConfig●

AccessFileName●

AddDefaultCharset●

AddModule●

AllowOverride●

AuthName●

AuthType●

BindAddress●

BS2000Account●

ClearModuleList●

ContentDigest●

CoreDumpDirectory●

DefaultType●

<Directory>●

<DirectoryMatch>●

DocumentRoot●

EBCDICConvert●

EBCDICConvertByType●

EBCDICKludge●

ErrorDocument●

ErrorLog●

<Files>●

<FilesMatch>●

Group●

HostNameLookups●

IdentityCheck●

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (1 of 36) [12/05/2001 4:50:46 PM]

<IfDefine>●

<IfModule>●

Include●

KeepAlive●

KeepAliveTimeout●

<Limit>●

<LimitExcept>●

LimitRequestBody●

LimitRequestFields●

LimitRequestFieldsize●

LimitRequestLine●

Listen●

ListenBacklog●

<Location>●

<LocationMatch>●

LockFile●

LogLevel●

MaxClients●

MaxKeepAliveRequests●

MaxRequestsPerChild●

MaxSpareServers●

MinSpareServers●

NameVirtualHost●

Options●

PidFile●

Port●

Require●

ResourceConfig●

RLimitCPU●

RLimitMEM●

RLimitNPROC●

Satisfy●

ScoreBoardFile●

ScriptInterpreterSource●

SendBufferSize●

ServerAdmin●

ServerAlias●

ServerName●

ServerPath●

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (2 of 36) [12/05/2001 4:50:46 PM]

ServerRoot●

ServerSignature●

ServerTokens●

ServerType●

StartServers●

ThreadsPerChild●

ThreadStackSize●

TimeOut●

UseCanonicalName●

User●

<VirtualHost>●

AcceptFilter directive

Syntax: AcceptFilter on|off
Default: AcceptFilter on
Context: server configt
Status: core Compatibility: AcceptFilter is available in Apache 1.3.22 and later

AcceptFilter controls a BSD specific filter optimization. It is compiled in by default - and switched on by default if your
system supports it (setsocketopt() option SO_ACCEPTFILTER). Currently only FreeBSD supports this.

See the filter section on performance hints for more information.

The compile time flag AP_ACCEPTFILTER_OFF can be used to change the default to 'off'. httpd -V and httpd -L will show
compile time defaults and whether or not SO_ACCEPTFILTER was defined during the compile.

AcceptMutex directive

Syntax: AcceptMutex uslock|pthread|sysvsem|fcntl|flock|os2sem|tpfcore|none|default
Default: AcceptMutex default
Context: server config
Status: core

AcceptMutex controls which accept() mutex method Apache will use. Not all methods are available on all platforms, since the
suite of methods is determined at compile-time. For a list of which methods are available for your particular build, the httpd -L
command line option will list them out.

The compile time flags -D HAVE_METHOD_SERIALIZED_ACCEPT can be used to add different methods to your build, or one
can edit the include/ap_config.h file for your particular platform.

See the performance tuning guide for more information.

AccessConfig directive

Syntax: AccessConfig file-path|directory-path
Default: AccessConfig conf/access.conf
Context: server config, virtual host
Status: core

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (3 of 36) [12/05/2001 4:50:46 PM]

http://httpd.apache.org/docs/mod/misc/perf-bsd44.html

Compatibility: The ability to specify a directory, rather than a file name, is only available in Apache 1.3.13 and later.

The server will read this file for more directives after reading the ResourceConfig file. File-path is relative to the ServerRoot. This
feature can be disabled using:

AccessConfig /dev/null

Or, on Win32 servers,

AccessConfig nul

Historically, this file only contained <Directory> sections; in fact it can now contain any server directive allowed in the server
config context. However, since Apache version 1.3.4, the default access.conf file which ships with Apache contains only
comments, and all directives are placed in the main server configuration file, httpd.conf.

If AccessConfig points to a directory, rather than a file, Apache will read all files in that directory, and any subdirectory, and
parse those as configuration files. Note that any file in the specified directory will be loaded as a configuration file, so make sure
that you don't have stray files in this directory by mistake, such as temporary files created by your editor, for example.

See also ResourceConfig.

AccessFileName directive

Syntax: AccessFileName filename [filename] ...
Default: AccessFileName .htaccess
Context: server config, virtual host
Status: core
Compatibility: AccessFileName can accept more than one filename only in Apache 1.3 and later

When returning a document to the client the server looks for the first existing access control file from this list of names in every
directory of the path to the document, if access control files are enabled for that directory. For example:

AccessFileName .acl

before returning the document /usr/local/web/index.html, the server will read /.acl, /usr/.acl, /usr/local/.acl and /usr/local/web/.acl
for directives, unless they have been disabled with

<Directory />
AllowOverride None
</Directory>

See Also: AllowOverride

AddDefaultCharset directive

Syntax: AddDefaultCharset On|Off|charset
Context: all
Status: core
Default: AddDefaultCharset Off
Compatibility: AddDefaultCharset is only available in Apache 1.3.12 and later

This directive specifies the name of the character set that will be added to any response that does not have any parameter on the
content type in the HTTP headers. This will override any character set specified in the body of the document via a META tag. A
setting of AddDefaultCharset Off disables this functionality. AddDefaultCharset On enables Apache's internal default
charset of iso-8859-1 as required by the directive. You can also specify an alternate charset to be used; e.g.
AddDefaultCharset utf-8.

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (4 of 36) [12/05/2001 4:50:46 PM]

AddModule directive

Syntax: AddModule module [module] ...
Context: server config
Status: core
Compatibility: AddModule is only available in Apache 1.2 and later

The server can have modules compiled in which are not actively in use. This directive can be used to enable the use of those
modules. The server comes with a pre-loaded list of active modules; this list can be cleared with the ClearModuleList directive.

AllowOverride directive

Syntax: AllowOverride All|None|directive-type [directive-type] ...
Default: AllowOverride All
Context: directory
Status: core

When the server finds an .htaccess file (as specified by AccessFileName) it needs to know which directives declared in that file can
override earlier access information.

When this directive is set to None, then .htaccess files are completely ignored. In this case, the server will not even attempt to read
.htaccess files in the filesystem.

When this directive is set to All, then any directive which has the .htaccess Context is allowed in .htaccess files.

The directive-type can be one of the following groupings of directives.

AuthConfig

Allow use of the authorization directives (AuthDBMGroupFile, AuthDBMUserFile, AuthGroupFile, AuthName, AuthType,
AuthUserFile, Require, etc.).

FileInfo

Allow use of the directives controlling document types (AddEncoding, AddLanguage, AddType, DefaultType,
ErrorDocument, LanguagePriority, etc.).

Indexes

Allow use of the directives controlling directory indexing (AddDescription, AddIcon, AddIconByEncoding,
AddIconByType, DefaultIcon, DirectoryIndex, FancyIndexing, HeaderName, IndexIgnore, IndexOptions, ReadmeName,
etc.).

Limit

Allow use of the directives controlling host access (Allow, Deny and Order).

Options

Allow use of the directives controlling specific directory features (Options and XBitHack).

See Also: AccessFileName

AuthName directive

Syntax: AuthName auth-domain
Context: directory, .htaccess
Override: AuthConfig

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (5 of 36) [12/05/2001 4:50:46 PM]

Status: core

This directive sets the name of the authorization realm for a directory. This realm is given to the client so that the user knows which
username and password to send. AuthName takes a single argument; if the realm name contains spaces, it must be enclosed in
quotation marks. It must be accompanied by AuthType and Require directives, and directives such as AuthUserFile and
AuthGroupFile to work.

AuthType directive

Syntax: AuthType Basic|Digest
Context: directory, .htaccess
Override: AuthConfig
Status: core

This directive selects the type of user authentication for a directory. Only Basic and Digest are currently implemented. It must
be accompanied by AuthName and Require directives, and directives such as AuthUserFile and AuthGroupFile to work.

BindAddress directive

Syntax: BindAddress *|IP-address|domain-name
Default: BindAddress *
Context: server config
Status: core

A Unix® http server can either listen for connections to every IP address of the server machine, or just one IP address of the server
machine. If the argument to this directive is *, then the server will listen for connections on every IP address. Otherwise, the server
can listen to only a specific IP-address or a fully-qualified Internet domain-name.

Only one BindAddress directive can be used. For more control over which address and ports Apache listens to, use the Listen
directive instead of BindAddress.

BindAddress can be used as an alternative method for supporting virtual hosts using multiple independent servers, instead of
using <VirtualHost> sections.

See Also: DNS Issues
See Also: Setting which addresses and ports Apache uses

BS2000Account directive

Syntax: BS2000Account account
Default: none
Context: server config
Status: core
Compatibility: BS2000Account is only available for BS2000 machines, as of Apache 1.3 and later.

The BS2000Account directive is available for BS2000 hosts only. It must be used to define the account number for the
non-privileged apache server user (which was configured using the User directive). This is required by the BS2000 POSIX
subsystem (to change the underlying BS2000 task environment by performing a sub-LOGON) to prevent CGI scripts from
accessing resources of the privileged account which started the server, usually SYSROOT.
Only one BS2000Account directive can be used.

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (6 of 36) [12/05/2001 4:50:46 PM]

http://httpd.apache.org/docs/vhosts/

See Also: Apache EBCDIC port

ClearModuleList directive

Syntax: ClearModuleList
Context: server config
Status: core
Compatibility: ClearModuleList is only available in Apache 1.2 and later

The server comes with a built-in list of active modules. This directive clears the list. It is assumed that the list will then be
re-populated using the AddModule directive.

ContentDigest directive

Syntax: ContentDigest on|off
Default: ContentDigest off
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: experimental
Compatibility: ContentDigest is only available in Apache 1.1 and later

This directive enables the generation of Content-MD5 headers as defined in RFC1864 respectively RFC2068.

MD5 is an algorithm for computing a "message digest" (sometimes called "fingerprint") of arbitrary-length data, with a high degree
of confidence that any alterations in the data will be reflected in alterations in the message digest.

The Content-MD5 header provides an end-to-end message integrity check (MIC) of the entity-body. A proxy or client may check
this header for detecting accidental modification of the entity-body in transit. Example header:

 Content-MD5: AuLb7Dp1rqtRtxz2m9kRpA==

Note that this can cause performance problems on your server since the message digest is computed on every request (the values are
not cached).

Content-MD5 is only sent for documents served by the core, and not by any module. For example, SSI documents, output from
CGI scripts, and byte range responses do not have this header.

CoreDumpDirectory directive

Syntax: CoreDumpDirectory directory-path
Default: the same location as ServerRoot
Context: server config
Status: core

This controls the directory to which Apache attempts to switch before dumping core. The default is in the ServerRoot directory,
however since this should not be writable by the user the server runs as, core dumps won't normally get written. If you want a core
dump for debugging, you can use this directive to place it in a different location.

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (7 of 36) [12/05/2001 4:50:46 PM]

DefaultType directive

Syntax: DefaultType MIME-type
Default: DefaultType text/html
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: core

There will be times when the server is asked to provide a document whose type cannot be determined by its MIME types mappings.

The server must inform the client of the content-type of the document, so in the event of an unknown type it uses the
DefaultType. For example:

DefaultType image/gif

would be appropriate for a directory which contained many gif images with filenames missing the .gif extension.

<Directory> directive

Syntax: <Directory directory-path> ... </Directory>
Context: server config, virtual host
Status: Core.

<Directory> and </Directory> are used to enclose a group of directives which will apply only to the named directory and
sub-directories of that directory. Any directive which is allowed in a directory context may be used. Directory-path is either the full
path to a directory, or a wild-card string. In a wild-card string, `?' matches any single character, and `*' matches any sequences of
characters. As of Apache 1.3, you may also use `[]' character ranges like in the shell. Also as of Apache 1.3 none of the wildcards
match a `/' character, which more closely mimics the behavior of Unix shells. Example:

 <Directory /usr/local/httpd/htdocs>
 Options Indexes FollowSymLinks
 </Directory>

Apache 1.2 and above: Extended regular expressions can also be used, with the addition of the ~ character. For example:

 <Directory ~ "^/www/.*/[0-9]{3}">

would match directories in /www/ that consisted of three numbers.

If multiple (non-regular expression) directory sections match the directory (or its parents) containing a document, then the directives
are applied in the order of shortest match first, interspersed with the directives from the .htaccess files. For example, with

<Directory />
AllowOverride None
</Directory>

<Directory /home/*>
AllowOverride FileInfo
</Directory>

for access to the document /home/web/dir/doc.html the steps are:

Apply directive AllowOverride None (disabling .htaccess files).●

Apply directive AllowOverride FileInfo (for directory /home/web).●

Apply any FileInfo directives in /home/web/.htaccess●

Regular expression directory sections are handled slightly differently by Apache 1.2 and 1.3. In Apache 1.2 they are interspersed
with the normal directory sections and applied in the order they appear in the configuration file. They are applied only once, and
apply when the shortest match possible occurs. In Apache 1.3 regular expressions are not considered until after all of the normal
sections have been applied. Then all of the regular expressions are tested in the order they appeared in the configuration file. For

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (8 of 36) [12/05/2001 4:50:46 PM]

example, with

<Directory ~ abc$>
... directives here ...
</Directory>

Suppose that the filename being accessed is /home/abc/public_html/abc/index.html. The server considers each of /,
/home, /home/abc, /home/abc/public_html, and /home/abc/public_html/abc in that order. In Apache 1.2,
when /home/abc is considered, the regular expression will match and be applied. In Apache 1.3 the regular expression isn't
considered at all at that point in the tree. It won't be considered until after all normal <Directory>s and .htaccess files have been
applied. Then the regular expression will match on /home/abc/public_html/abc and be applied.

Note that the default Apache access for <Directory /> is Allow from All. This means that Apache will serve any file mapped
from an URL. It is recommended that you change this with a block such as

 <Directory />
 Order Deny,Allow
 Deny from All
 </Directory>

and then override this for directories you want accessible. See the Security Tips page for more details.

The directory sections typically occur in the access.conf file, but they may appear in any configuration file. <Directory> directives
cannot nest, and cannot appear in a <Limit> or <LimitExcept> section.

See also: How Directory, Location and Files sections work for an explanation of how these different sections are combined when a
request is received

<DirectoryMatch>

Syntax: <DirectoryMatch regex> ... </DirectoryMatch>
Context: server config, virtual host
Status: Core.
Compatibility: Available in Apache 1.3 and later

<DirectoryMatch> and </DirectoryMatch> are used to enclose a group of directives which will apply only to the named directory
and sub-directories of that directory, the same as <Directory>. However, it takes as an argument a regular expression. For example:

 <DirectoryMatch "^/www/.*/[0-9]{3}">

would match directories in /www/ that consisted of three numbers.

See Also: <Directory> for a description of how regular expressions are mixed in with normal <Directory>s.
See also: How Directory, Location and Files sections work for an explanation of how these different sections are combined when a
request is received

DocumentRoot directive

Syntax: DocumentRoot directory-path
Default: DocumentRoot /usr/local/apache/htdocs
Context: server config, virtual host
Status: core

This directive sets the directory from which httpd will serve files. Unless matched by a directive like Alias, the server appends the
path from the requested URL to the document root to make the path to the document. Example:

DocumentRoot /usr/web

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (9 of 36) [12/05/2001 4:50:46 PM]

then an access to http://www.my.host.com/index.html refers to /usr/web/index.html.

There appears to be a bug in mod_dir which causes problems when the DocumentRoot has a trailing slash (i.e., "DocumentRoot
/usr/web/") so please avoid that.

EBCDICConvert

Syntax: EBCDICConvert On|Off[=direction] extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Status: core
Override: FileInfo
Compatibility: The configurable EBCDIC conversion is only available in Apache 1.3.19 and later, and on EBCDIC based
platforms.

The EBCDICConvert directive maps the given filename extensions to the specified conversion setting (On or Off). File extensions
may be specified with or without a leading dot.

If the optional format On=direction (or Off=direction) is used, where direction is one of In, Out or InOut, then the directive only
applies to the specified transfer direction (In: uploaded content in a PUT or POST request, Out: returned content in a GET or POST
request, and InOut: conversion in both directions).
Otherwise, InOut (conversion in both directions) is implied.

Conversion configuration based on file extension is tested prior to configuration based on MIME type, to allow for generic MIME
based rules to be overridden by a more specific file extension (several file extensions may exist for the same MIME type).

Example:
With a configuration like the following, the normal *.html files contain HTML text in EBCDIC encoding, while *.ahtml files
contain HTML text in ASCII encoding:

 # *.html and *.ahtml contain HTML text:
 AddType text/html .html .ahtml

 # *.ahtml is not converted (contains ASCII text already):
 EBCDICConvert Off .ahtml

 # All other text/html files presumably contain EBCDIC text:
 EBCDICConvertByType On text/html

See also: EBCDICConvertByType and Overview of the EBCDIC Conversion Functions

EBCDICConvertByType

Syntax: EBCDICConvertByType On|Off[=direction] mimetype [mimetype] ...
Context: server config, virtual host, directory, .htaccess
Status: core
Override: FileInfo
Compatibility: The configurable EBCDIC conversion is only available in Apache 1.3.19 and later, and on EBCDIC based
platforms.

The EBCDICConvertByType directive maps the given MIME type (optionally containing wildcards) to the specified conversion
setting (On or Off).

If the optional format On=direction (or Off=direction) is used, where direction is one of In, Out or InOut, then the directive only

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (10 of 36) [12/05/2001 4:50:46 PM]

applies to the specified transfer direction (In: uploaded content in a PUT or POST request, Out: returned content in a GET or POST
request, and InOut: conversion in both directions).
Otherwise, InOut (conversion in both directions) is implied.

Example:
A useful standard configuration should at least contain the following defaults:

 # All text documents are stored as EBCDIC files:
 EBCDICConvertByType On text/* message/* multipart/*
 EBCDICConvertByType On application/x-www-form-urlencoded \
 model/vrml application/postscript
 # All other files are assumed to be binary:
 EBCDICConvertByType Off */*

If you serve ASCII documents only, for example from an NFS mounted unix server, use:

 # All documents are ASCII already:
 EBCDICConvertByType Off */*

See also: EBCDICConvert and Overview of the EBCDIC Conversion Functions

EBCDICKludge

Syntax: EBCDICKludge On|Off
Default: EBCDICKludge Off
Context: server config, virtual host, directory, .htaccess
Status: core
Override: FileInfo
Compatibility: EBCDICKludge is only available in Apache 1.3.19 and later, and on EBCDIC based platforms. It is deprecated and
will be withdrawn in a future version.

The EBCDICKludge is provided for the backward compatible behavior with apache versions 1.3.0 through 1.3.18. In these versions,
all files with MIME types starting with "text/", "message/" or "multipart/" or with type "application/x-www-form-urlencoded"
would be converted by default, all other documents were returned unconverted. Only if a MIME type "text/x-ascii-subtype" was
configured for a certain document, the document was assumed to be in ASCII format already, and was not converted again. Instead,
the "x-ascii-" was removed from the type, resulting in the MIME type "text/subtype" being returned for the document.

If the EBCDICKludge directive is set to On, and if none of the file extensions configured with the EBCDICConvert directive
matches in the current context, then the server tests for a MIME type of the format type/x-ascii-subtype. If the document has such a
type, then the "x-ascii-" substring is removed and the conversion set to Off. This allows for overriding the implicit assumption that
all text files are stored in EBCDIC format, for example when serving documents from an NFS mounted directory with ASCII
documents.
By using the EBCDICKludge, there is no way to force one of the other MIME types (e.g., model/vrml) to be treated as an EBCDIC
text file. Use of the EBCDICConvertByType directive mentioned above is the preferred way to configure such a conversion.
(Before Apache version 1.3.19, there was no way at all to force these binary documents to be treated as EBCDIC text files.)

See also: EBCDICConvert, EBCDICConvertByType and Overview of the EBCDIC Conversion Functions

ErrorDocument directive

Syntax: ErrorDocument error-code document
Context: server config, virtual host, directory, .htaccess
Status: core
Override: FileInfo
Compatibility: The directory and .htaccess contexts are only available in Apache 1.1 and later.

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (11 of 36) [12/05/2001 4:50:46 PM]

In the event of a problem or error, Apache can be configured to do one of four things,

output a simple hardcoded error message1.

output a customized message2.

redirect to a local URL-path to handle the problem/error3.

redirect to an external URL to handle the problem/error4.

The first option is the default, while options 2-4 are configured using the ErrorDocument directive, which is followed by the
HTTP response code and a message or URL.

Messages in this context begin with a single double-quote character ("), which does not form part of the message itself. Apache will
sometimes offer additional information regarding the problem/error.

URLs can begin with a slash (/) for local URLs, or be a full URL which the client can resolve. Examples:

ErrorDocument 500 http://foo.example.com/cgi-bin/tester
ErrorDocument 404 /cgi-bin/bad_urls.pl
ErrorDocument 401 /subscription_info.html
ErrorDocument 403 "Sorry can't allow you access today

Note that when you specify an ErrorDocument that points to a remote URL (ie. anything with a method such as "http" in front of
it), Apache will send a redirect to the client to tell it where to find the document, even if the document ends up being on the same
server. This has several implications, the most important being that the client will not receive the original error status code, but
instead will receive a redirect status code. This in turn can confuse web robots and other clients which try to determine if a URL is
valid using the status code. In addition, if you use a remote URL in an ErrorDocument 401, the client will not know to prompt
the user for a password since it will not receive the 401 status code. Therefore, if you use an "ErrorDocument 401" directive
then it must refer to a local document.

See Also: documentation of customizable responses.

ErrorLog directive

Syntax: ErrorLog file-path|syslog[:facility]
Default: ErrorLog logs/error_log (Unix)
Default: ErrorLog logs/error.log (Windows and OS/2)
Context: server config, virtual host
Status: core

The error log directive sets the name of the file to which the server will log any errors it encounters. If the file-path does not begin
with a slash (/) then it is assumed to be relative to the ServerRoot. If the file-path begins with a pipe (|) then it is assumed to be a
command to spawn to handle the error log.

Apache 1.3 and above: Using syslog instead of a filename enables logging via syslogd(8) if the system supports it. The default is
to use syslog facility local7, but you can override this by using the syslog:facility syntax where facility can be one of the
names usually documented in syslog(1).

SECURITY: See the security tips document for details on why your security could be compromised if the directory where logfiles
are stored is writable by anyone other than the user that starts the server.

See also: LogLevel and Apache Log Files

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (12 of 36) [12/05/2001 4:50:46 PM]

<Files> directive

Syntax: <Files filename> ... </Files>
Context: server config, virtual host, .htaccess
Status: core
Compatibility: only available in Apache 1.2 and above.

The <Files> directive provides for access control by filename. It is comparable to the <Directory> directive and <Location>
directives. It should be matched with a </Files> directive. The directives given within this section will be applied to any object with
a basename (last component of filename) matching the specified filename. <Files> sections are processed in the order they
appear in the configuration file, after the <Directory> sections and .htaccess files are read, but before <Location> sections. Note
that <Files> can be nested inside <Directory> sections to restrict the portion of the filesystem they apply to.

The filename argument should include a filename, or a wild-card string, where `?' matches any single character, and `*' matches any
sequences of characters. Extended regular expressions can also be used, with the addition of the ~ character. For example:

 <Files ~ "\.(gif|jpe?g|png)$">

would match most common Internet graphics formats. In Apache 1.3 and later, <FilesMatch> is preferred, however.

Note that unlike <Directory> and <Location> sections, <Files> sections can be used inside .htaccess files. This allows
users to control access to their own files, at a file-by-file level.

See also: How Directory, Location and Files sections work for an explanation of how these different sections are combined when a
request is received

<FilesMatch>

Syntax: <FilesMatch regex> ... </FilesMatch>
Context: server config, virtual host, .htaccess
Status: core
Compatibility: only available in Apache 1.3 and above.

The <FilesMatch> directive provides for access control by filename, just as the <Files> directive does. However, it accepts a regular
expression. For example:

 <FilesMatch "\.(gif|jpe?g|png)$">

would match most common Internet graphics formats.

See also: How Directory, Location and Files sections work for an explanation of how these different sections are combined when a
request is received

Group directive

Syntax: Group unix-group
Default: Group #-1
Context: server config, virtual host
Status: core

The Group directive sets the group under which the server will answer requests. In order to use this directive, the stand-alone server
must be run initially as root. Unix-group is one of:

A group name

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (13 of 36) [12/05/2001 4:50:46 PM]

Refers to the given group by name.

followed by a group number.

Refers to a group by its number.

It is recommended that you set up a new group specifically for running the server. Some admins use user nobody, but this is not
always possible or desirable.

Note: if you start the server as a non-root user, it will fail to change to the specified group, and will instead continue to run as the
group of the original user.

Special note: Use of this directive in <VirtualHost> requires a properly configured suEXEC wrapper. When used inside a
<VirtualHost> in this manner, only the group that CGIs are run as is affected. Non-CGI requests are still processed as the group
specified in the main Group directive.

SECURITY: See User for a discussion of the security considerations.

HostNameLookups directive

Syntax: HostNameLookups on|off|double
Default: HostNameLookups off
Context: server config, virtual host, directory
Status: core
Compatibility: double available only in Apache 1.3 and above.
Compatibility: Default was on prior to Apache 1.3.

This directive enables DNS lookups so that host names can be logged (and passed to CGIs/SSIs in REMOTE_HOST). The value
double refers to doing double-reverse DNS. That is, after a reverse lookup is performed, a forward lookup is then performed on
that result. At least one of the ip addresses in the forward lookup must match the original address. (In "tcpwrappers" terminology
this is called PARANOID.)

Regardless of the setting, when mod_access is used for controlling access by hostname, a double reverse lookup will be performed.
This is necessary for security. Note that the result of this double-reverse isn't generally available unless you set
HostnameLookups double. For example, if only HostnameLookups on and a request is made to an object that is
protected by hostname restrictions, regardless of whether the double-reverse fails or not, CGIs will still be passed the single-reverse
result in REMOTE_HOST.

The default for this directive was previously on in versions of Apache prior to 1.3. It was changed to off in order to save the
network traffic for those sites that don't truly need the reverse lookups done. It is also better for the end users because they don't
have to suffer the extra latency that a lookup entails. Heavily loaded sites should leave this directive off, since DNS lookups can
take considerable amounts of time. The utility logresolve, provided in the /support directory, can be used to look up host names
from logged IP addresses offline.

IdentityCheck directive

Syntax: IdentityCheck on|off
Default: IdentityCheck off
Context: server config, virtual host, directory
Status: core

This directive enables RFC1413-compliant logging of the remote user name for each connection, where the client machine runs
identd or something similar. This information is logged in the access log. Boolean is either on or off.

The information should not be trusted in any way except for rudimentary usage tracking.

Note that this can cause serious latency problems accessing your server since every request requires one of these lookups to be

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (14 of 36) [12/05/2001 4:50:46 PM]

performed. When firewalls are involved each lookup might possibly fail and add 30 seconds of latency to each hit. So in general this
is not very useful on public servers accessible from the Internet.

<IfDefine> directive

Syntax: <IfDefine [!]parameter-name> ... </IfDefine>
Default: None
Context: all
Status: Core
Compatibility: <IfDefine> is only available in 1.3.1 and later.

The <IfDefine test>...</IfDefine> section is used to mark directives that are conditional. The directives within an IfDefine section
are only processed if the test is true. If test is false, everything between the start and end markers is ignored.

The test in the <IfDefine> section directive can be one of two forms:

parameter-name●

!parameter-name●

In the former case, the directives between the start and end markers are only processed if the parameter named parameter-name is
defined. The second format reverses the test, and only processes the directives if parameter-name is not defined.

The parameter-name argument is a define as given on the httpd command line via -Dparameter-, at the time the server was
started.

<IfDefine> sections are nest-able, which can be used to implement simple multiple-parameter tests. Example:

 $ httpd -DReverseProxy ...

 # httpd.conf
 <IfDefine ReverseProxy>
 LoadModule rewrite_module libexec/mod_rewrite.so
 LoadModule proxy_module libexec/libproxy.so
 </IfDefine>

<IfModule> directive

Syntax: <IfModule [!]module-name> ... </IfModule>
Default: None
Context: all
Status: Core
Compatibility: IfModule is only available in 1.2 and later.

The <IfModule test>...</IfModule> section is used to mark directives that are conditional. The directives within an IfModule
section are only processed if the test is true. If test is false, everything between the start and end markers is ignored.

The test in the <IfModule> section directive can be one of two forms:

module name●

!module name●

In the former case, the directives between the start and end markers are only processed if the module named module name is
compiled in to Apache. The second format reverses the test, and only processes the directives if module name is not compiled in.

The module name argument is a module name as given as the file name of the module, at the time it was compiled. For example,
mod_rewrite.c.

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (15 of 36) [12/05/2001 4:50:46 PM]

<IfModule> sections are nest-able, which can be used to implement simple multiple-module tests.

Include directive

Syntax: Include file-path|directory-path
Context: server config
Status: Core
Compatibility: Include is only available in Apache 1.3 and later.

This directive allows inclusion of other configuration files from within the server configuration files.

New in Apache 1.3.13 is the feature that if Include points to a directory, rather than a file, Apache will read all files in that
directory, and any subdirectory, and parse those as configuration files.

KeepAlive directive

Syntax: (Apache 1.1) KeepAlive max-requests
Default: (Apache 1.1) KeepAlive 5
Syntax: (Apache 1.2) KeepAlive on|off
Default: (Apache 1.2) KeepAlive On
Context: server config
Status: Core
Compatibility: KeepAlive is only available in Apache 1.1 and later.

The Keep-Alive extension to HTTP/1.0 and the persistent connection feature of HTTP/1.1 provide long-lived HTTP sessions which
allow multiple requests to be sent over the same TCP connection. In some cases this has been shown to result in an almost 50%
speedup in latency times for HTML documents with many images. To enable Keep-Alive connections in Apache 1.2 and later, set
KeepAlive On.

For HTTP/1.0 clients, Keep-Alive connections will only be used if they are specifically requested by a client. In addition, a
Keep-Alive connection with an HTTP/1.0 client can only be used when the length of the content is known in advance. This implies
that dynamic content such as CGI output, SSI pages, and server-generated directory listings will generally not use Keep-Alive
connections to HTTP/1.0 clients. For HTTP/1.1 clients, persistent connections are the default unless otherwise specified. If the
client requests it, chunked encoding will be used in order to send content of unknown length over persistent connections.

Apache 1.1 only: Set max-requests to the maximum number of requests you want Apache to entertain per connection. A limit is
imposed to prevent a client from hogging your server resources. Set this to 0 to disable support. In Apache 1.2 and 1.3, this is
controlled through the MaxKeepAliveRequests directive instead.

See also MaxKeepAliveRequests.

KeepAliveTimeout directive

Syntax: KeepAliveTimeout seconds
Default: KeepAliveTimeout 15
Context: server config
Status: Core
Compatibility: KeepAliveTimeout is only available in Apache 1.1 and later.

The number of seconds Apache will wait for a subsequent request before closing the connection. Once a request has been received,
the timeout value specified by the Timeout directive applies.

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (16 of 36) [12/05/2001 4:50:46 PM]

Setting KeepAliveTimeout to a high value may cause performance problems in heavily loaded servers. The higher the timeout,
the more server processes will be kept occupied waiting on connections with idle clients.

<Limit> directive

Syntax: <Limit method [method] ... > ... </Limit>
Context: any
Status: core

Access controls are normally effective for all access methods, and this is the usual desired behavior. In the general case, access
control directives should not be placed within a <limit> section.

The purpose of the <Limit> directive is to restrict the effect of the access controls to the nominated HTTP methods. For all other
methods, the access restrictions that are enclosed in the <Limit> bracket will have no effect. The following example applies the
access control only to the methods POST, PUT, and DELETE, leaving all other methods unprotected:

<Limit POST PUT DELETE>
Require valid-user
</Limit>

The method names listed can be one or more of: GET, POST, PUT, DELETE, CONNECT, OPTIONS, TRACE, PATCH,
PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK, and UNLOCK. The method name is case-sensitive. If GET is used
it will also restrict HEAD requests.

<LimitExcept> directive

Syntax: <LimitExcept method [method] ... > ... </LimitExcept>
Context: any
Status: core
Compatibility: Available in Apache 1.3.5 and later

<LimitExcept> and </LimitExcept> are used to enclose a group of access control directives which will then apply to any HTTP
access method not listed in the arguments; i.e., it is the opposite of a <Limit> section and can be used to control both standard and
nonstandard/unrecognized methods. See the documentation for <Limit> for more details.

LimitRequestBody directive

Syntax: LimitRequestBody bytes
Default: LimitRequestBody 0
Context: server config, virtual host, directory, .htaccess
Status: core
Compatibility: LimitRequestBody is only available in Apache 1.3.2 and later.

This directive specifies the number of bytes from 0 (meaning unlimited) to 2147483647 (2GB) that are allowed in a request body.
The default value is defined by the compile-time constant DEFAULT_LIMIT_REQUEST_BODY (0 as distributed).

The LimitRequestBody directive allows the user to set a limit on the allowed size of an HTTP request message body within the
context in which the directive is given (server, per-directory, per-file or per-location). If the client request exceeds that limit, the
server will return an error response instead of servicing the request. The size of a normal request message body will vary greatly
depending on the nature of the resource and the methods allowed on that resource. CGI scripts typically use the message body for
passing form information to the server. Implementations of the PUT method will require a value at least as large as any
representation that the server wishes to accept for that resource.

This directive gives the server administrator greater control over abnormal client request behavior, which may be useful for

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (17 of 36) [12/05/2001 4:50:46 PM]

avoiding some forms of denial-of-service attacks.

LimitRequestFields directive

Syntax: LimitRequestFields number
Default: LimitRequestFields 100
Context: server config
Status: core
Compatibility: LimitRequestFields is only available in Apache 1.3.2 and later.

Number is an integer from 0 (meaning unlimited) to 32767. The default value is defined by the compile-time constant
DEFAULT_LIMIT_REQUEST_FIELDS (100 as distributed).

The LimitRequestFields directive allows the server administrator to modify the limit on the number of request header fields allowed
in an HTTP request. A server needs this value to be larger than the number of fields that a normal client request might include. The
number of request header fields used by a client rarely exceeds 20, but this may vary among different client implementations, often
depending upon the extent to which a user has configured their browser to support detailed content negotiation. Optional HTTP
extensions are often expressed using request header fields.

This directive gives the server administrator greater control over abnormal client request behavior, which may be useful for
avoiding some forms of denial-of-service attacks. The value should be increased if normal clients see an error response from the
server that indicates too many fields were sent in the request.

LimitRequestFieldsize directive

Syntax: LimitRequestFieldsize bytes
Default: LimitRequestFieldsize 8190
Context: server config
Status: core
Compatibility: LimitRequestFieldsize is only available in Apache 1.3.2 and later.

This directive specifies the number of bytes from 0 to the value of the compile-time constant
DEFAULT_LIMIT_REQUEST_FIELDSIZE (8190 as distributed) that will be allowed in an HTTP request header.

The LimitRequestFieldsize directive allows the server administrator to reduce the limit on the allowed size of an HTTP request
header field below the normal input buffer size compiled with the server. A server needs this value to be large enough to hold any
one header field from a normal client request. The size of a normal request header field will vary greatly among different client
implementations, often depending upon the extent to which a user has configured their browser to support detailed content
negotiation.

This directive gives the server administrator greater control over abnormal client request behavior, which may be useful for
avoiding some forms of denial-of-service attacks. Under normal conditions, the value should not be changed from the default.

LimitRequestLine directive

Syntax: LimitRequestLine bytes
Default: LimitRequestLine 8190
Context: server config
Status: core
Compatibility: LimitRequestLine is only available in Apache 1.3.2 and later.

This directive sets the number of bytes from 0 to the value of the compile-time constant DEFAULT_LIMIT_REQUEST_LINE

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (18 of 36) [12/05/2001 4:50:46 PM]

(8190 as distributed) that will be allowed on the HTTP request-line.

The LimitRequestLine directive allows the server administrator to reduce the limit on the allowed size of a client's HTTP
request-line below the normal input buffer size compiled with the server. Since the request-line consists of the HTTP method, URI,
and protocol version, the LimitRequestLine directive places a restriction on the length of a request-URI allowed for a request on the
server. A server needs this value to be large enough to hold any of its resource names, including any information that might be
passed in the query part of a GET request.

This directive gives the server administrator greater control over abnormal client request behavior, which may be useful for
avoiding some forms of denial-of-service attacks. Under normal conditions, the value should not be changed from the default.

Listen directive

Syntax: Listen [IP-address:]port
Context: server config
Status: core
Compatibility: Listen is only available in Apache 1.1 and later.

The Listen directive instructs Apache to listen to more than one IP address or port; by default it responds to requests on all IP
interfaces, but only on the port given by the Port directive.

Listen can be used instead of BindAddress and Port. It tells the server to accept incoming requests on the specified port or
address-and-port combination. If the first format is used, with a port number only, the server listens to the given port on all
interfaces, instead of the port given by the Port directive. If an IP address is given as well as a port, the server will listen on the
given port and interface.

Note that you may still require a Port directive so that URLs that Apache generates that point to your server still work.

Multiple Listen directives may be used to specify a number of addresses and ports to listen to. The server will respond to requests
from any of the listed addresses and ports.

For example, to make the server accept connections on both port 80 and port 8000, use:

 Listen 80
 Listen 8000

To make the server accept connections on two specified interfaces and port numbers, use

 Listen 192.170.2.1:80
 Listen 192.170.2.5:8000

See Also: DNS Issues
See Also: Setting which addresses and ports Apache uses
See Also: Known Bugs

ListenBacklog directive

Syntax: ListenBacklog backlog
Default: ListenBacklog 511
Context: server config
Status: Core
Compatibility: ListenBacklog is only available in Apache versions after 1.2.0.

The maximum length of the queue of pending connections. Generally no tuning is needed or desired, however on some systems it is
desirable to increase this when under a TCP SYN flood attack. See the backlog parameter to the listen(2) system call.

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (19 of 36) [12/05/2001 4:50:46 PM]

http://www.apache.org/info/known_bugs.html#listenbug

This will often be limited to a smaller number by the operating system. This varies from OS to OS. Also note that many OSes do not
use exactly what is specified as the backlog, but use a number based on (but normally larger than) what is set.

<Location> directive

Syntax: <Location URL-path|URL> ... </Location>
Context: server config, virtual host
Status: core
Compatibility: Location is only available in Apache 1.1 and later.

The <Location> directive provides for access control by URL. It is similar to the <Directory> directive, and starts a subsection
which is terminated with a </Location> directive. <Location> sections are processed in the order they appear in the configuration
file, after the <Directory> sections and .htaccess files are read, and after the <Files> sections.

Note that URLs do not have to line up with the filesystem at all, it should be emphasized that <Location> operates completely
outside the filesystem.

For all origin (non-proxy) requests, the URL to be matched is of the form /path/, and you should not include any
http://servername prefix. For proxy requests, the URL to be matched is of the form scheme://servername/path, and
you must include the prefix.

The URL may use wildcards In a wild-card string, `?' matches any single character, and `*' matches any sequences of characters.

Apache 1.2 and above: Extended regular expressions can also be used, with the addition of the ~ character. For example:

 <Location ~ "/(extra|special)/data">

would match URLs that contained the substring "/extra/data" or "/special/data". In Apache 1.3 and above, a new directive
<LocationMatch> exists which behaves identical to the regex version of <Location>.

The Location functionality is especially useful when combined with the SetHandler directive. For example, to enable status
requests, but allow them only from browsers at foo.com, you might use:

 <Location /status>
 SetHandler server-status
 Order Deny,Allow
 Deny from all
 Allow from .foo.com
 </Location>

Apache 1.3 and above note about / (slash): The slash character has special meaning depending on where in a URL it appears.
People may be used to its behavior in the filesystem where multiple adjacent slashes are frequently collapsed to a single slash (i.e.,
/home///foo is the same as /home/foo). In URL-space this is not necessarily true. The <LocationMatch> directive and
the regex version of <Location> require you to explicitly specify multiple slashes if that is your intention. For example,
<LocationMatch ^/abc> would match the request URL /abc but not the request URL //abc. The (non-regex)
<Location> directive behaves similarly when used for proxy requests. But when (non-regex) <Location> is used for
non-proxy requests it will implicitly match multiple slashes with a single slash. For example, if you specify <Location
/abc/def> and the request is to /abc//def then it will match.

See also: How Directory, Location and Files sections work for an explanation of how these different sections are combined when a
request is received

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (20 of 36) [12/05/2001 4:50:47 PM]

<LocationMatch>

Syntax: <LocationMatch regex> ... </LocationMatch>
Context: server config, virtual host
Status: core
Compatibility: LocationMatch is only available in Apache 1.3 and later.

The <LocationMatch> directive provides for access control by URL, in an identical manner to <Location>. However, it takes a
regular expression as an argument instead of a simple string. For example:

 <LocationMatch "/(extra|special)/data">

would match URLs that contained the substring "/extra/data" or "/special/data".

See also: How Directory, Location and Files sections work for an explanation of how these different sections are combined when a
request is received

LockFile directive

Syntax: LockFile file-path
Default: LockFile logs/accept.lock
Context: server config
Status: core

The LockFile directive sets the path to the lockfile used when Apache is compiled with either
USE_FCNTL_SERIALIZED_ACCEPT or USE_FLOCK_SERIALIZED_ACCEPT. This directive should normally be left at its
default value. The main reason for changing it is if the logs directory is NFS mounted, since the lockfile must be stored on a
local disk. The PID of the main server process is automatically appended to the filename.

SECURITY: It is best to avoid putting this file in a world writable directory such as /var/tmp because someone could create a
denial of service attack and prevent the server from starting by creating a lockfile with the same name as the one the server will try
to create.

LogLevel directive

Syntax: LogLevel level
Default: LogLevel warn
Context: server config, virtual host
Status: core
Compatibility: LogLevel is only available in 1.3 or later.

LogLevel adjusts the verbosity of the messages recorded in the error logs (see ErrorLog directive). The following levels are
available, in order of decreasing significance:

Level Description
Example

emerg Emergencies - system is unusable.
"Child cannot open lock file. Exiting"

alert Action must be taken immediately.
"getpwuid: couldn't determine user name from uid"

crit Critical Conditions.
"socket: Failed to get a socket, exiting child"

error Error conditions.

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (21 of 36) [12/05/2001 4:50:47 PM]

"Premature end of script headers"
warn Warning conditions.

"child process 1234 did not exit, sending another SIGHUP"
notice Normal but significant condition.

"httpd: caught SIGBUS, attempting to dump core in ..."
info Informational.

"Server seems busy, (you may need to increase StartServers, or Min/MaxSpareServers)..."
debug Debug-level messages

"Opening config file ..."

When a particular level is specified, messages from all other levels of higher significance will be reported as well. E.g., when
LogLevel info is specified, then messages with log levels of notice and warn will also be posted.

Using a level of at least crit is recommended.

MaxClients directive

Syntax: MaxClients number
Default: MaxClients 256
Context: server config
Status: core

The MaxClients directive sets the limit on the number of simultaneous requests that can be supported; not more than this number of
child server processes will be created. To configure more than 256 clients, you must edit the HARD_SERVER_LIMIT entry in
httpd.h and recompile.

Any connection attempts over the MaxClients limit will normally be queued, up to a number based on the ListenBacklog directive.
Once a child process is freed at the end of a different request, the connection will then be serviced.

MaxKeepAliveRequests directive

Syntax: MaxKeepAliveRequests number
Default: MaxKeepAliveRequests 100
Context: server config
Status: core
Compatibility: Only available in Apache 1.2 and later.

The MaxKeepAliveRequests directive limits the number of requests allowed per connection when KeepAlive is on. If it is set to
"0", unlimited requests will be allowed. We recommend that this setting be kept to a high value for maximum server performance.
In Apache 1.1, this is controlled through an option to the KeepAlive directive.

MaxRequestsPerChild directive

Syntax: MaxRequestsPerChild number
Default: MaxRequestsPerChild 0
Context: server config
Status: core

The MaxRequestsPerChild directive sets the limit on the number of requests that an individual child server process will handle.
After MaxRequestsPerChild requests, the child process will die. If MaxRequestsPerChild is 0, then the process will never expire.

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (22 of 36) [12/05/2001 4:50:47 PM]

Setting MaxRequestsPerChild to a non-zero limit has two beneficial effects:

it limits the amount of memory that process can consume by (accidental) memory leakage;●

by giving processes a finite lifetime, it helps reduce the number of processes when the server load reduces.●

However, on Win32, It is recommended that this be set to 0. If it is set to a non-zero value, when the request count is reached, the
child process exits, and is respawned, at which time it re-reads the configuration files. This can lead to unexpected behavior if you
have modified a configuration file, but are not expecting the changes to be applied yet. See also ThreadsPerChild.

NOTE: For KeepAlive requests, only the first request is counted towards this limit. In effect, it changes the behavior to limit the
number of connections per child.

MaxSpareServers directive

Syntax: MaxSpareServers number
Default: MaxSpareServers 10
Context: server config
Status: core

The MaxSpareServers directive sets the desired maximum number of idle child server processes. An idle process is one which is not
handling a request. If there are more than MaxSpareServers idle, then the parent process will kill off the excess processes.

Tuning of this parameter should only be necessary on very busy sites. Setting this parameter to a large number is almost always a
bad idea.

This directive has no effect when used with the Apache Web server on a Microsoft Windows platform.

See also MinSpareServers and StartServers.

MinSpareServers directive

Syntax: MinSpareServers number
Default: MinSpareServers 5
Context: server config
Status: core

The MinSpareServers directive sets the desired minimum number of idle child server processes. An idle process is one which is not
handling a request. If there are fewer than MinSpareServers idle, then the parent process creates new children at a maximum rate of
1 per second.

Tuning of this parameter should only be necessary on very busy sites. Setting this parameter to a large number is almost always a
bad idea.

This directive has no effect on Microsoft Windows.

See also MaxSpareServers and StartServers.

NameVirtualHost directive

Syntax: NameVirtualHost addr[:port]
Context: server config
Status: core

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (23 of 36) [12/05/2001 4:50:47 PM]

Compatibility: NameVirtualHost is only available in Apache 1.3 and later

The NameVirtualHost directive is a required directive if you want to configure name-based virtual hosts.

Although addr can be hostname it is recommended that you always use an IP address or wildcard, e.g.

NameVirtualHost 111.22.33.44

With the NameVirtualHost directive you specify the IP address on which the server will receive requests for the name-based virtual
hosts. This will usually be the address to which your name-based virtual host names resolve. In cases where a firewall or other
proxy receives the requests and forwards them on a different IP address to the server, you must specify the IP address of the
physical interface on the machine which will be servicing the requests. If you have multiple name-based hosts on multiple
addresses, repeat the directive for each address.

Note: the "main server" and any _default_ servers will never be served for a request to a NameVirtualHost IP Address (unless for
some reason you specify NameVirtualHost but then don't define any VirtualHosts for that address).

Optionally you can specify a port number on which the name-based virtual hosts should be used, e.g.

NameVirtualHost 111.22.33.44:8080

In Apache 1.3.13 and greater you can specify a * for the addr. This creates a wildcard NameVirtualHost which will match
connections to any address that isn't configured with a more specific NameVirtualHost directive or <VirtualHost> section. This is
useful if you want only name-based virtual hosts and you don't want to hard-code the server's IP address into the configuration file.

See also: Apache Virtual Host documentation

Options directive

Syntax: Options [+|-]option [[+|-]option] ...
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: core

The Options directive controls which server features are available in a particular directory.

option can be set to None, in which case none of the extra features are enabled, or one or more of the following:

All

All options except for MultiViews. This is the default setting.

ExecCGI

Execution of CGI scripts is permitted.

FollowSymLinks

The server will follow symbolic links in this directory.
Note: even though the server follows the symlink it does not change the pathname used to match against <Directory>
sections.
Note: this option gets ignored if set inside a <Location> section.

Includes

Server-side includes are permitted.

IncludesNOEXEC

Server-side includes are permitted, but the #exec command and #exec CGI are disabled. It is still possible to #include
virtual CGI scripts from ScriptAliase'd directories.

Indexes

If a URL which maps to a directory is requested, and the there is no DirectoryIndex (e.g., index.html) in that directory, then
the server will return a formatted listing of the directory.

MultiViews

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (24 of 36) [12/05/2001 4:50:47 PM]

http://httpd.apache.org/docs/vhosts/
http://httpd.apache.org/docs/vhosts/

Content negotiated MultiViews are allowed.

SymLinksIfOwnerMatch

The server will only follow symbolic links for which the target file or directory is owned by the same user id as the link.
Note: this option gets ignored if set inside a <Location> section.

Normally, if multiple Options could apply to a directory, then the most specific one is taken complete; the options are not
merged. However if all the options on the Options directive are preceded by a + or - symbol, the options are merged. Any options
preceded by a + are added to the options currently in force, and any options preceded by a - are removed from the options currently
in force.

For example, without any + and - symbols:

<Directory /web/docs>
Options Indexes FollowSymLinks
</Directory>
<Directory /web/docs/spec>
Options Includes
</Directory>

then only Includes will be set for the /web/docs/spec directory. However if the second Options directive uses the + and -
symbols:

<Directory /web/docs>
Options Indexes FollowSymLinks
</Directory>
<Directory /web/docs/spec>
Options +Includes -Indexes
</Directory>

then the options FollowSymLinks and Includes are set for the /web/docs/spec directory.

Note: Using -IncludesNOEXEC or -Includes disables server-side includes completely regardless of the previous setting.

The default in the absence of any other settings is All.

PidFile directive

Syntax: PidFile file-path
Default: PidFile logs/httpd.pid
Context: server config
Status: core

The PidFile directive sets the file to which the server records the process id of the daemon. If the filename does not begin with a
slash (/) then it is assumed to be relative to the ServerRoot. The PidFile is only used in standalone mode.

It is often useful to be able to send the server a signal, so that it closes and then reopens its ErrorLog and TransferLog, and re-reads
its configuration files. This is done by sending a SIGHUP (kill -1) signal to the process id listed in the PidFile.

The PidFile is subject to the same warnings about log file placement and security.

Port directive

Syntax: Port number
Default: Port 80
Context: server config
Status: core

Number is a number from 0 to 65535; some port numbers (especially below 1024) are reserved for particular protocols. See

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (25 of 36) [12/05/2001 4:50:47 PM]

/etc/services for a list of some defined ports; the standard port for the http protocol is 80.

The Port directive has two behaviors, the first of which is necessary for NCSA backwards compatibility (and which is confusing in
the context of Apache).

In the absence of any Listen or BindAddress directives specifying a port number, a Port directive given in the "main server"
(i.e., outside any <VirtualHost> section) sets the network port on which the server listens. If there are any Listen or
BindAddress directives specifying :number then Port has no effect on what address the server listens at.

●

The Port directive sets the SERVER_PORT environment variable (for CGI and SSI), and is used when the server must
generate a URL that refers to itself (for example when creating an external redirect to itself). This behavior is modified by
UseCanonicalName.

●

The primary behavior of Port should be considered to be similar to that of the ServerName directive. The ServerName and Port
together specify what you consider to be the canonical address of the server. (See also UseCanonicalName.)

Port 80 is one of Unix's special ports. All ports numbered below 1024 are reserved for system use, i.e., regular (non-root) users
cannot make use of them; instead they can only use higher port numbers. To use port 80, you must start the server from the root
account. After binding to the port and before accepting requests, Apache will change to a low privileged user as set by the User
directive.

If you cannot use port 80, choose any other unused port. Non-root users will have to choose a port number higher than 1023, such as
8000.

SECURITY: if you do start the server as root, be sure not to set User to root. If you run the server as root whilst handling
connections, your site may be open to a major security attack.

Require directive

Syntax: Require entity-name [entity-name] ...
Context: directory, .htaccess
Override: AuthConfig
Status: core

This directive selects which authenticated users can access a directory. The allowed syntaxes are:

Require user userid [userid] ...

Only the named users can access the directory.

●

Require group group-name [group-name] ...

Only users in the named groups can access the directory.

●

Require valid-user

All valid users can access the directory.

●

Require must be accompanied by AuthName and AuthType directives, and directives such as AuthUserFile and AuthGroupFile (to
define users and groups) in order to work correctly. Example:

AuthType Basic
AuthName "Restricted Directory"
AuthUserFile /web/users
AuthGroupFile /web/groups
Require group admin

Access controls which are applied in this way are effective for all methods. This is what is normally desired. If you wish to apply
access controls only to specific methods, while leaving other methods unprotected, then place the Require statement into a
<Limit> section

See also Satisfy and mod_access.

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (26 of 36) [12/05/2001 4:50:47 PM]

ResourceConfig directive

Syntax: ResourceConfig file-path|directory-path
Default: ResourceConfig conf/srm.conf
Context: server config, virtual host
Status: core
Compatibility: The ability to specify a directory, rather than a file name, is only available in Apache 1.3.13 and later.

The server will read this file for more directives after reading the httpd.conf file. File-path is relative to the ServerRoot. This feature
can be disabled using:

ResourceConfig /dev/null

Or, on Win32 servers,

ResourceConfig nul

Historically, this file contained most directives except for server configuration directives and <Directory> sections; in fact it can
now contain any server directive allowed in the server config context. However, since Apache version 1.3.4, the default srm.conf
file which ships with Apache contains only comments, and all directives are placed in the main server configuration file,
httpd.conf.

If ResourceConfig points to a directory, rather than a file, Apache will read all files in that directory, and any subdirectory, and
parse those as configuration files. Note that any file in the specified directory will be loaded as a configuration file, so make sure
that you don't have any stray files in this directory by mistake, such as temporary files created by your editor, for example.

See also AccessConfig.

RLimitCPU directive

Syntax: RLimitCPU number|max [number|max]
Default: Unset; uses operating system defaults
Context: server config, virtual host
Status: core
Compatibility: RLimitCPU is only available in Apache 1.2 and later

Takes 1 or 2 parameters. The first parameter sets the soft resource limit for all processes and the second parameter sets the
maximum resource limit. Either parameter can be a number, or max to indicate to the server that the limit should be set to the
maximum allowed by the operating system configuration. Raising the maximum resource limit requires that the server is running as
root, or in the initial startup phase.

This applies to processes forked off from Apache children servicing requests, not the Apache children themselves. This includes
CGI scripts and SSI exec commands, but not any processes forked off from the Apache parent such as piped logs.

CPU resource limits are expressed in seconds per process.

See also RLimitMEM or RLimitNPROC.

RLimitMEM directive

Syntax: RLimitMEM number|max [number|max]
Default: Unset; uses operating system defaults
Context: server config, virtual host

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (27 of 36) [12/05/2001 4:50:47 PM]

Status: core
Compatibility: RLimitMEM is only available in Apache 1.2 and later

Takes 1 or 2 parameters. The first parameter sets the soft resource limit for all processes and the second parameter sets the
maximum resource limit. Either parameter can be a number, or max to indicate to the server that the limit should be set to the
maximum allowed by the operating system configuration. Raising the maximum resource limit requires that the server is running as
root, or in the initial startup phase.

This applies to processes forked off from Apache children servicing requests, not the Apache children themselves. This includes
CGI scripts and SSI exec commands, but not any processes forked off from the Apache parent such as piped logs.

Memory resource limits are expressed in bytes per process.

See also RLimitCPU or RLimitNPROC.

RLimitNPROC directive

Syntax: RLimitNPROC number|max [number|max]
Default: Unset; uses operating system defaults
Context: server config, virtual host
Status: core
Compatibility: RLimitNPROC is only available in Apache 1.2 and later

Takes 1 or 2 parameters. The first parameter sets the soft resource limit for all processes and the second parameter sets the
maximum resource limit. Either parameter can be a number, or max to indicate to the server that the limit should be set to the
maximum allowed by the operating system configuration. Raising the maximum resource limit requires that the server is running as
root, or in the initial startup phase.

This applies to processes forked off from Apache children servicing requests, not the Apache children themselves. This includes
CGI scripts and SSI exec commands, but not any processes forked off from the Apache parent such as piped logs.

Process limits control the number of processes per user.

Note: If CGI processes are not running under userids other than the web server userid, this directive will limit the number of
processes that the server itself can create. Evidence of this situation will be indicated by cannot fork messages in the error_log.

See also RLimitMEM or RLimitCPU.

Satisfy directive

Syntax: Satisfy any|all
Default: Satisfy all
Context: directory, .htaccess
Status: core
Compatibility: Satisfy is only available in Apache 1.2 and later

Access policy if both Allow and Require used. The parameter can be either 'all' or 'any'. This directive is only useful if access to
a particular area is being restricted by both username/password and client host address. In this case the default behavior ("all") is to
require that the client passes the address access restriction and enters a valid username and password. With the "any" option the
client will be granted access if they either pass the host restriction or enter a valid username and password. This can be used to
password restrict an area, but to let clients from particular addresses in without prompting for a password.

See also Require and Allow.

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (28 of 36) [12/05/2001 4:50:47 PM]

ScoreBoardFile directive

Syntax: ScoreBoardFile file-path
Default: ScoreBoardFile logs/apache_status
Context: server config
Status: core

The ScoreBoardFile directive is required on some architectures to place a file that the server will use to communicate between its
children and the parent. The easiest way to find out if your architecture requires a scoreboard file is to run Apache and see if it
creates the file named by the directive. If your architecture requires it then you must ensure that this file is not used at the same time
by more than one invocation of Apache.

If you have to use a ScoreBoardFile then you may see improved speed by placing it on a RAM disk. But be careful that you heed
the same warnings about log file placement and security.

Apache 1.2 and above:

Linux 1.x users might be able to add -DHAVE_SHMGET -DUSE_SHMGET_SCOREBOARD to the EXTRA_CFLAGS in your
Configuration. This might work with some 1.x installations, but won't work with all of them. (Prior to 1.3b4, HAVE_SHMGET
would have sufficed.)

SVR4 users should consider adding -DHAVE_SHMGET -DUSE_SHMGET_SCOREBOARD to the EXTRA_CFLAGS in your
Configuration. This is believed to work, but we were unable to test it in time for 1.2 release. (Prior to 1.3b4, HAVE_SHMGET
would have sufficed.)

See Also: Stopping and Restarting Apache

ScriptInterpreterSource directive

Syntax: ScriptInterpreterSource registry|script
Default: ScriptInterpreterSource script
Context: directory, .htaccess
Status: core (Windows only)

This directive is used to control how Apache 1.3.5 and later finds the interpreter used to run CGI scripts. The default technique is to
use the interpreter pointed to by the #! line in the script. Setting ScriptInterpreterSource registry will cause the Windows Registry to
be searched using the script file extension (e.g., .pl) as a search key.

SendBufferSize directive

Syntax: SendBufferSize bytes
Context: server config
Status: core

The server will set the TCP buffer size to the number of bytes specified. Very useful to increase past standard OS defaults on high
speed high latency (i.e., 100ms or so, such as transcontinental fast pipes)

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (29 of 36) [12/05/2001 4:50:47 PM]

ServerAdmin directive

Syntax: ServerAdmin email-address
Context: server config, virtual host
Status: core

The ServerAdmin sets the e-mail address that the server includes in any error messages it returns to the client.

It may be worth setting up a dedicated address for this, e.g.

ServerAdmin www-admin@foo.bar.com

as users do not always mention that they are talking about the server!

ServerAlias directive

Syntax: ServerAlias hostname [hostname] ...
Context: virtual host
Status: core
Compatibility: ServerAlias is only available in Apache 1.1 and later.

The ServerAlias directive sets the alternate names for a host, for use with name-based virtual hosts.

See also: Apache Virtual Host documentation

ServerName directive

Syntax: ServerName fully-qualified-domain-name
Context: server config, virtual host
Status: core

The ServerName directive sets the hostname of the server; this is used when creating redirection URLs. If it is not specified, then
the server attempts to deduce it from its own IP address; however this may not work reliably, or may not return the preferred
hostname. For example:

ServerName www.example.com

would be used if the canonical (main) name of the actual machine were simple.example.com.

If you are using name-based virtual hosts, the ServerName inside a <VirtualHost> section specifies what hostname must
appear in the request's Host: header to match this virtual host.

See Also:
DNS Issues
Apache virtual host documentation
UseCanonicalName
NameVirtualHost
ServerAlias

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (30 of 36) [12/05/2001 4:50:47 PM]

http://httpd.apache.org/docs/vhosts/
http://httpd.apache.org/docs/vhosts/

ServerPath directive

Syntax: ServerPath directory-path
Context: virtual host
Status: core
Compatibility: ServerPath is only available in Apache 1.1 and later.

The ServerPath directive sets the legacy URL pathname for a host, for use with name-based virtual hosts.

See also: Apache Virtual Host documentation

ServerRoot directive

Syntax: ServerRoot directory-path
Default: ServerRoot /usr/local/apache
Context: server config
Status: core

The ServerRoot directive sets the directory in which the server lives. Typically it will contain the subdirectories conf/ and
logs/. Relative paths for other configuration files are taken as relative to this directory.

See also the -d option to httpd.

See also the security tips for information on how to properly set permissions on the ServerRoot.

ServerSignature directive

Syntax: ServerSignature On|Off|EMail
Default: ServerSignature Off
Context: server config, virtual host, directory, .htaccess
Status: core
Compatibility: ServerSignature is only available in Apache 1.3 and later.

The ServerSignature directive allows the configuration of a trailing footer line under server-generated documents (error messages,
mod_proxy ftp directory listings, mod_info output, ...). The reason why you would want to enable such a footer line is that in a
chain of proxies, the user often has no possibility to tell which of the chained servers actually produced a returned error message.
The Off setting, which is the default, suppresses the error line (and is therefore compatible with the behavior of Apache-1.2 and
below). The On setting simply adds a line with the server version number and ServerName of the serving virtual host, and the EMail
setting additionally creates a "mailto:" reference to the ServerAdmin of the referenced document.

ServerTokens directive

Syntax: ServerTokens Minimal|ProductOnly|OS|Full
Default: ServerTokens Full
Context: server config
Status: core
Compatibility: ServerTokens is only available in Apache 1.3 and later; the ProductOnly keyword is only available in versions
later than 1.3.12

This directive controls whether Server response header field which is sent back to clients includes a description of the generic

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (31 of 36) [12/05/2001 4:50:47 PM]

http://httpd.apache.org/docs/vhosts/
http://httpd.apache.org/docs/vhosts/

OS-type of the server as well as information about compiled-in modules.

ServerTokens Prod[uctOnly]

Server sends (e.g.): Server: Apache

ServerTokens Min[imal]

Server sends (e.g.): Server: Apache/1.3.0

ServerTokens OS

Server sends (e.g.): Server: Apache/1.3.0 (Unix)

ServerTokens Full (or not specified)

Server sends (e.g.): Server: Apache/1.3.0 (Unix) PHP/3.0 MyMod/1.2

This setting applies to the entire server, and cannot be enabled or disabled on a virtualhost-by-virtualhost basis.

ServerType directive

Syntax: ServerType type
Default: ServerType standalone
Context: server config
Status: core

The ServerType directive sets how the server is executed by the system. Type is one of

inetd

The server will be run from the system process inetd; the command to start the server is added to /etc/inetd.conf

standalone

The server will run as a daemon process; the command to start the server is added to the system startup scripts.
(/etc/rc.local or /etc/rc3.d/....)

Inetd is the lesser used of the two options. For each http connection received, a new copy of the server is started from scratch; after
the connection is complete, this program exits. There is a high price to pay per connection, but for security reasons, some admins
prefer this option. Inetd mode is no longer recommended and does not always work properly. Avoid it if at all possible.

Standalone is the most common setting for ServerType since it is far more efficient. The server is started once, and services all
subsequent connections. If you intend running Apache to serve a busy site, standalone will probably be your only option.

StartServers directive

Syntax: StartServers number
Default: StartServers 5
Context: server config
Status: core

The StartServers directive sets the number of child server processes created on startup. As the number of processes is dynamically
controlled depending on the load, there is usually little reason to adjust this parameter.

When running under Microsoft Windows, this directive has no effect. There is always one child which handles all requests. Within
the child requests are handled by separate threads. The ThreadsPerChild directive controls the maximum number of child threads
handling requests, which will have a similar effect to the setting of StartServers on Unix.

See also MinSpareServers and MaxSpareServers.

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (32 of 36) [12/05/2001 4:50:47 PM]

ThreadsPerChild

Syntax: ThreadsPerChild number
Default: ThreadsPerChild 50
Context: server config
Status: core (Windows, NetWare)
Compatibility: Available only with Apache 1.3 and later with Windows

This directive tells the server how many threads it should use. This is the maximum number of connections the server can handle at
once; be sure and set this number high enough for your site if you get a lot of hits.

This directive has no effect on Unix systems. Unix users should look at StartServers and MaxRequestsPerChild.

ThreadStackSize

Syntax: ThreadStackSize number
Default: ThreadStackSize 65536
Context: server config
Status: core (NetWare)
Compatibility: Available only with Apache 1.3 and later with NetWare

This directive tells the server what stack size to use for each of the running threads. If you ever get a stack overflow you will need to
bump this number to a higher setting.

This directive has no effect on other systems.

TimeOut directive

Syntax: TimeOut number
Default: TimeOut 300
Context: server config
Status: core

The TimeOut directive currently defines the amount of time Apache will wait for three things:

The total amount of time it takes to receive a GET request.1.

The amount of time between receipt of TCP packets on a POST or PUT request.2.

The amount of time between ACKs on transmissions of TCP packets in responses.3.

We plan on making these separately configurable at some point down the road. The timer used to default to 1200 before 1.2, but has
been lowered to 300 which is still far more than necessary in most situations. It is not set any lower by default because there may
still be odd places in the code where the timer is not reset when a packet is sent.

UseCanonicalName directive

Syntax: UseCanonicalName on|off|dns
Default: UseCanonicalName on
Context: server config, virtual host, directory
Override: Options
Compatibility: UseCanonicalName is only available in Apache 1.3 and later

In many situations Apache has to construct a self-referential URL. That is, a URL which refers back to the same server. With

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (33 of 36) [12/05/2001 4:50:47 PM]

UseCanonicalName on (and in all versions prior to 1.3) Apache will use the ServerName and Port directives to construct a
canonical name for the server. This name is used in all self-referential URLs, and for the values of SERVER_NAME and
SERVER_PORT in CGIs.

With UseCanonicalName off Apache will form self-referential URLs using the hostname and port supplied by the client if
any are supplied (otherwise it will use the canonical name). These values are the same that are used to implement name based
virtual hosts, and are available with the same clients. The CGI variables SERVER_NAME and SERVER_PORT will be constructed
from the client supplied values as well.

An example where this may be useful is on an intranet server where you have users connecting to the machine using short names
such as www. You'll notice that if the users type a shortname, and a URL which is a directory, such as http://www/splat,
without the trailing slash then Apache will redirect them to http://www.domain.com/splat/. If you have authentication
enabled, this will cause the user to have to reauthenticate twice (once for www and once again for www.domain.com). But if
UseCanonicalName is set off, then Apache will redirect to http://www/splat/.

There is a third option, UseCanonicalName DNS, which is intended for use with mass IP-based virtual hosting to support
ancient clients that do not provide a Host: header. With this option Apache does a reverse DNS lookup on the server IP address
that the client connected to in order to work out self-referential URLs.

Warning: if CGIs make assumptions about the values of SERVER_NAME they may be broken by this option. The client is
essentially free to give whatever value they want as a hostname. But if the CGI is only using SERVER_NAME to construct
self-referential URLs then it should be just fine.

See also: ServerName, Port

User directive

Syntax: User unix-userid
Default: User #-1
Context: server config, virtual host
Status: core

The User directive sets the userid as which the server will answer requests. In order to use this directive, the standalone server must
be run initially as root. Unix-userid is one of:

A username

Refers to the given user by name.

followed by a user number.

Refers to a user by their number.

The user should have no privileges which result in it being able to access files which are not intended to be visible to the outside
world, and similarly, the user should not be able to execute code which is not meant for httpd requests. It is recommended that you
set up a new user and group specifically for running the server. Some admins use user nobody, but this is not always possible or
desirable. For example mod_proxy's cache, when enabled, must be accessible to this user (see the CacheRoot directive).

Notes: If you start the server as a non-root user, it will fail to change to the lesser privileged user, and will instead continue to run as
that original user. If you do start the server as root, then it is normal for the parent process to remain running as root.

Special note: Use of this directive in <VirtualHost> requires a properly configured suEXEC wrapper. When used inside a
<VirtualHost> in this manner, only the user that CGIs are run as is affected. Non-CGI requests are still processed with the user
specified in the main User directive.

SECURITY: Don't set User (or Group) to root unless you know exactly what you are doing, and what the dangers are.

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (34 of 36) [12/05/2001 4:50:47 PM]

<VirtualHost> directive

Syntax: <VirtualHost addr[:port] [addr[:port]] ...> ... </VirtualHost>
Context: server config
Status: Core.
Compatibility: Non-IP address-based Virtual Hosting only available in Apache 1.1 and later.
Compatibility: Multiple address support only available in Apache 1.2 and later.

<VirtualHost> and </VirtualHost> are used to enclose a group of directives which will apply only to a particular virtual host. Any
directive which is allowed in a virtual host context may be used. When the server receives a request for a document on a particular
virtual host, it uses the configuration directives enclosed in the <VirtualHost> section. Addr can be

The IP address of the virtual host●

A fully qualified domain name for the IP address of the virtual host.●

Example:

<VirtualHost 10.1.2.3>
ServerAdmin webmaster@host.foo.com
DocumentRoot /www/docs/host.foo.com
ServerName host.foo.com
ErrorLog logs/host.foo.com-error_log
TransferLog logs/host.foo.com-access_log
</VirtualHost>

Each VirtualHost must correspond to a different IP address, different port number or a different host name for the server, in the
former case the server machine must be configured to accept IP packets for multiple addresses. (If the machine does not have
multiple network interfaces, then this can be accomplished with the ifconfig alias command (if your OS supports it), or with
kernel patches like VIF (for SunOS(TM) 4.1.x)).

You can specify more than one IP address. This is useful if a machine responds to the same name on two different interfaces. For
example, if you have a VirtualHost that is available to hosts on an internal (intranet) as well as external (internet) network. Example:

<VirtualHost 192.168.1.2 204.255.176.199>
DocumentRoot /www/docs/host.foo.com
ServerName host.foo.com
ServerAlias host
</VirtualHost>

The special name _default_ can be specified in which case this virtual host will match any IP address that is not explicitly listed
in another virtual host. In the absence of any _default_ virtual host the "main" server config, consisting of all those definitions
outside any VirtualHost section, is used when no match occurs.

You can specify a :port to change the port that is matched. If unspecified then it defaults to the same port as the most recent
Port statement of the main server. You may also specify :* to match all ports on that address. (This is recommended when used
with _default_.)

SECURITY: See the security tips document for details on why your security could be compromised if the directory where logfiles
are stored is writable by anyone other than the user that starts the server.

NOTE: The use of <VirtualHost> does not affect what addresses Apache listens on. You may need to ensure that Apache is
listening on the correct addresses using either BindAddress or Listen.

See also: Apache Virtual Host documentation
See also: Warnings about DNS and Apache
See also: Setting which addresses and ports Apache uses
See also: How Directory, Location and Files sections work for an explanation of how these different sections are combined when a
request is received

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (35 of 36) [12/05/2001 4:50:47 PM]

http://httpd.apache.org/docs/vhosts/

Apache HTTP Server Version 1.3

Apache Core Features

http://httpd.apache.org/docs/mod/core.html (36 of 36) [12/05/2001 4:50:47 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_access

This module provides access control based on client hostname, IP address, or other characteristics of the client request.

Status: Base
Source File: mod_access.c
Module Identifier: access_module

Summary

The directives provided by mod_access are used in <Directory>, <Files>, and <Location> sections as well as
.htaccess files to control access to particular parts of the server. Access can be controlled based on the client hostname, IP
address, or other characteristics of the client request, as captured in environment variables. The Allow and Deny directives are
used to specify which clients are or are not allowed access to the server, while the Order directive sets the default access state, and
configures how the Allow and Deny directives interact with each other.

Both host-based access restrictions and password-based authentication may be implemented simultaneously. In that case, the Satisfy
directive is used to determine how the two sets of restrictions interact.

In general, access restriction directives apply to all access methods (GET, PUT, POST, etc). This is the desired behavior in most
cases. However, it is possible to restrict some methods, while leaving other methods unrestricted, by enclosing the directives in a
<Limit> section.

Directives

Allow●

Deny●

Order●

See also Satisfy and Require.

Allow directive

Syntax: Allow from all|host|env=env-variable [host|env=env-variable] ...
Context: directory, .htaccess
Override: Limit
Status: Base
Module: mod_access

The Allow directive affects which hosts can access an area of the server. Access can be controlled by hostname, IP Address, IP
Address range, or by other characteristics of the client request captured in environment variables.

The first argument to this directive is always from. The subsequent arguments can take three different forms. If Allow from

Apache module mod_access

http://httpd.apache.org/docs/mod/mod_access.html (1 of 4) [12/05/2001 4:50:50 PM]

all is specified, then all hosts are allowed access, subject to the configuration of the Deny and Order directives as discussed
below. To allow only particular hosts or groups of hosts to access the server, the host can be specified in any of the following
formats:

A (partial) domain-name

Example: Allow from apache.org
Hosts whose names match, or end in, this string are allowed access. Only complete components are matched, so the above
example will match foo.apache.org but it will not match fooapache.org. This configuration will cause the server
to perform a reverse DNS lookup on the client IP address, regardless of the setting of the HostNameLookups directive.

A full IP address

Example: Allow from 10.1.2.3
An IP address of a host allowed access

A partial IP address

Example: Allow from 10.1
The first 1 to 3 bytes of an IP address, for subnet restriction.

A network/netmask pair

Example: Allow from 10.1.0.0/255.255.0.0
A network a.b.c.d, and a netmask w.x.y.z. For more fine-grained subnet restriction. (Apache 1.3 and later)

A network/nnn CIDR specification

Example: Allow from 10.1.0.0/16
Similar to the previous case, except the netmask consists of nnn high-order 1 bits. (Apache 1.3 and later)

Note that the last three examples above match exactly the same set of hosts.

The third format of the arguments to the Allow directive allows access to the server to be controlled based on the existence of an
environment variable. When Allow from env=env-variable is specified, then the request is allowed access if the environment
variable env-variable exists. The server provides the ability to set environment variables in a flexible way based on characteristics
of the client request using the directives provided by mod_setenvif. Therefore, this directive can be used to allow access based on
such factors as the clients User-Agent (browser type), Referer, or other HTTP request header fields.

Example:

SetEnvIf User-Agent ^KnockKnock/2.0 let_me_in
<Directory /docroot>
 Order Deny,Allow
 Deny from all
 Allow from env=let_me_in
</Directory>

In this case, browsers with a user-agent string beginning with KnockKnock/2.0 will be allowed access, and all others will be
denied.

See also Deny, Order and SetEnvIf.

Deny directive

Syntax: Deny from all|host|env=env-variable [host|env=env-variable] ...
Context: directory, .htaccess
Override: Limit
Status: Base
Module: mod_access

This directive allows access to the server to be restricted based on hostname, IP address, or environment variables. The arguments
for the Deny directive are identical to the arguments for the Allow directive.

Apache module mod_access

http://httpd.apache.org/docs/mod/mod_access.html (2 of 4) [12/05/2001 4:50:50 PM]

See also Allow, Order and SetEnvIf.

Order directive

Syntax: Order ordering
Default: Order Deny,Allow
Context: directory, .htaccess
Override: Limit
Status: Base
Module: mod_access

The Order directive controls the default access state and the order in which Allow and Deny directives are evaluated. Ordering is
one of

Deny,Allow

The Deny directives are evaluated before the Allow directives. Access is allowed by default. Any client which does not
match a Deny directive or does match an Allow directive will be allowed access to the server.

Allow,Deny

The Allow directives are evaluated before the Deny directives. Access is denied by default. Any client which does not
match an Allow directive or does match a Deny directive will be denied access to the server.

Mutual-failure

Only those hosts which appear on the Allow list and do not appear on the Deny list are granted access. This ordering has
the same effect as Order Allow,Deny and is deprecated in favor of that configuration.

Keywords may only be separated by a comma; no whitespace is allowed between them. Note that in all cases every Allow and
Deny statement is evaluated.

In the following example, all hosts in the apache.org domain are allowed access; all other hosts are denied access.

Order Deny,Allow
Deny from all
Allow from apache.org

In the next example, all hosts in the apache.org domain are allowed access, except for the hosts which are in the foo.apache.org
subdomain, who are denied access. All hosts not in the apache.org domain are denied access because the default state is to deny
access to the server.

Order Allow,Deny
Allow from apache.org
Deny from foo.apache.org

On the other hand, if the Order in the last example is changed to Deny,Allow, all hosts will be allowed access. This happens
because, regardless of the actual ordering of the directives in the configuration file, the Allow from apache.org will be
evaluated last and will override the Deny from foo.apache.org. All hosts not in the apache.org domain will also be
allowed access because the default state will change to allow.

The presence of an Order directive can affect access to a part of the server even in the absence of accompanying Allow and
Deny directives because of its effect on the default access state. For example,

<Directory /www>
 Order Allow,Deny
</Directory>

will deny all access to the /www directory because the default access state will be set to deny.

The Order directive controls the order of access directive processing only within each phase of the server's configuration
processing. This implies, for example, that an Allow or Deny directive occurring in a <Location> section will always be evaluated
after an Allow or Deny directive occurring in a <Directory> section or .htaccess file, regardless of the setting of the Order
directive. For details on the merging of configuration sections, see the documentation on How Directory, Location and Files

Apache module mod_access

http://httpd.apache.org/docs/mod/mod_access.html (3 of 4) [12/05/2001 4:50:50 PM]

sections work.

See also: Deny and Allow.

Apache HTTP Server Version 1.3

Apache module mod_access

http://httpd.apache.org/docs/mod/mod_access.html (4 of 4) [12/05/2001 4:50:50 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_actions

This module provides for executing CGI scripts based on media type or request method.

Status: Base
Source File: mod_actions.c
Module Identifier: actions_module
Compatibility: Available in Apache 1.1 and later.

Summary

This module has two directives. The Action directive lets you run CGI scripts whenever a file of a certain type is requested. The
Script directive lets you run CGI scripts whenever a particular method is used in a request. This makes it much easier to execute
scripts that process files.

Directives

Action●

Script●

Action directive

Syntax: Action action-type cgi-script
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_actions
Compatibility: Action is only available in Apache 1.1 and later

This directive adds an action, which will activate cgi-script when action-type is triggered by the request. The action-type can be
either a handler or a MIME content type. It sends the URL and file path of the requested document using the standard CGI
PATH_INFO and PATH_TRANSLATED environment variables.

Examples:

 # Requests for files of a particular type:
 Action image/gif /cgi-bin/images.cgi

 # Files of a particular file extension
 AddHandler my-file-type .xyz
 Action my-file-type /cgi-bin/program.cgi

In the first example, requests for files with a MIME content type of image/gif will instead be handled by the specified cgi script

Module mod_actions

http://httpd.apache.org/docs/mod/mod_actions.html (1 of 2) [12/05/2001 4:50:51 PM]

/cgi-bin/images.cgi.

In the second example, requests for files with a file extension of .xyz are handled instead by the specified cgi script
/cgi-bin/program.cgi.

See also: AddHandler

Script directive

Syntax: Script method cgi-script
Context: server config, virtual host, directory
Status: Base
Module: mod_actions
Compatibility: Script is only available in Apache 1.1 and later; arbitrary method use is only available with 1.3.10 and later

This directive adds an action, which will activate cgi-script when a file is requested using the method of method. It sends the URL
and file path of the requested document using the standard CGI PATH_INFO and PATH_TRANSLATED environment variables.

Prior to Apache 1.3.10, method can only be one of GET, POST, PUT, or DELETE. As of 1.3.10, any arbitrary
method name may be used. Method names are case-sensitive, so Script PUT and Script put have two
entirely different effects.

Note that the Script command defines default actions only. If a CGI script is called, or some other resource that is capable of
handling the requested method internally, it will do so. Also note that Script with a method of GET will only be called if there are
query arguments present (e.g., foo.html?hi). Otherwise, the request will proceed normally.

Examples:

 # For <ISINDEX>-style searching
 Script GET /cgi-bin/search
 # A CGI PUT handler
 Script PUT /~bob/put.cgi

Apache HTTP Server Version 1.3

Module mod_actions

http://httpd.apache.org/docs/mod/mod_actions.html (2 of 2) [12/05/2001 4:50:51 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_alias

This module provides for mapping different parts of the host filesystem in the document tree, and for URL redirection.

Status: Base
Source File: mod_alias.c
Module Identifier: alias_module

Summary

The directives contained in this module allow for manipulation and control of URLs as requests arrive at the server. The Alias and
ScriptAlias directives are used to map between URLs and filesystem paths. This allows for content which is not directly under
the DocumentRoot to be served as part of the web document tree. The ScriptAlias directive has the additional effect of
marking the target directory as containing only CGI scripts.

The Redirect directives are used to instruct clients to make a new request with a different URL. They are often used when a
resource has moved to a new location.

A more powerful and flexible set of directives for manipulating URLs is contained in the mod_rewrite module.

Directives

Alias●

AliasMatch●

Redirect●

RedirectMatch●

RedirectTemp●

RedirectPermanent●

ScriptAlias●

ScriptAliasMatch●

Alias directive

Syntax: Alias URL-path file-path|directory-path
Context: server config, virtual host
Status: Base
Module: mod_alias

The Alias directive allows documents to be stored in the local filesystem other than under the DocumentRoot. URLs with a
(%-decoded) path beginning with url-path will be mapped to local files beginning with directory-filename.

Apache module mod_alias

http://httpd.apache.org/docs/mod/mod_alias.html (1 of 4) [12/05/2001 4:50:54 PM]

Example:

Alias /image /ftp/pub/image

A request for http://myserver/image/foo.gif would cause the server to return the file /ftp/pub/image/foo.gif.

Note that if you include a trailing / on the url-path then the server will require a trailing / in order to expand the alias. That is, if you
use Alias /icons/ /usr/local/apache/icons/ then the url /icons will not be aliased.

Note that you may need to specify additional <Directory> sections which cover the destination of aliases. Aliasing occurs
before <Directory> sections are checked, so only the destination of aliases are affected. (Note however <Location> sections
are run through once before aliases are performed, so they will apply.)

See also ScriptAlias.

AliasMatch

Syntax: AliasMatch regex file-path|directory-path
Context: server config, virtual host
Status: Base
Module: mod_alias
Compatibility: Available in Apache 1.3 and later

This directive is equivalent to Alias, but makes use of standard regular expressions, instead of simple prefix matching. The supplied
regular expression is matched against the URL-path, and if it matches, the server will substitute any parenthesized matches into the
given string and use it as a filename. For example, to activate the /icons directory, one might use:

 AliasMatch ^/icons(.*) /usr/local/apache/icons$1

Redirect directive

Syntax: Redirect [status] URL-path URL
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_alias
Compatibility: The directory and .htaccess context's are only available in versions 1.1 and later. The status argument is only
available in Apache 1.2 or later.

The Redirect directive maps an old URL into a new one. The new URL is returned to the client which attempts to fetch it again with
the new address. URL-path a (%-decoded) path; any requests for documents beginning with this path will be returned a redirect
error to a new (%-encoded) URL beginning with URL.

Example:

Redirect /service http://foo2.bar.com/service

If the client requests http://myserver/service/foo.txt, it will be told to access http://foo2.bar.com/service/foo.txt instead.

Note: Redirect directives take precedence over Alias and ScriptAlias directives, irrespective of their ordering in the configuration
file. Also, URL-path must be an absolute path, not a relative path, even when used with .htaccess files or inside of <Directory>
sections.

If no status argument is given, the redirect will be "temporary" (HTTP status 302). This indicates to the client that the resource has
moved temporarily. The status argument can be used to return other HTTP status codes:

permanent

Apache module mod_alias

http://httpd.apache.org/docs/mod/mod_alias.html (2 of 4) [12/05/2001 4:50:54 PM]

Returns a permanent redirect status (301) indicating that the resource has moved permanently.

temp

Returns a temporary redirect status (302). This is the default.

seeother

Returns a "See Other" status (303) indicating that the resource has been replaced.

gone

Returns a "Gone" status (410) indicating that the resource has been permanently removed. When this status is used the url
argument should be omitted.

Other status codes can be returned by giving the numeric status code as the value of status. If the status is between 300 and 399, the
url argument must be present, otherwise it must be omitted. Note that the status must be known to the Apache code (see the function
send_error_response in http_protocol.c).

RedirectMatch

Syntax: RedirectMatch [status] regex URL
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_alias
Compatibility: Available in Apache 1.3 and later

This directive is equivalent to Redirect, but makes use of standard regular expressions, instead of simple prefix matching. The
supplied regular expression is matched against the URL-path, and if it matches, the server will substitute any parenthesized matches
into the given string and use it as a filename. For example, to redirect all GIF files to like-named JPEG files on another server, one
might use:

 RedirectMatch (.*)\.gif$ http://www.anotherserver.com$1.jpg

RedirectTemp directive

Syntax: RedirectTemp URL-path URL
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_alias
Compatibility: This directive is only available in Apache 1.2 and later

This directive makes the client know that the Redirect is only temporary (status 302). Exactly equivalent to Redirect temp.

RedirectPermanent directive

Syntax: RedirectPermanent URL-path URL
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_alias
Compatibility: This directive is only available in Apache 1.2 and later

Apache module mod_alias

http://httpd.apache.org/docs/mod/mod_alias.html (3 of 4) [12/05/2001 4:50:54 PM]

This directive makes the client know that the Redirect is permanent (status 301). Exactly equivalent to Redirect permanent.

ScriptAlias directive

Syntax: ScriptAlias URL-path file-path|directory-path
Context: server config, virtual host
Status: Base
Module: mod_alias

The ScriptAlias directive has the same behavior as the Alias directive, except that in addition it marks the target directory as
containing CGI scripts. URLs with a (%-decoded) path beginning with URL-path will be mapped to scripts beginning with the
second argument which is a full pathname in the local filesystem.

Example:

ScriptAlias /cgi-bin/ /web/cgi-bin/

A request for http://myserver/cgi-bin/foo would cause the server to run the script /web/cgi-bin/foo.

ScriptAliasMatch

Syntax: ScriptAliasMatch regex file-path|directory-path
Context: server config, virtual host
Status: Base
Module: mod_alias
Compatibility: Available in Apache 1.3 and later

This directive is equivalent to ScriptAlias, but makes use of standard regular expressions, instead of simple prefix matching. The
supplied regular expression is matched against the URL-path, and if it matches, the server will substitute any parenthesized matches
into the given string and use it as a filename. For example, to activate the standard /cgi-bin, one might use:

 ScriptAliasMatch ^/cgi-bin(.*) /usr/local/apache/cgi-bin$1

Apache HTTP Server Version 1.3

Apache module mod_alias

http://httpd.apache.org/docs/mod/mod_alias.html (4 of 4) [12/05/2001 4:50:54 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_asis

This module provides for sending files which contain their own HTTP headers.

Status: Base
Source File: mod_asis.c
Module Identifier: asis_module

Summary

This module provides the handler send-as-is which causes Apache to send the document without adding most of the usual
HTTP headers.

This can be used to send any kind of data from the server, including redirects and other special HTTP responses, without requiring a
cgi-script or an nph script.

For historical reasons, this module will also process any file with the mime type httpd/send-as-is.

Directives

This module provides no directives.

Usage

In the server configuration file, associate files with the send-as-is handler e.g.

AddHandler send-as-is asis

The contents of any file with a .asis extension will then be sent by Apache to the client with almost no changes. Clients will need
HTTP headers to be attached, so do not forget them. A Status: header is also required; the data should be the 3-digit HTTP response
code, followed by a textual message.

Here's an example of a file whose contents are sent as is so as to tell the client that a file has redirected.

Status: 301 Now where did I leave that URL
Location: http://xyz.abc.com/foo/bar.html
Content-type: text/html

<HTML>
<HEAD>
<TITLE>Lame excuses'R'us</TITLE>
</HEAD>
<BODY>
<H1>Fred's exceptionally wonderful page has moved to
Joe's site.
</H1>
</BODY>
</HTML>

Apache module mod_asis

http://httpd.apache.org/docs/mod/mod_asis.html (1 of 2) [12/05/2001 4:50:55 PM]

Notes: the server always adds a Date: and Server: header to the data returned to the client, so these should not be included in the file.
The server does not add a Last-Modified header; it probably should.

Apache HTTP Server Version 1.3

Apache module mod_asis

http://httpd.apache.org/docs/mod/mod_asis.html (2 of 2) [12/05/2001 4:50:55 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_auth

This module provides for user authentication using text files.

Status: Base
Source File: mod_auth.c
Module Identifier: auth_module

Summary

This module allows the use of HTTP Basic Authentication to restrict access by looking up users in plain text password and group
files. Similar functionality and greater scalability is provided by mod_auth_dbm and mod_auth_db. HTTP Digest Authentication is
provided by mod_auth_digest.

Note that these credential-based security mechanisms are only as strong as your Web server's security. As a rule, they are
not as strong as the operating system's own security system.

Directives

AuthGroupFile●

AuthUserFile●

AuthAuthoritative●

See also: require, satisfy, and mod_auth require keywords.

mod_auth Require Keywords

The mod_auth module supports the following keywords that can be given to the Require directive:

user username [...]

The supplied username and password must be in the AuthUserFile database, and the username must also be one of those
listed on the Require directive.

group groupname [...]

The supplied username and password must be in the AuthUserFile database, and the username must also be a member of
one of the named groups in the AuthGroupFile database.

valid-user

The supplied username and password must be in the AuthUserFile database. Any valid username from that file will be
allowed.

file-owner

[Available after Apache 1.3.20] The supplied username and password must be in the AuthUserFile database, and the
username must also match the system's name for the owner of the file being requested. That is, if the operating system say

Apache module mod_auth

http://httpd.apache.org/docs/mod/mod_auth.html (1 of 4) [12/05/2001 4:50:57 PM]

the requested file is owned by jones, then the username used to access it through the Web must be jones as well.

file-group

[Available after Apache 1.3.20] The supplied username and password must be in the AuthUserFile database, the name of
the group that owns the file must be in the AuthGroupFile database, and the username must be a member of that group. For
example, if the operating system says the requested file is owned by group accounts, the group accounts must be in
the AuthGroupFile database and the username used in the request must be a member of that group.

Example of Require file-owner

Consider a multi-user system running the Apache Web server, with each user having his or her own files in
~/public_html/private. Assuming that there is a single AuthUserFile database that lists all of their usernames, and that their
Web usernames match the ones that actually own the files on the server, then the following stanza would allow only the user himself
access to his own files. User jones would not be allowed to access files in /home/smith/public_html/private unless
they were owned by jones instead of smith.

 <Directory /home/*/public_html/private>
 AuthType Basic
 AuthName MyPrivateFile
 AuthUserFile /usr/local/apache/etc/.htpasswd-allusers
 Satisfy All
 Require file-owner
 </Directory>

AuthGroupFile directive

Syntax: AuthGroupFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod_auth

The AuthGroupFile directive sets the name of a textual file containing the list of user groups for user authentication. File-path is the
path to the group file. If it is not absolute (i.e., if it doesn't begin with a slash), it is treated as relative to the ServerRoot.

Each line of the group file contains a groupname followed by a colon, followed by the member usernames separated by spaces.
Example:

mygroup: bob joe anne

Note that searching large text files is very inefficient; AuthDBMGroupFile should be used instead.

Security: make sure that the AuthGroupFile is stored outside the document tree of the web-server; do not put it in the directory that
it protects. Otherwise, clients will be able to download the AuthGroupFile.

See also AuthName, AuthType and AuthUserFile.

AuthUserFile directive

Syntax: AuthUserFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Base

Apache module mod_auth

http://httpd.apache.org/docs/mod/mod_auth.html (2 of 4) [12/05/2001 4:50:57 PM]

Module: mod_auth

The AuthUserFile directive sets the name of a textual file containing the list of users and passwords for user authentication.
File-path is the path to the user file. If it is not absolute (i.e., if it doesn't begin with a slash), it is treated as relative to the
ServerRoot.

Each line of the user file contains a username followed by a colon, followed by the crypt() encrypted password. The behavior of
multiple occurrences of the same user is undefined.

The utility htpasswd which is installed as part of the binary distribution, or which can be found in src/support, is used to
maintain this password file. See the man page for more details. In short

htpasswd -c Filename username
Create a password file 'Filename' with 'username' as the initial ID. It will prompt for the password. htpasswd
Filename username2
Adds or modifies in password file 'Filename' the 'username'.

Note that searching large text files is very inefficient; AuthDBMUserFile should be used instead.

Security:

Make sure that the AuthUserFile is stored outside the document tree of the web-server; do not put it in the directory that it
protects. Otherwise, clients may be able to download the AuthUserFile.

Also be aware that null usernames are permitted, and null passwords as well (through Apache 1.3.20). If your AuthUserFile
includes a line containing only a colon (':'), a 'Require valid-user' will allow access if both the username and
password in the credentials are omitted.

See also AuthName, AuthType and AuthGroupFile.

AuthAuthoritative directive

Syntax: AuthAuthoritative on|off
Default: AuthAuthoritative on
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod_auth

Setting the AuthAuthoritative directive explicitly to 'off' allows for both authentication and authorization to be passed on to lower
level modules (as defined in the Configuration and modules.c files) if there is no userID or rule matching the supplied
userID. If there is a userID and/or rule specified; the usual password and access checks will be applied and a failure will give an
Authorization Required reply.

So if a userID appears in the database of more than one module; or if a valid Require directive applies to more than one module;
then the first module will verify the credentials; and no access is passed on; regardless of the AuthAuthoritative setting.

A common use for this is in conjunction with one of the database modules; such as mod_auth_db.c, mod_auth_dbm.c,
mod_auth_msql.c, and mod_auth_anon.c. These modules supply the bulk of the user credential checking; but a few
(administrator) related accesses fall through to a lower level with a well protected AuthUserFile.

Default: By default; control is not passed on; and an unknown userID or rule will result in an Authorization Required reply. Not
setting it thus keeps the system secure; and forces an NCSA compliant behavior.

Security: Do consider the implications of allowing a user to allow fall-through in his .htaccess file; and verify that this is really what
you want; Generally it is easier to just secure a single .htpasswd file, than it is to secure a database such as mSQL. Make sure that
the AuthUserFile is stored outside the document tree of the web-server; do not put it in the directory that it protects. Otherwise,
clients will be able to download the AuthUserFile.

See also AuthName, AuthType and AuthGroupFile.

Apache module mod_auth

http://httpd.apache.org/docs/mod/mod_auth.html (3 of 4) [12/05/2001 4:50:57 PM]

Apache HTTP Server Version 1.3

Apache module mod_auth

http://httpd.apache.org/docs/mod/mod_auth.html (4 of 4) [12/05/2001 4:50:57 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_auth_anon

This module allows "anonymous" user access to authenticated areas.

Status: Extension
Source File: mod_auth_anon.c
Module Identifier: anon_auth_module
Compatibility: Available in Apache 1.1 and later.

Summary

This module does access control in a manner similar to anonymous-ftp sites; i.e. have a 'magic' user id 'anonymous' and the email
address as a password. These email addresses can be logged.

Combined with other (database) access control methods, this allows for effective user tracking and customization according to a
user profile while still keeping the site open for 'unregistered' users. One advantage of using Auth-based user tracking is that, unlike
magic-cookies and funny URL pre/postfixes, it is completely browser independent and it allows users to share URLs.

Directives

Anonymous●

Anonymous_Authoritative●

Anonymous_LogEmail●

Anonymous_MustGiveEmail●

Anonymous_NoUserID●

Anonymous_VerifyEmail●

Example

The example below (when combined with the Auth directives of a htpasswd-file based (or GDM, mSQL etc.) base access control
system allows users in as 'guests' with the following properties:

It insists that the user enters a userId. (Anonymous_NoUserId)●

It insists that the user enters a password. (Anonymous_MustGiveEmail)●

The password entered must be a valid email address, ie. contain at least one '@' and a '.'. (Anonymous_VerifyEmail)●

The userID must be one of anonymous guest www test welcome and comparison is not case sensitive.●

And the Email addresses entered in the passwd field are logged to the error log file (Anonymous_LogEmail)●

Excerpt of access.conf:

Anonymous_NoUserId off
Anonymous_MustGiveEmail on
Anonymous_VerifyEmail on

Apache module mod_auth_anon.c

http://httpd.apache.org/docs/mod/mod_auth_anon.html (1 of 4) [12/05/2001 4:50:59 PM]

Anonymous_LogEmail on
Anonymous anonymous guest www test welcome

AuthName "Use 'anonymous' & Email address for guest entry"
AuthType basic

An AuthUserFile/AuthDBUserFile/AuthDBMUserFile
directive must be specified, or use
Anonymous_Authoritative for public access.
In the .htaccess for the public directory, add:
<Files *>
Order Deny,Allow
Allow from all

Require valid-user
</Files>

Anonymous directive

Syntax: Anonymous user [user] ...
Default: none
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_anon

A list of one or more 'magic' userIDs which are allowed access without password verification. The userIDs are space separated. It is
possible to use the ' and " quotes to allow a space in a userID as well as the \ escape character.

Please note that the comparison is case-IN-sensitive.
I strongly suggest that the magic username 'anonymous' is always one of the allowed userIDs.

Example:
Anonymous anonymous "Not Registered" 'I don\'t know'

This would allow the user to enter without password verification by using the userId's 'anonymous', 'AnonyMous','Not Registered'
and 'I Don't Know'.

Anonymous_Authoritative directive

Syntax: Anonymous_Authoritative on|off
Default: Anonymous_Authoritative off
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_anon

When set 'on', there is no fall-through to other authorization methods. So if a userID does not match the values specified in the
Anonymous directive, access is denied.

Be sure you know what you are doing when you decide to switch it on. And remember that it is the linking order of the modules (in
the Configuration / Make file) which details the order in which the Authorization modules are queried.

Apache module mod_auth_anon.c

http://httpd.apache.org/docs/mod/mod_auth_anon.html (2 of 4) [12/05/2001 4:50:59 PM]

Anonymous_LogEmail directive

Syntax: Anonymous_LogEmail on|off
Default: Anonymous_LogEmail on
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_anon

When set 'on', the default, the 'password' entered (which hopefully contains a sensible email address) is logged in the error log.

Anonymous_MustGiveEmail directive

Syntax: Anonymous_MustGiveEmail on|off
Default: Anonymous_MustGiveEmail on
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_anon

Specifies whether the user must specify an email address as the password. This prohibits blank passwords.

Anonymous_NoUserID directive

Syntax: Anonymous_NoUserID on|off
Default: Anonymous_NoUserID off
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_anon

When set 'on', users can leave the userID (and perhaps the password field) empty. This can be very convenient for MS-Explorer
users who can just hit return or click directly on the OK button; which seems a natural reaction.

Anonymous_VerifyEmail directive

Syntax: Anonymous_VerifyEmail on|off
Default: Anonymous_VerifyEmail off
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_anon

When set 'on' the 'password' entered is checked for at least one '@' and a '.' to encourage users to enter valid email addresses (see the
above Auth_LogEmail).

Apache module mod_auth_anon.c

http://httpd.apache.org/docs/mod/mod_auth_anon.html (3 of 4) [12/05/2001 4:50:59 PM]

Apache HTTP Server Version 1.3

Apache module mod_auth_anon.c

http://httpd.apache.org/docs/mod/mod_auth_anon.html (4 of 4) [12/05/2001 4:50:59 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_auth_db

This module provides for user authentication using Berkeley DB files.

Status: Extension
Source File: mod_auth_db.c
Module Identifier: db_auth_module
Compatibility: Available in Apache 1.1 and later.

Summary

This module provides an alternative to DBM files for those systems which support DB and not DBM. It is only available in Apache
1.1 and later.

On some BSD systems (e.g., FreeBSD and NetBSD) dbm is automatically mapped to Berkeley DB. You can use either
mod_auth_dbm or mod_auth_db. The latter makes it more obvious that it's Berkeley DB. On other platforms where you want to use
the DB library you usually have to install it first. See http://www.sleepycat.com/ for the distribution. The interface this module uses
is the one from DB version 1.85 and 1.86, but DB version 2.x can also be used when compatibility mode is enabled.

Directives

AuthDBGroupFile●

AuthDBUserFile●

AuthDBAuthoritative●

See also: satisfy and require.

AuthDBGroupFile directive

Syntax: AuthDBGroupFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_db

The AuthDBGroupFile directive sets the name of a DB file containing the list of user groups for user authentication. File-path is the
absolute path to the group file.

The group file is keyed on the username. The value for a user is a comma-separated list of the groups to which the users belongs.
There must be no whitespace within the value, and it must never contain any colons.

Security: make sure that the AuthDBGroupFile is stored outside the document tree of the web-server; do not put it in the directory
that it protects. Otherwise, clients will be able to download the AuthDBGroupFile unless otherwise protected.

Apache module mod_auth_db

http://httpd.apache.org/docs/mod/mod_auth_db.html (1 of 3) [12/05/2001 4:51:00 PM]

http://www.sleepycat.com/

Combining Group and Password DB files: In some cases it is easier to manage a single database which contains both the password
and group details for each user. This simplifies any support programs that need to be written: they now only have to deal with
writing to and locking a single DBM file. This can be accomplished by first setting the group and password files to point to the same
DB file:

AuthDBGroupFile /www/userbase
AuthDBUserFile /www/userbase

The key for the single DB record is the username. The value consists of

Unix Crypt-ed Password : List of Groups [: (ignored)]

The password section contains the Unix crypt() password as before. This is followed by a colon and the comma separated list of
groups. Other data may optionally be left in the DB file after another colon; it is ignored by the authentication module.

See also AuthName, AuthType and AuthDBUserFile.

AuthDBUserFile directive

Syntax: AuthDBUserFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_db

The AuthDBUserFile directive sets the name of a DB file containing the list of users and passwords for user authentication.
File-path is the absolute path to the user file.

The user file is keyed on the username. The value for a user is the crypt() encrypted password, optionally followed by a colon and
arbitrary data. The colon and the data following it will be ignored by the server.

Security: make sure that the AuthDBUserFile is stored outside the document tree of the web-server; do not put it in the directory
that it protects. Otherwise, clients will be able to download the AuthDBUserFile.

Important compatibility note: The implementation of "dbmopen" in the apache modules reads the string length of the hashed values
from the DB data structures, rather than relying upon the string being NULL-appended. Some applications, such as the Netscape
web server, rely upon the string being NULL-appended, so if you are having trouble using DB files interchangeably between
applications this may be a part of the problem.

A perl script called href="../programs/dbmmanage.html">dbmmanage is included with Apache. This program can be used to create
and update DB format password files for use with this module.

See also AuthName, AuthType and AuthDBGroupFile.

AuthDBAuthoritative directive

Syntax: AuthDBAuthoritative on|off
Default: AuthDBAuthoritative on
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod_auth

Setting the AuthDBAuthoritative directive explicitly to 'off' allows for both authentication and authorization to be passed on to
lower level modules (as defined in the Configuration and modules.c file if there is no userID or rule matching the supplied
userID. If there is a userID and/or rule specified; the usual password and access checks will be applied and a failure will give an
Authorization Required reply.

So if a userID appears in the database of more than one module; or if a valid Require directive applies to more than one module;

Apache module mod_auth_db

http://httpd.apache.org/docs/mod/mod_auth_db.html (2 of 3) [12/05/2001 4:51:00 PM]

then the first module will verify the credentials; and no access is passed on; regardless of the AuthAuthoritative setting.

A common use for this is in conjunction with one of the basic auth modules; such as mod_auth.c. Whereas this DB module
supplies the bulk of the user credential checking; a few (administrator) related accesses fall through to a lower level with a well
protected .htpasswd file.

By default, control is not passed on and an unknown userID or rule will result in an Authorization Required reply. Not setting it thus
keeps the system secure and forces an NCSA compliant behavior.

Security: Do consider the implications of allowing a user to allow fall-through in his .htaccess file; and verify that this is really what
you want; Generally it is easier to just secure a single .htpasswd file, than it is to secure a database which might have more access
interfaces.

See also AuthName, AuthType and AuthDBGroupFile.

Apache HTTP Server Version 1.3

Apache module mod_auth_db

http://httpd.apache.org/docs/mod/mod_auth_db.html (3 of 3) [12/05/2001 4:51:00 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_auth_dbm

This module provides for user authentication using DBM files.

Status: Extension
Source File: mod_auth_dbm.c
Module Identifier: dbm_auth_module

Summary

This module provides for HTTP Basic Authentication, where the usernames and passwords are stored in DBM type database files. It
is an alternative to the plain text password files provided by mod_auth and the Berkely DB password files provided by
mod_auth_db.

Directives

AuthDBMGroupFile●

AuthDBMUserFile●

AuthDBMAuthoritative●

See also: Satisfy and Require.

AuthDBMGroupFile

Syntax: AuthDBMGroupFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_dbm

The AuthDBMGroupFile directive sets the name of a DBM file containing the list of user groups for user authentication. File-path
is the absolute path to the group file.

The group file is keyed on the username. The value for a user is a comma-separated list of the groups to which the users belongs.
There must be no whitespace within the value, and it must never contain any colons.

Security: make sure that the AuthDBMGroupFile is stored outside the document tree of the web-server; do not put it in the directory
that it protects. Otherwise, clients will be able to download the AuthDBMGroupFile unless otherwise protected.

Combining Group and Password DBM files: In some cases it is easier to manage a single database which contains both the
password and group details for each user. This simplifies any support programs that need to be written: they now only have to deal
with writing to and locking a single DBM file. This can be accomplished by first setting the group and password files to point to the
same DBM:

Apache module mod_auth_dbm

http://httpd.apache.org/docs/mod/mod_auth_dbm.html (1 of 3) [12/05/2001 4:51:02 PM]

AuthDBMGroupFile /www/userbase
AuthDBMUserFile /www/userbase

The key for the single DBM is the username. The value consists of

Unix Crypt-ed Password : List of Groups [: (ignored)]

The password section contains the Unix crypt() password as before. This is followed by a colon and the comma separated list of
groups. Other data may optionally be left in the DBM file after another colon; it is ignored by the authentication module. This is
what www.telescope.org uses for its combined password and group database.

See also AuthName, AuthType and AuthDBMUserFile.

AuthDBMUserFile

Syntax: AuthDBMUserFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_dbm

The AuthDBMUserFile directive sets the name of a DBM file containing the list of users and passwords for user authentication.
File-path is the absolute path to the user file.

The user file is keyed on the username. The value for a user is the crypt() encrypted password, optionally followed by a colon and
arbitrary data. The colon and the data following it will be ignored by the server.

Security: make sure that the AuthDBMUserFile is stored outside the document tree of the web-server; do not put it in the directory
that it protects. Otherwise, clients will be able to download the AuthDBMUserFile.

Important compatibility note: The implementation of "dbmopen" in the apache modules reads the string length of the hashed values
from the DBM data structures, rather than relying upon the string being NULL-appended. Some applications, such as the Netscape
web server, rely upon the string being NULL-appended, so if you are having trouble using DBM files interchangeably between
applications this may be a part of the problem.

A perl script called dbmmanage is included with Apache. This program can be used to create and update DBM format password
files for use with this module.

See also AuthName, AuthType and AuthDBMGroupFile.

AuthDBMAuthoritative

Syntax: AuthDBMAuthoritative on|off
Default: AuthDBMAuthoritative on
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_dbm

Setting the AuthDBMAuthoritative directive explicitly to 'off' allows for both authentication and authorization to be passed on to
lower level modules (as defined in the Configuration and modules.c file if there is no userID or rule matching the supplied
userID. If there is a userID and/or rule specified; the usual password and access checks will be applied and a failure will give an
Authorization Required reply.

So if a userID appears in the database of more than one module; or if a valid Require directive applies to more than one module;
then the first module will verify the credentials; and no access is passed on; regardless of the AuthAuthoritative setting.

A common use for this is in conjunction with one of the basic auth modules; such as mod_auth.c. Whereas this DBM module

Apache module mod_auth_dbm

http://httpd.apache.org/docs/mod/mod_auth_dbm.html (2 of 3) [12/05/2001 4:51:02 PM]

supplies the bulk of the user credential checking; a few (administrator) related accesses fall through to a lower level with a well
protected .htpasswd file.

By default, control is not passed on and an unknown userID or rule will result in an Authorization Required reply. Not setting it thus
keeps the system secure and forces an NCSA compliant behavior.

Security: Do consider the implications of allowing a user to allow fall-through in his .htaccess file; and verify that this is really what
you want; Generally it is easier to just secure a single .htpasswd file, than it is to secure a database which might have more access
interfaces.

See also AuthName, AuthType and AuthDBMGroupFile.

Apache HTTP Server Version 1.3

Apache module mod_auth_dbm

http://httpd.apache.org/docs/mod/mod_auth_dbm.html (3 of 3) [12/05/2001 4:51:02 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_auth_digest

This module provides for user authentication using MD5 Digest Authentication.

Status: Experimental
Source File: mod_auth_digest.c
Module Identifier: digest_auth_module
Compatibility: Available in Apache 1.3.8 and later.

Summary

This is an updated version of mod_digest. However, it has not been extensively tested and is therefore marked experimental. If you
use this module, you must make sure to not use mod_digest (because they share some of the same configuration directives).

Digest authentication is described in RFC 2617.

Directives

AuthDigestFile●

AuthDigestGroupFile●

AuthDigestQop●

AuthDigestNonceLifetime●

AuthDigestNonceFormat●

AuthDigestNcCheck●

AuthDigestAlgorithm●

AuthDigestDomain●

See also: Require and Satisfy.

Using Digest Authentication

Using MD5 Digest authentication is very simple. Simply set up authentication normally, using "AuthType Digest" and
"AuthDigestFile" instead of the normal "AuthType Basic" and "AuthUserFile"; also, replace any "AuthGroupFile" with
"AuthDigestGroupFile". Then add a "AuthDigestDomain" directive containing at least the root URI(s) for this protection space.
Example:

 <Location /private/>
 AuthType Digest
 AuthName "private area"
 AuthDigestDomain /private/ http://mirror.my.dom/private2/
 AuthDigestFile /web/auth/.digest_pw
 Require valid-user
 </Location>

Apache module mod_auth_digest

http://httpd.apache.org/docs/mod/mod_auth_digest.html (1 of 4) [12/05/2001 4:51:04 PM]

http://www1.ics.uci.edu/pub/ietf/http/rfc2617.txt
http://www1.ics.uci.edu/pub/ietf/http/rfc2617.txt

Note: MD5 authentication provides a more secure password system than Basic authentication, but only works with supporting
browsers. As of this writing (October 2001), the only major browsers which support digest authentication are Opera 4.0, MS
Internet Explorer 5.0 and Amaya. Therefore, we do not yet recommend using this feature on a large Internet site. However, for
personal and intra-net use, where browser users can be controlled, it is ideal.

AuthDigestFile directive

Syntax: AuthDigestFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: mod_auth_digest

The AuthDigestFile directive sets the name of a textual file containing the list of users and encoded passwords for digest
authentication. File-path is the absolute path to the user file.

The digest file uses a special format. Files in this format can be created using the htdigest utility found in the support/ subdirectory
of the Apache distribution.

AuthDigestGroupFile directive

Syntax: AuthDigestGroupFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: mod_auth_digest
Compatibility: Available in Apache 1.3.8 and later

The AuthDigestGroupFile directive sets the name of a textual file containing the list of groups and their members (user names).
File-path is the absolute path to the group file.

Each line of the group file contains a groupname followed by a colon, followed by the member usernames separated by spaces.
Example:

mygroup: bob joe anne

Note that searching large text files is very inefficient.

Security: make sure that the AuthGroupFile is stored outside the document tree of the web-server; do not put it in the directory that
it protects. Otherwise, clients will be able to download the AuthGroupFile.

AuthDigestQop directive

Syntax: AuthDigestQop none|auth|auth-int [auth|auth-int]
Default: AuthDigestQop auth
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: mod_auth_digest
Compatibility: Available in Apache 1.3.8 and later

The AuthDigestQop directive determines the quality-of-protection to use. auth will only do authentication (username/password);
auth-int is authentication plus integrity checking (an MD5 hash of the entity is also computed and checked); none will cause the

Apache module mod_auth_digest

http://httpd.apache.org/docs/mod/mod_auth_digest.html (2 of 4) [12/05/2001 4:51:04 PM]

http://www.opera.com/
http://www.microsoft.com/windows/ie/
http://www.microsoft.com/windows/ie/
http://www.w3.org/Amaya/

module to use the old RFC-2069 digest algorithm (which does not include integrity checking). Both auth and auth-int may be
specified, in which the case the browser will choose which of these to use. none should only be used if the browser for some reason
does not like the challenge it receives otherwise.

auth-int is not implemented yet.

AuthDigestNonceLifetime directive

Syntax: AuthDigestNonceLifetime seconds
Default: AuthDigestNonceLifetime 300
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: mod_auth_digest
Compatibility: Available in Apache 1.3.8 and later

The AuthDigestNonceLifetime directive controls how long the server nonce is valid. When the client contacts the server using an
expired nonce the server will send back a 401 with stale=true. If seconds is greater than 0 then it specifies the amount of time
for which the nonce is valid; this should probably never be set to less than 10 seconds. If seconds is less than 0 then the nonce never
expires.

AuthDigestNonceFormat directive

Syntax: AuthDigestNonceFormat ???
Default: AuthDigestNonceFormat ???
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: mod_auth_digest
Compatibility: Available in Apache 1.3.8 and later

Not implemented yet.

AuthDigestNcCheck directive

Syntax: AuthDigestNcCheck On|Off
Default: AuthDigestNcCheck Off
Context: server config
Override: Not applicable
Status: Experimental
Module: mod_auth_digest
Compatibility: Available in Apache 1.3.8 and later

Not implemented yet.

Apache module mod_auth_digest

http://httpd.apache.org/docs/mod/mod_auth_digest.html (3 of 4) [12/05/2001 4:51:04 PM]

AuthDigestAlgorithm directive

Syntax: AuthDigestAlgorithm MD5|MD5-sess
Default: AuthDigestAlgorithm MD5
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: mod_auth_digest
Compatibility: Available in Apache 1.3.8 and later

The AuthDigestAlgorithm directive selects the algorithm used to calculate the challenge and response hashes.

MD5-sess is not correctly implemented yet.

AuthDigestDomain directive

Syntax: AuthDigestDomain URI [URI] ...
Context: directory, .htaccess
Override: AuthConfig
Status: Experimental
Module: mod_auth_digest
Compatibility: Available in Apache 1.3.8 and later

The AuthDigestDomain directive allows you to specify one or more URIs which are in the same protection space (i.e. use the same
realm and username/password info). The specified URIs are prefixes, i.e. the client will assume that all URIs "below" these are also
protected by the same username/password. The URIs may be either absolute URIs (i.e. inluding a scheme, host, port, etc) or relative
URIs.

This directive should always be specified and contain at least the (set of) root URI(s) for this space. Omitting to do so will cause the
client to send the Authorization header for every request sent to this server. Apart from increasing the size of the request, it may also
have a detrimental effect on performance if "AuthDigestNcCheck" is on.

The URIs specified can also point to different servers, in which case clients (which understand this) will then share
username/password info across multiple servers without prompting the user each time.

Apache HTTP Server Version 1.3

Apache module mod_auth_digest

http://httpd.apache.org/docs/mod/mod_auth_digest.html (4 of 4) [12/05/2001 4:51:04 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_autoindex

This module provides for automatic directory indexing.

Status: Base
Source File: mod_autoindex.c
Module Identifier: autoindex_module

Summary

The index of a directory can come from one of two sources:

A file written by the user, typically called index.html. The DirectoryIndex directive sets the name of this file. This is
controlled by mod_dir.

●

Otherwise, a listing generated by the server. The other directives control the format of this listing. The AddIcon,
AddIconByEncoding and AddIconByType are used to set a list of icons to display for various file types; for each file listed,
the first icon listed that matches the file is displayed. These are controlled by mod_autoindex.

●

The two functions are separated so that you can completely remove (or replace) automatic index generation should you want to.

Automatic index generation is enabled with using Options +Indexes. See the Options directive for more details.

If FancyIndexing is enabled, or the FancyIndexing keyword is present on the IndexOptions directive, the column headers are links
that control the order of the display. If you select a header link, the listing will be regenerated, sorted by the values in that column.
Selecting the same header repeatedly toggles between ascending and descending order.

Note that when the display is sorted by "Size", it's the actual size of the files that's used, not the displayed value - so a 1010-byte file
will always be displayed before a 1011-byte file (if in ascending order) even though they both are shown as "1K".

Directives

AddAlt●

AddAltByEncoding●

AddAltByType●

AddDescription●

AddIcon●

AddIconByEncoding●

AddIconByType●

DefaultIcon●

FancyIndexing●

HeaderName●

IndexIgnore●

Apache module mod_autoindex

http://httpd.apache.org/docs/mod/mod_autoindex.html (1 of 9) [12/05/2001 4:51:08 PM]

IndexOptions●

IndexOrderDefault●

ReadmeName●

See also: Options and DirectoryIndex.

Autoindex Request Query Arguments

The column sorting headers themselves are self-referencing hyperlinks that add the sort query options to reorder the directory
listing. The query options are of the form X=Y, where X is one of N (file Name), M (file last Modified date), S (file Size, or D (file
Description), and Y is one of A (Ascending) or D (Descending).

When options other than the file name are used as the sorting key, the secondary key is always the file name. (When the file name is
used to sort by, there is no need of a secondary sort key, since file names are guaranteed to be unique, and so the sort order is
unambiguous.)

Example:

If the URL http://your.server.name/foo/ produces a directory index, then the following URLs will produce different sort orders:

http://your.server.name/foo/?M=D sorts the directory by last modified date, descending.●

http://your.server.name/foo/?D=A sorts the directory by file description, ascending.●

http://your.server.name/foo/?S=A sorts the directory by file size, ascending.●

See IndexOrderDefault to set the default directory ordering.

Note also that when the directory listing is ordered in one direction (ascending or descending) by a particular column, the link at the
top of that column then reverses, to allow sorting in the opposite direction by that same column.

AddAlt directive

Syntax: AddAlt string file [file] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

This sets the alternate text to display for a file, instead of an icon, for FancyIndexing. File is a file extension, partial filename,
wild-card expression or full filename for files to describe. String is enclosed in double quotes ("). This alternate text is displayed if
the client is image-incapable or has image loading disabled.

Examples:

 AddAlt "PDF" *.pdf
 AddAlt "Compressed" *.gz *.zip *.Z

AddAltByEncoding directive

Syntax: AddAltByEncoding string MIME-encoding [MIME-encoding] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes

Apache module mod_autoindex

http://httpd.apache.org/docs/mod/mod_autoindex.html (2 of 9) [12/05/2001 4:51:08 PM]

Status: Base
Module: mod_autoindex

This sets the alternate text to display for a file, instead of an icon, for FancyIndexing. MIME-encoding is a valid content-encoding,
such as x-compress. String is enclosed in double quotes ("). This alternate text is displayed if the client is image-incapable or has
image loading disabled.

Example:

 AddAltByEncoding "gzip" x-gzip

AddAltByType directive

Syntax: AddAltByType string MIME-type [MIME-type] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

This sets the alternate text to display for a file, instead of an icon, for FancyIndexing. MIME-type is a valid content-type, such as
text/html. String is enclosed in double quotes ("). This alternate text is displayed if the client is image-incapable or has image
loading disabled.

Example:

 AddAltByType "TXT" text/plain

AddDescription directive

Syntax: AddDescription string file [file] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

This sets the description to display for a file, for FancyIndexing. File is a file extension, partial filename, wild-card expression or
full filename for files to describe. String is enclosed in double quotes ("). Example:

AddDescription "The planet Mars" /web/pics/mars.gif

The description field is 23 bytes wide. 7 more bytes may be added if the directory is covered by an
IndexOptions SuppressSize, and 19 bytes may be added if IndexOptions SuppressLastModified is in effect.
The widest this column can be is therefore 49 bytes.

As of Apache 1.3.10, the DescriptionWidth IndexOptions keyword allows you to adjust this width to any arbitrary
size.

Caution: Descriptive text defined with AddDescription may contain HTML markup, such as tags and character entities. If the width
of the description column should happen to truncate a tagged element (such as cutting off the end of a bolded phrase), the results
may affect the rest of the directory listing.

Apache module mod_autoindex

http://httpd.apache.org/docs/mod/mod_autoindex.html (3 of 9) [12/05/2001 4:51:08 PM]

AddIcon directive

Syntax: AddIcon icon name [name] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

This sets the icon to display next to a file ending in name for FancyIndexing. Icon is either a (%-escaped) relative URL to the icon,
or of the format (alttext,url) where alttext is the text tag given for an icon for non-graphical browsers.

Name is either ^^DIRECTORY^^ for directories, ^^BLANKICON^^ for blank lines (to format the list correctly), a file extension, a
wildcard expression, a partial filename or a complete filename. Examples:

AddIcon (IMG,/icons/image2.gif) .gif .jpg .png
AddIcon /icons/dir.gif ^^DIRECTORY^^
AddIcon /icons/backup.gif *~

AddIconByType should be used in preference to AddIcon, when possible.

AddIconByEncoding directive

Syntax: AddIconByEncoding icon MIME-encoding [MIME-encoding] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

This sets the icon to display next to files with MIME-encoding for FancyIndexing. Icon is either a (%-escaped) relative URL to the
icon, or of the format (alttext,url) where alttext is the text tag given for an icon for non-graphical browsers.

Mime-encoding is a wildcard expression matching required the content-encoding. Examples:

AddIconByEncoding /icons/compressed.gif x-compress

AddIconByType directive

Syntax: AddIconByType icon MIME-type [MIME-type] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

This sets the icon to display next to files of type MIME-type for FancyIndexing. Icon is either a (%-escaped) relative URL to the
icon, or of the format (alttext,url) where alttext is the text tag given for an icon for non-graphical browsers.

Mime-type is a wildcard expression matching required the mime types. Examples:

AddIconByType (IMG,/icons/image3.gif) image/*

Apache module mod_autoindex

http://httpd.apache.org/docs/mod/mod_autoindex.html (4 of 9) [12/05/2001 4:51:08 PM]

DefaultIcon directive

Syntax: DefaultIcon url
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

The DefaultIcon directive sets the icon to display for files when no specific icon is known, for FancyIndexing. Url is a (%-escaped)
relative URL to the icon. Examples:

DefaultIcon /icon/unknown.xbm

FancyIndexing directive

Syntax: FancyIndexing on|off
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

The FancyIndexing directive sets the FancyIndexing option for a directory. The IndexOptions directive should be used in
preference.

Note that in versions of Apache prior to 1.3.2, the FancyIndexing and IndexOptions directives will override
each other. You should use IndexOptions FancyIndexing in preference to the standalone FancyIndexing
directive. As of Apache 1.3.2, a standalone FancyIndexing directive is combined with any IndexOptions
directive already specified for the current scope.

HeaderName directive

Syntax: HeaderName filename
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod_autoindex
Compatibility: some features only available after 1.3.6; see text

The HeaderName directive sets the name of the file that will be inserted at the top of the index listing. Filename is the name of the
file to include.

Apache 1.3.6 and earlier: The module first attempts to include filename.html as an HTML document, otherwise
it will try to include filename as plain text. Filename is treated as a filesystem path relative to the directory being
indexed. In no case is SSI processing done. Example:

HeaderName HEADER

when indexing the directory /web, the server will first look for the HTML file /web/HEADER.html and include
it if found, otherwise it will include the plain text file /web/HEADER, if it exists.

Apache versions after 1.3.6: Filename is treated as a URI path relative to the one used to access the directory
being indexed, and must resolve to a document with a major content type of "text" (e.g., text/html, text/plain, etc.).
This means that filename may refer to a CGI script if the script's actual file type (as opposed to its output) is marked
as text/html such as with a directive like:

 AddType text/html .cgi

Apache module mod_autoindex

http://httpd.apache.org/docs/mod/mod_autoindex.html (5 of 9) [12/05/2001 4:51:08 PM]

Content negotiation will be performed if the MultiViews option is enabled. If filename resolves to a static text/html
document (not a CGI script) and the Includes option is enabled, the file will be processed for server-side includes
(see the mod_include documentation).

If the file specified by HeaderName contains the beginnings of an HTML document (<HTML>, <HEAD>, etc) then you will
probably want to set IndexOptions +SuppressHTMLPreamble, so that these tags are not repeated.

See also ReadmeName.

IndexIgnore directive

Syntax: IndexIgnore file [file] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

The IndexIgnore directive adds to the list of files to hide when listing a directory. File is a file extension, partial filename, wildcard
expression or full filename for files to ignore. Multiple IndexIgnore directives add to the list, rather than replacing the list of ignored
files. By default, the list contains `.'. Example:

IndexIgnore README .htaccess *~

IndexOptions directive

Syntax: IndexOptions option [option] ... (Apache 1.3.2 and earlier)
Syntax: IndexOptions [+|-]option [[+|-]option] ... (Apache 1.3.3 and later)
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod_autoindex
Compatibility: '+/-' syntax and merging of multiple IndexOptions directives is only available with Apache 1.3.3 and later; the
FoldersFirst and DescriptionWidth options are only available with Apache 1.3.10 and later; the TrackModified option is only
available with Apache 1.3.15 and later

The IndexOptions directive specifies the behavior of the directory indexing. Option can be one of

DescriptionWidth=[n | *] (Apache 1.3.10 and later)

The DescriptionWidth keyword allows you to specify the width of the description column in characters. If the keyword
value is '*', then the column is automatically sized to the length of the longest filename in the display. See the section on
AddDescription for dangers inherent in truncating descriptions.

FancyIndexing

This turns on fancy indexing of directories.

Note that in versions of Apache prior to 1.3.2, the FancyIndexing and IndexOptions directives will
override each other. You should use IndexOptions FancyIndexing in preference to the standalone
FancyIndexing directive. As of Apache 1.3.2, a standalone FancyIndexing directive is combined with
any IndexOptions directive already specified for the current scope.

FoldersFirst (Apache 1.3.10 and later)

If this option is enabled, subdirectories in a FancyIndexed listing will always appear first, followed by normal files in the
directory. The listing is basically broken into two components, the files and the subdirectories, and each is sorted separately
and then displayed subdirectories-first. For instance, if the sort order is descending by name, and FoldersFirst is enabled,
subdirectory Zed will be listed before subdirectory Beta, which will be listed before normal files Gamma and Alpha. This
option only has an effect if FancyIndexing is also enabled.

Apache module mod_autoindex

http://httpd.apache.org/docs/mod/mod_autoindex.html (6 of 9) [12/05/2001 4:51:08 PM]

IconHeight[=pixels] (Apache 1.3 and later)

Presence of this option, when used with IconWidth, will cause the server to include HEIGHT and WIDTH attributes in the
IMG tag for the file icon. This allows browser to precalculate the page layout without having to wait until all the images
have been loaded. If no value is given for the option, it defaults to the standard height of the icons supplied with the Apache
software.

IconsAreLinks

This makes the icons part of the anchor for the filename, for fancy indexing.

IconWidth[=pixels] (Apache 1.3 and later)

Presence of this option, when used with IconHeight, will cause the server to include HEIGHT and WIDTH attributes in the
IMG tag for the file icon. This allows browser to precalculate the page layout without having to wait until all the images
have been loaded. If no value is given for the option, it defaults to the standard width of the icons supplied with the Apache
software.

NameWidth=[n | *] (Apache 1.3.2 and later)

The NameWidth keyword allows you to specify the width of the filename column in bytes. If the keyword value is '*', then
the column is automatically sized to the length of the longest filename in the display.

ScanHTMLTitles

This enables the extraction of the title from HTML documents for fancy indexing. If the file does not have a description
given by AddDescription then httpd will read the document for the value of the TITLE tag. This is CPU and disk intensive.

SuppressColumnSorting

If specified, Apache will not make the column headings in a FancyIndexed directory listing into links for sorting. The
default behavior is for them to be links; selecting the column heading will sort the directory listing by the values in that
column. Only available in Apache 1.3 and later.

SuppressDescription

This will suppress the file description in fancy indexing listings. By default, no file descriptions are defined, and so the use
of this option will regain 23 characters of screen space to use for something else. See AddDescription for information about
setting the file description. See also the DescriptionWidth index option to limit the size of the description column.

SuppressHTMLPreamble (Apache 1.3 and later)

If the directory actually contains a file specified by the HeaderName directive, the module usually includes the contents of
the file after a standard HTML preamble (<HTML>, <HEAD>, et cetera). The SuppressHTMLPreamble option disables
this behavior, causing the module to start the display with the header file contents. The header file must contain appropriate
HTML instructions in this case. If there is no header file, the preamble is generated as usual.

SuppressLastModified

This will suppress the display of the last modification date, in fancy indexing listings.

SuppressSize

This will suppress the file size in fancy indexing listings.

TrackModified (Apache 1.3.15 and later)

This returns the Last-Modified and ETag values for the listed directory in the HTTP header. It is only valid if the operating
system and file system return legitimate stat() results. Most Unix systems do so, as do OS2's JFS and Win32's NTFS
volumes. OS2 and Win32 FAT volumes, for example, do not. Once this feature is enabled, the client or proxy can track
changes to the list of files when they perform a HEAD request. Note some operating systems correctly track new and
removed files, but do not track changes for sizes or dates of the files within the directory.

There are some noticeable differences in the behavior of this directive in recent (post-1.3.0) versions of Apache.

Apache 1.3.2 and earlier:

The default is that no options are enabled. If multiple IndexOptions could apply to a directory, then the most specific one is
taken complete; the options are not merged. For example:

<Directory /web/docs>
 IndexOptions FancyIndexing
</Directory>
<Directory /web/docs/spec>

Apache module mod_autoindex

http://httpd.apache.org/docs/mod/mod_autoindex.html (7 of 9) [12/05/2001 4:51:08 PM]

 IndexOptions ScanHTMLTitles
</Directory>

then only ScanHTMLTitles will be set for the /web/docs/spec directory.

Apache 1.3.3 and later:

Apache 1.3.3 introduced some significant changes in the handling of IndexOptions directives. In particular,

Multiple IndexOptions directives for a single directory are now merged together. The result of the example above
will now be the equivalent of IndexOptions FancyIndexing ScanHTMLTitles.

❍

The addition of the incremental syntax (i.e., prefixing keywords with '+' or '-').❍

Whenever a '+' or '-' prefixed keyword is encountered, it is applied to the current IndexOptions settings (which may have
been inherited from an upper-level directory). However, whenever an unprefixed keyword is processed, it clears all
inherited options and any incremental settings encountered so far. Consider the following example:

IndexOptions +ScanHTMLTitles -IconsAreLinks FancyIndexing
IndexOptions +SuppressSize

The net effect is equivalent to IndexOptions FancyIndexing +SuppressSize, because the unprefixed
FancyIndexing discarded the incremental keywords before it, but allowed them to start accumulating again afterward.

To unconditionally set the IndexOptions for a particular directory, clearing the inherited settings, specify keywords
without either '+' or '-' prefixes.

IndexOrderDefault directive

Syntax: IndexOrderDefault Ascending|Descending Name|Date|Size|Description
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod_autoindex
Compatibility: IndexOrderDefault is only available in Apache 1.3.4 and later.

The IndexOrderDefault directive is used in combination with the FancyIndexing index option. By default, fancyindexed directory
listings are displayed in ascending order by filename; the IndexOrderDefault allows you to change this initial display order.

IndexOrderDefault takes two arguments. The first must be either Ascending or Descending, indicating the direction of the sort. The
second argument must be one of the keywords Name, Date, Size, or Description, and identifies the primary key. The secondary key
is always the ascending filename.

You can force a directory listing to only be displayed in a particular order by combining this directive with the
SuppressColumnSorting index option; this will prevent the client from requesting the directory listing in a different order.

ReadmeName directive

Syntax: ReadmeName filename
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod_autoindex
Compatibility: some features only available after 1.3.6; see text

The ReadmeName directive sets the name of the file that will be appended to the end of the index listing. Filename is the name of
the file to include, and is taken to be relative to the location being indexed.

The filename argument is treated as a stub filename in Apache 1.3.6 and earlier, and as a relative URI in

Apache module mod_autoindex

http://httpd.apache.org/docs/mod/mod_autoindex.html (8 of 9) [12/05/2001 4:51:08 PM]

later versions. Details of how it is handled may be found under the description of the HeaderName directive,
which uses the same mechanism and changed at the same time as ReadmeName.

See also HeaderName.

Apache HTTP Server Version 1.3

Apache module mod_autoindex

http://httpd.apache.org/docs/mod/mod_autoindex.html (9 of 9) [12/05/2001 4:51:08 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Apache module mod_cern_meta

This module provides for CERN httpd metafile semantics.

Status: Extension
Source File: mod_cern_meta.c
Module Identifier: cern_meta_module
Compatibility: Available in Apache 1.1 and later.

Summary

Emulate the CERN HTTPD Meta file semantics. Meta files are HTTP headers that can be output in addition to the normal range of
headers for each file accessed. They appear rather like the Apache .asis files, and are able to provide a crude way of influencing the
Expires: header, as well as providing other curiosities. There are many ways to manage meta information, this one was chosen
because there is already a large number of CERN users who can exploit this module.

More information on the CERN metafile semantics is available.

Directives

MetaFiles●

MetaDir●

MetaSuffix●

MetaFiles directive

Syntax: MetaFiles on|off
Default: MetaFiles off
Context: per-directory config
Status: Base
Module: mod_cern_meta
Compatibility: MetaFiles is only available in Apache 1.3 and later.

Turns on/off Meta file processing on a per-directory basis. This option was introduced in Apache 1.3.

MetaDir directive

Syntax: MetaDir directory
Default: MetaDir .web
Context: (Apache prior to 1.3) server config
Context: (Apache 1.3) per-directory config

Module mod_cern_meta

http://httpd.apache.org/docs/mod/mod_cern_meta.html (1 of 2) [12/05/2001 4:51:10 PM]

http://www.w3.org/pub/WWW/Daemon/User/Config/General.html#MetaDir

Status: Base
Module: mod_cern_meta
Compatibility: MetaDir is only available in Apache 1.1 and later.

Specifies the name of the directory in which Apache can find meta information files. The directory is usually a 'hidden' subdirectory
of the directory that contains the file being accessed. Set to "." to look in the same directory as the file.

MetaSuffix directive

Syntax: MetaSuffix suffix
Default: MetaSuffix .meta
Context: (Apache prior to 1.3) server config
Context: (Apache 1.3) per-directory config
Status: Base
Module: mod_cern_meta
Compatibility: MetaSuffix is only available in Apache 1.1 and later.

Specifies the file name suffix for the file containing the meta information. For example, the default values for the two directives will
cause a request to DOCUMENT_ROOT/somedir/index.html to look in
DOCUMENT_ROOT/somedir/.web/index.html.meta and will use its contents to generate additional MIME header
information.

Apache HTTP Server Version 1.3

Module mod_cern_meta

http://httpd.apache.org/docs/mod/mod_cern_meta.html (2 of 2) [12/05/2001 4:51:10 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_cgi

This module provides for execution of CGI scripts.

Status: Base
Source File: mod_cgi.c
Module Identifier: cgi_module

Summary

Any file that has the mime type application/x-httpd-cgi or handler cgi-script (Apache 1.1 or later) will be treated as
a CGI script, and run by the server, with its output being returned to the client. Files acquire this type either by having a name
containing an extension defined by the AddType directive, or by being in a ScriptAlias directory. Files that are not in a ScriptAlias
directory, but which are of type application/x-httpd-cgi by virtue of an AddType directive, will still not be executed by
the server unless Options ExecCGI is enabled. See the Options directive for more details.

When the server invokes a CGI script, it will add a variable called DOCUMENT_ROOT to the environment. This variable will contain
the value of the DocumentRoot configuration variable.

For an introduction to using CGI scripts with Apache, see our tutorial on Dynamic Content with CGI.

Directives

ScriptLog●

ScriptLogLength●

ScriptLogBuffer●

See also: Options, ScriptAlias, AddType and AddHandler.

CGI Environment variables

The server will set the CGI environment variables as described in the CGI specification, with the following provisions:

REMOTE_HOST

This will only be set if HostnameLookups is set to on (it is off by default), and if a reverse DNS lookup of the accessing
host's address indeed finds a host name.

REMOTE_IDENT

This will only be set if IdentityCheck is set to on and the accessing host supports the ident protocol. Note that the contents
of this variable cannot be relied upon because it can easily be faked, and if there is a proxy between the client and the
server, it is usually totally useless.

REMOTE_USER

This will only be set if the CGI script is subject to authentication.

Apache module mod_cgi

http://httpd.apache.org/docs/mod/mod_cgi.html (1 of 3) [12/05/2001 4:51:11 PM]

http://hoohoo.ncsa.uiuc.edu/cgi/

CGI Debugging

Debugging CGI scripts has traditionally been difficult, mainly because it has not been possible to study the output (standard output
and error) for scripts which are failing to run properly. These directives, included in Apache 1.2 and later, provide more detailed
logging of errors when they occur.

CGI Logfile Format

When configured, the CGI error log logs any CGI which does not execute properly. Each CGI script which fails to operate causes
several lines of information to be logged. The first two lines are always of the format:

 %% [time] request-line
 %% HTTP-status CGI-script-filename

If the error is that CGI script cannot be run, the log file will contain an extra two lines:

 %%error
 error-message

Alternatively, if the error is the result of the script returning incorrect header information (often due to a bug in the script), the
following information is logged:

 %request
 All HTTP request headers received
 POST or PUT entity (if any)
 %response
 All headers output by the CGI script
 %stdout
 CGI standard output
 %stderr
 CGI standard error

(The %stdout and %stderr parts may be missing if the script did not output anything on standard output or standard error).

ScriptLog directive

Syntax: ScriptLog filename
Default: none
Context: server config
Status: mod_cgi

The ScriptLog directive sets the CGI script error logfile. If no ScriptLog is given, no error log is created. If given, any CGI
errors are logged into the filename given as argument. If this is a relative file or path it is taken relative to the server root.

This log will be opened as the user the child processes run as, ie. the user specified in the main User directive. This means that
either the directory the script log is in needs to be writable by that user or the file needs to be manually created and set to be writable
by that user. If you place the script log in your main logs directory, do NOT change the directory permissions to make it writable by
the user the child processes run as.

Note that script logging is meant to be a debugging feature when writing CGI scripts, and is not meant to be activated continuously
on running servers. It is not optimized for speed or efficiency, and may have security problems if used in a manner other than that
for which it was designed.

Apache module mod_cgi

http://httpd.apache.org/docs/mod/mod_cgi.html (2 of 3) [12/05/2001 4:51:11 PM]

ScriptLogLength directive

Syntax: ScriptLogLength bytes
Default: 10385760
Context: server config
Status: mod_cgi

ScriptLogLength can be used to limit the size of the CGI script logfile. Since the logfile logs a lot of information per CGI error
(all request headers, all script output) it can grow to be a big file. To prevent problems due to unbounded growth, this directive can
be used to set an maximum file-size for the CGI logfile. If the file exceeds this size, no more information will be written to it.

ScriptLogBuffer

Syntax: ScriptLogBuffer bytes
Default: 1024
Context: server config
Status: mod_cgi

The size of any PUT or POST entity body that is logged to the file is limited, to prevent the log file growing too big too quickly if
large bodies are being received. By default, up to 1024 bytes are logged, but this can be changed with this directive.

Apache HTTP Server Version 1.3

Apache module mod_cgi

http://httpd.apache.org/docs/mod/mod_cgi.html (3 of 3) [12/05/2001 4:51:11 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_digest

This module provides for user authentication using MD5 Digest Authentication.

Status: Extension
Source File: mod_digest.c
Module Identifier: digest_module
Compatibility: Available in Apache 1.1 and later.

Summary

This module implements an older version of the MD5 Digest Authentication specification which will probably not work with
modern browsers. Please see mod_auth_digest for a module which implements the most recent version of the standard.

Directives

AuthDigestFile●

Using Digest Authentication

Using MD5 Digest authentication is very simple. Simply set up authentication normally. However, use "AuthType Digest" and
"AuthDigestFile" instead of the normal "AuthType Basic" and "AuthUserFile". Everything else should remain the same.

MD5 authentication provides a more secure password system, but only works with supporting browsers. As of this writing (July
1996), the majority of browsers do not support digest authentication. Therefore, we do not recommend using this feature on a large
Internet site. However, for personal and intra-net use, where browser users can be controlled, it is ideal.

AuthDigestFile directive

Syntax: AuthDigestFile filename
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod_digest

The AuthDigestFile directive sets the name of a textual file containing the list of users and encoded passwords for digest
authentication. Filename is the absolute path to the user file.

The digest file uses a special format. Files in this format can be created using the "htdigest" utility found in the support/ subdirectory
of the Apache distribution.

Apache module mod_digest

http://httpd.apache.org/docs/mod/mod_digest.html (1 of 2) [12/05/2001 4:51:12 PM]

Apache HTTP Server Version 1.3

Apache module mod_digest

http://httpd.apache.org/docs/mod/mod_digest.html (2 of 2) [12/05/2001 4:51:12 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_dir

This module provides for "trailing slash" redirects and serving directory index files.

Status: Base
Source File: mod_dir.c
Module Identifier: dir_module

Summary

The index of a directory can come from one of two sources:

A file written by the user, typically called index.html. The DirectoryIndex directive sets the name of this file. This is
controlled by mod_dir.

●

Otherwise, a listing generated by the server. This is provided by mod_autoindex.●

The two functions are separated so that you can completely remove (or replace) automatic index generation should you want to.

A "trailing slash" redirect is issued when the server receives a request for a URL http://servername/foo/dirname where dirname is a
directory. Directories require a trailing slash, so mod_dir issues a redirect to http://servername/foo/dirname/.

Directives

DirectoryIndex●

DirectoryIndex directive

Syntax: DirectoryIndex local-url [local-url] ...
Default: DirectoryIndex index.html
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod_dir

The DirectoryIndex directive sets the list of resources to look for, when the client requests an index of the directory by specifying a /
at the end of the a directory name. Local-url is the (%-encoded) URL of a document on the server relative to the requested
directory; it is usually the name of a file in the directory. Several URLs may be given, in which case the server will return the first
one that it finds. If none of the resources exist and the Indexes option is set, the server will generate its own listing of the
directory.

Example:

DirectoryIndex index.html

then a request for http://myserver/docs/ would return http://myserver/docs/index.html if it exists, or would
list the directory if it did not.

Apache module mod_dir

http://httpd.apache.org/docs/mod/mod_dir.html (1 of 2) [12/05/2001 4:51:14 PM]

Note that the documents do not need to be relative to the directory;

DirectoryIndex index.html index.txt /cgi-bin/index.pl

would cause the CGI script /cgi-bin/index.pl to be executed if neither index.html or index.txt existed in a
directory.

Apache HTTP Server Version 1.3

Apache module mod_dir

http://httpd.apache.org/docs/mod/mod_dir.html (2 of 2) [12/05/2001 4:51:14 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Apache module mod_env

This module provides for modifying the environment which is passed to CGI scripts and SSI pages.

Status: Base
Source File: mod_env.c
Module Identifier: env_module
Compatibility: Available in Apache 1.1 and later.

Summary

This module allows for control of the environment that will be provided to CGI scripts and SSI pages. Environment variables may
be passed from the shell which invoked the httpd process. Alternatively, environment variables may be set or unset within the
configuration process.

For additional information, we provide a document on Environment Variables in Apache.

Directives

PassEnv●

SetEnv●

UnsetEnv●

PassEnv directive

Syntax: PassEnv env-variable [env-variable] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_env
Compatibility: PassEnv is only available in Apache 1.1 and later. Directory and .htaccess context is availble in Apache 1.3.7 and
later.

Specifies one or more environment variables to pass to CGI scripts and SSI pages from the environment of the shell which invoked
the httpd process. Example:

 PassEnv LD_LIBRARY_PATH

Apache module mod_env

http://httpd.apache.org/docs/mod/mod_env.html (1 of 2) [12/05/2001 4:51:15 PM]

SetEnv directive

Syntax: SetEnv env-variable value
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_env
Compatibility: SetEnv is only available in Apache 1.1 and later. Directory and .htaccess context is availble in Apache 1.3.7 and
later.

Sets an environment variable, which is then passed on to CGI scripts and SSI pages. Example:

 SetEnv SPECIAL_PATH /foo/bin

UnsetEnv directive

Syntax: UnsetEnv env-variable [env-variable] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_env
Compatibility: UnsetEnv is only available in Apache 1.1 and later. Directory and .htaccess context is availble in Apache 1.3.7 and
later.

Removes one or more environment variables from those passed on to CGI scripts and SSI pages. Example:

 UnsetEnv LD_LIBRARY_PATH

Apache HTTP Server Version 1.3

Apache module mod_env

http://httpd.apache.org/docs/mod/mod_env.html (2 of 2) [12/05/2001 4:51:15 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_example

This module illustrates many of the aspects of the Apache 1.2 API and, when used, demonstrates the manner in which module
callbacks are triggered by the server.

Status: Extension
Source File: mod_example.c
Module Identifier: example_module
Compatibility: Available in Apache 1.2 and later.

Summary

The files in the src/modules/example directory under the Apache distribution directory tree are provided as an example
to those that wish to write modules that use the Apache API.

The main file is mod_example.c, which illustrates all the different callback mechanisms and call syntaxes. By no means does an
add-on module need to include routines for all of the callbacks - quite the contrary!

The example module is an actual working module. If you link it into your server, enable the "example-handler" handler for a
location, and then browse to that location, you will see a display of some of the tracing the example module did as the various
callbacks were made.

Directives

Example●

Compiling the example module

To include the example module in your server, follow the steps below:

Uncomment the "AddModule modules/example/mod_example" line near the bottom of the src/Configuration file. If
there isn't one, add it; it should look like this:

 AddModule modules/example/mod_example.o

1.

Run the src/Configure script ("cd src; ./Configure"). This will build the Makefile for the server itself, and update the
src/modules/Makefile for any additional modules you have requested from beneath that subdirectory.

2.

Make the server (run "make" in the src directory).3.

To add another module of your own:

mkdir src/modules/mymodule.

cp src/modules/example/* src/modules/mymoduleB.

Modify the files in the new directory.C.

Follow steps [1] through [3] above, with appropriate changes.D.

Apache module mod_example

http://httpd.apache.org/docs/mod/mod_example.html (1 of 2) [12/05/2001 4:51:17 PM]

Using the mod_example Module

To activate the example module, include a block similar to the following in your srm.conf file:

 <Location /example-info>
 SetHandler example-handler
 </Location>

As an alternative, you can put the following into a .htaccess file and then request the file "test.example" from that location:

 AddHandler example-handler .example

After reloading/restarting your server, you should be able to browse to this location and see the brief display mentioned earlier.

Example directive

Syntax: Example
Default: None
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Extension
Module: mod_example
Compatibility: Example is only available in Apache 1.2 and later.

The Example directive just sets a demonstration flag which the example module's content handler displays. It takes no arguments. If
you browse to an URL to which the example content-handler applies, you will get a display of the routines within the module and
how and in what order they were called to service the document request. The effect of this directive one can observe under the point
"Example directive declared here: YES/NO".

Apache HTTP Server Version 1.3

Apache module mod_example

http://httpd.apache.org/docs/mod/mod_example.html (2 of 2) [12/05/2001 4:51:17 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_expires

This module provides for the generation of Expires HTTP headers according to user-specified criteria.

Status: Extension
Source File: mod_expires.c
Module Identifier: expires_module
Compatibility: Available in Apache 1.2 and later.

Summary

This module controls the setting of the Expires HTTP header in server responses. The expiration date can set to be relative to
either the time the source file was last modified, or to the time of the client access.

The Expires HTTP header is an instruction to the client about the document's validity and persistence. If cached, the document
may be fetched from the cache rather than from the source until this time has passed. After that, the cache copy is considered
"expired" and invalid, and a new copy must be obtained from the source.

Directives

ExpiresActive●

ExpiresByType●

ExpiresDefault●

Alternate Interval Syntax

The ExpiresDefault and ExpiresByType directives can also be defined in a more readable syntax of the form:

ExpiresDefault "<base> [plus] {<num> <type>}*"
ExpiresByType type/encoding "<base> [plus] {<num> <type>}*"

where <base> is one of:

access●

now (equivalent to 'access')●

modification●

The 'plus' keyword is optional. <num> should be an integer value [acceptable to atoi()], and <type> is one of:

years●

months●

weeks●

days●

hours●

minutes●

Apache module mod_expires

http://httpd.apache.org/docs/mod/mod_expires.html (1 of 3) [12/05/2001 4:51:18 PM]

seconds●

For example, any of the following directives can be used to make documents expire 1 month after being accessed, by default:

ExpiresDefault "access plus 1 month"
ExpiresDefault "access plus 4 weeks"
ExpiresDefault "access plus 30 days"

The expiry time can be fine-tuned by adding several '<num> <type>' clauses:

ExpiresByType text/html "access plus 1 month 15 days 2 hours"
ExpiresByType image/gif "modification plus 5 hours 3 minutes"

Note that if you use a modification date based setting, the Expires header will not be added to content that does not come from a file
on disk. This is due to the fact that there is no modification time for such content.

ExpiresActive directive

Syntax: ExpiresActive on|off
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Extension
Module: mod_expires

This directive enables or disables the generation of the Expires header for the document realm in question. (That is, if found in an
.htaccess file, for instance, it applies only to documents generated from that directory.) If set to Off, no Expires header will
be generated for any document in the realm (unless overridden at a lower level, such as an .htaccess file overriding a server
config file). If set to On, the header will be added to served documents according to the criteria defined by the ExpiresByType and
ExpiresDefault directives (q.v.).

Note that this directive does not guarantee that an Expires header will be generated. If the criteria aren't met, no header will be
sent, and the effect will be as though this directive wasn't even specified.

ExpiresByType directive

Syntax: ExpiresByType mime-type <code>seconds
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Extension
Module: mod_expires

This directive defines the value of the Expires header generated for documents of the specified type (e.g., text/html). The
second argument sets the number of seconds that will be added to a base time to construct the expiration date.

The base time is either the last modification time of the file, or the time of the client's access to the document. Which should be used
is specified by the <code> field; M means that the file's last modification time should be used as the base time, and A means the
client's access time should be used.

The difference in effect is subtle. If M is used, all current copies of the document in all caches will expire at the same time, which
can be good for something like a weekly notice that's always found at the same URL. If A is used, the date of expiration is different
for each client; this can be good for image files that don't change very often, particularly for a set of related documents that all refer
to the same images (i.e., the images will be accessed repeatedly within a relatively short timespan).

Example:

 ExpiresActive On # enable expirations

Apache module mod_expires

http://httpd.apache.org/docs/mod/mod_expires.html (2 of 3) [12/05/2001 4:51:18 PM]

 ExpiresByType image/gif A2592000 # expire GIF images after a month
 # in the client's cache
 ExpiresByType text/html M604800 # HTML documents are good for a
 # week from the time they were
 # changed, period

Note that this directive only has effect if ExpiresActive On has been specified. It overrides, for the specified MIME type only,
any expiration date set by the ExpiresDefault directive.

You can also specify the expiration time calculation using an alternate syntax, described later in this document.

ExpiresDefault directive

Syntax: ExpiresDefault <code>seconds
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Extension
Module: mod_expires

This directive sets the default algorithm for calculating the expiration time for all documents in the affected realm. It can be
overridden on a type-by-type basis by the ExpiresByType directive. See the description of that directive for details about the syntax
of the argument, and the alternate syntax description as well.

Apache HTTP Server Version 1.3

Apache module mod_expires

http://httpd.apache.org/docs/mod/mod_expires.html (3 of 3) [12/05/2001 4:51:18 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_headers

This module provides for the customization of HTTP response headers.

Status: Extension
Source File: mod_headers.c
Module Identifier: headers_module
Compatibility: Available in Apache 1.2 and later.

Summary

This module provides a directive to control the sending of HTTP headers. Headers can be merged, replaced or removed.

Directives

Header●

Header directive

Syntax: Header set|append|add header value
Syntax: Header unset header
Context: server config, virtual host, access.conf, .htaccess
Override: FileInfo
Status: Extension
Module: mod_header

This directive can replace, merge or remove HTTP response headers. The action it performs is determined by the first argument.
This can be one of the following values:

set
The response header is set, replacing any previous header with this name

●

append
The response header is appended to any existing header of the same name. When a new value is merged onto an existing
header it is separated from the existing header with a comma. This is the HTTP standard way of giving a header multiple
values.

●

add
The response header is added to the existing set of headers, even if this header already exists. This can result in two (or
more) headers having the same name. This can lead to unforeseen consequences, and in general "append" should be used
instead.

●

unset
The response header of this name is removed, if it exists. If there are multiple headers of the same name, all will be
removed.

●

This argument is followed by a header name, which can include the final colon, but it is not required. Case is ignored. For add,
append and set a value is given as the third argument. If this value contains spaces, it should be surrounded by double quotes. For

Apache module mod_headers

http://httpd.apache.org/docs/mod/mod_headers.html (1 of 2) [12/05/2001 4:51:20 PM]

unset, no value should be given.

Order of Processing

The Header directive can occur almost anywhere within the server configuration. It is valid in the main server config and virtual
host sections, inside <Directory>, <Location> and <Files> sections, and within .htaccess files.

The Header directives are processed in the following order:

main server1.

virtual host2.

<Directory> sections and .htaccess3.

<Location>4.

<Files>5.

Order is important. These two headers have a different effect if reversed:

Header append Author "John P. Doe"
Header unset Author

This way round, the Author header is not set. If reversed, the Author header is set to "John P. Doe".

The Header directives are processed just before the response is sent by its handler. These means that some headers that are added
just before the response is sent cannot be unset or overridden. This includes headers such as "Date" and "Server".

Apache HTTP Server Version 1.3

Apache module mod_headers

http://httpd.apache.org/docs/mod/mod_headers.html (2 of 2) [12/05/2001 4:51:20 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_imap

This module provides for server-side imagemap processing.

Status: Base
Source File: mod_imap.c
Module Identifier: imap_module
Compatibility: Available in Apache 1.1 and later.

Summary

This module processes .map files, thereby replacing the functionality of the imagemap CGI program. Any directory or document
type configured to use the handler imap-file (using either AddHandler or SetHandler) will be processed by this module.

The following directive will activate files ending with .map as imagemap files:

AddHandler imap-file map

Note that the following is still supported:

AddType application/x-httpd-imap map

However, we are trying to phase out "magic MIME types" so we are deprecating this method.

Directives

ImapMenu●

ImapDefault●

ImapBase●

New Features

The imagemap module adds some new features that were not possible with previously distributed imagemap programs.

URL references relative to the Referer: information.●

Default <BASE> assignment through a new map directive base.●

No need for imagemap.conf file.●

Point references.●

Configurable generation of imagemap menus.●

Imagemap File

The lines in the imagemap files can have one of several formats:

directive value [x,y ...]
directive value "Menu text" [x,y ...]

Apache module mod_imap

http://httpd.apache.org/docs/mod/mod_imap.html (1 of 4) [12/05/2001 4:51:22 PM]

directive value x,y ... "Menu text"

The directive is one of base, default, poly, circle, rect, or point. The value is an absolute or relative URL, or one of
the special values listed below. The coordinates are x,y pairs separated by whitespace. The quoted text is used as the text of the
link if a imagemap menu is generated. Lines beginning with '#' are comments.

Imagemap File Directives

There are six directives allowed in the imagemap file. The directives can come in any order, but are processed in the order they are
found in the imagemap file.

base Directive

Has the effect of <BASE HREF="value">. The non-absolute URLs of the map-file are taken relative to this value. The
base directive overrides ImapBase as set in a .htaccess file or in the server configuration files. In the absence of an
ImapBase configuration directive, base defaults to http://server_name/.
base_uri is synonymous with base. Note that a trailing slash on the URL is significant.

default Directive

The action taken if the coordinates given do not fit any of the poly, circle or rect directives, and there are no point
directives. Defaults to nocontent in the absence of an ImapDefault configuration setting, causing a status code of 204
No Content to be returned. The client should keep the same page displayed.

poly Directive

Takes three to one-hundred points, and is obeyed if the user selected coordinates fall within the polygon defined by these
points.

circle

Takes the center coordinates of a circle and a point on the circle. Is obeyed if the user selected point is with the circle.

rect Directive

Takes the coordinates of two opposing corners of a rectangle. Obeyed if the point selected is within this rectangle.

point Directive

Takes a single point. The point directive closest to the user selected point is obeyed if no other directives are satisfied. Note
that default will not be followed if a point directive is present and valid coordinates are given.

Values

The values for each of the directives can any of the following:

a URL

The URL can be relative or absolute URL. Relative URLs can contain '..' syntax and will be resolved relative to the base
value.
base itself will not resolved according to the current value. A statement base mailto: will work properly, though.

map

Equivalent to the URL of the imagemap file itself. No coordinates are sent with this, so a menu will be generated unless
ImapMenu is set to 'none'.

menu

Synonymous with map.

referer

Equivalent to the URL of the referring document. Defaults to http://servername/ if no Referer: header was present.

nocontent

Sends a status code of 204 No Content, telling the client to keep the same page displayed. Valid for all but base.

error

Fails with a 500 Server Error. Valid for all but base, but sort of silly for anything but default.

Apache module mod_imap

http://httpd.apache.org/docs/mod/mod_imap.html (2 of 4) [12/05/2001 4:51:22 PM]

Coordinates

0,0 200,200

A coordinate consists of an x and a y value separated by a comma. The coordinates are separated from each other by
whitespace. To accommodate the way Lynx handles imagemaps, should a user select the coordinate 0,0, it is as if no
coordinate had been selected.

Quoted Text

"Menu Text"

After the value or after the coordinates, the line optionally may contain text within double quotes. This string is used as the
text for the link if a menu is generated:
Menu text
If no quoted text is present, the name of the link will be used as the text:
http://foo.com
It is impossible to escape double quotes within this text.

Example Mapfile

#Comments are printed in a 'formatted' or 'semiformatted' menu.
#And can contain html tags. <hr>
base referer
poly map "Could I have a menu, please?" 0,0 0,10 10,10 10,0
rect .. 0,0 77,27 "the directory of the referer"
circle http://www.inetnebr.com/lincoln/feedback/ 195,0 305,27
rect another_file "in same directory as referer" 306,0 419,27
point http://www.zyzzyva.com/ 100,100
point http://www.tripod.com/ 200,200
rect mailto:nate@tripod.com 100,150 200,0 "Bugs?"

Referencing your mapfile

ImapMenu directive

Syntax: ImapMenu none|formatted|semiformatted|unformatted
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Module: mod_imap
Compatibility: ImapMenu is only available in Apache 1.1 and later.

The ImapMenu directive determines the action taken if an imagemap file is called without valid coordinates.

none

If ImapMenu is none, no menu is generated, and the default action is performed.

formatted

A formatted menu is the simplest menu. Comments in the imagemap file are ignored. A level one header is printed, then
an hrule, then the links each on a separate line. The menu has a consistent, plain look close to that of a directory listing.

semiformatted

In the semiformatted menu, comments are printed where they occur in the imagemap file. Blank lines are turned into

Apache module mod_imap

http://httpd.apache.org/docs/mod/mod_imap.html (3 of 4) [12/05/2001 4:51:22 PM]

HTML breaks. No header or hrule is printed, but otherwise the menu is the same as a formatted menu.

unformatted

Comments are printed, blank lines are ignored. Nothing is printed that does not appear in the imagemap file. All breaks and
headers must be included as comments in the imagemap file. This gives you the most flexibility over the appearance of your
menus, but requires you to treat your map files as HTML instead of plaintext.

ImapDefault directive

Syntax: ImapDefault error|nocontent|map|referer|URL
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Module: mod_imap
Compatibility: ImapDefault is only available in Apache 1.1 and later.

The ImapDefault directive sets the default default used in the imagemap files. Its value is overridden by a default directive
within the imagemap file. If not present, the default action is nocontent, which means that a 204 No Content is sent to
the client. In this case, the client should continue to display the original page.

ImapBase directive

Syntax: ImapBase map|referer|URL
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Module: mod_imap
Compatibility: ImapBase is only available in Apache 1.1 and later.

The ImapBase directive sets the default base used in the imagemap files. Its value is overridden by a base directive within the
imagemap file. If not present, the base defaults to http://servername/.

Apache HTTP Server Version 1.3

Apache module mod_imap

http://httpd.apache.org/docs/mod/mod_imap.html (4 of 4) [12/05/2001 4:51:22 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_include

This module provides for documents with Server Side Includes (SSI).

Status: Base
Source File: mod_include.c
Module Identifier: includes_module

Summary

This module provides a handler which will process files before they are sent to the client. The processing is controlled by specially
formated SGML comments, referred to as elements. These elements allow conditional text, the inclusion other files or programs, as
well as the setting and printing of environment variables.

For an introduction to this topic, we also provide a tutorial on Server Side Includes.

Directives

XBitHack●

See also: Options and AddHandler.

Enabling Server-Side Includes

Any document with handler of "server-parsed" will be parsed by this module, if the Includes option is set. If documents
containing server-side include directives are given the extension .shtml, the following directives will make Apache parse them and
assign the resulting document the mime type of text/html:

AddType text/html .shtml
AddHandler server-parsed .shtml

The following directive must be given for the directories containing the shtml files (typically in a <Directory> section, but this
directive is also valid .htaccess files if AllowOverride Options is set):

Options +Includes

Alternatively the XBitHack directive can be used to parse normal (text/html) files, based on file permissions.

For backwards compatibility, documents with mime type text/x-server-parsed-html or
text/x-server-parsed-html3 will also be parsed (and the resulting output given the mime type text/html).

Apache module mod_include

http://httpd.apache.org/docs/mod/mod_include.html (1 of 6) [12/05/2001 4:51:25 PM]

Basic Elements

The document is parsed as an HTML document, with special commands embedded as SGML comments. A command has the
syntax:

<!--#element attribute=value attribute=value ... -->

The value will often be enclosed in double quotes; many commands only allow a single attribute-value pair. Note that the comment
terminator (-->) should be preceded by whitespace to ensure that it isn't considered part of an SSI token.

The allowed elements are:

config

This command controls various aspects of the parsing. The valid attributes are:

errmsg

The value is a message that is sent back to the client if an error occurs whilst parsing the document.

sizefmt

The value sets the format to be used which displaying the size of a file. Valid values are bytes for a count in
bytes, or abbrev for a count in Kb or Mb as appropriate.

timefmt

The value is a string to be used by the strftime(3) library routine when printing dates.

echo

This command prints one of the include variables, defined below. If the variable is unset, it is printed as (none). Any
dates printed are subject to the currently configured timefmt. Attributes:

var

The value is the name of the variable to print.

encoding

Specifies how Apache should encode special characters contained in the variable before outputting them. If set to
"none", no encoding will be done. If set to "url", then URL encoding (also known as %-encoding; this is appropriate
for use within URLs in links, etc.) will be performed. At the start of an echo element, the default is set to "entity",
resulting in entity encoding (which is appropriate in the context of a block-level HTML element, eg. a paragraph of
text). This can be changed by adding an encoding attribute, which will remain in effect until the next encoding
attribute is encountered or the element ends, whichever comes first. Note that the encoding attribute must
precede the corresponding var attribute to be effective, and that only special characters as defined in the
ISO-8859-1 character encoding will be encoded. This encoding process may not have the desired result if a
different character encoding is in use. Apache 1.3.12 and above; previous versions do no encoding.

exec

The exec command executes a given shell command or CGI script. The IncludesNOEXEC Option disables this command
completely. The valid attributes are:

cgi

The value specifies a (%-encoded) URL relative path to the CGI script. If the path does not begin with a (/), then it
is taken to be relative to the current document. The document referenced by this path is invoked as a CGI script,
even if the server would not normally recognize it as such. However, the directory containing the script must be
enabled for CGI scripts (with ScriptAlias or the ExecCGI Option).

The CGI script is given the PATH_INFO and query string (QUERY_STRING) of the original request from the
client; these cannot be specified in the URL path. The include variables will be available to the script in addition to
the standard CGI environment.

If the script returns a Location: header instead of output, then this will be translated into an HTML anchor.

The include virtual element should be used in preference to exec cgi.

cmd

The server will execute the given string using /bin/sh. The include variables are available to the command.

Apache module mod_include

http://httpd.apache.org/docs/mod/mod_include.html (2 of 6) [12/05/2001 4:51:25 PM]

fsize

This command prints the size of the specified file, subject to the sizefmt format specification. Attributes:

file

The value is a path relative to the directory containing the current document being parsed.

virtual

The value is a (%-encoded) URL-path relative to the current document being parsed. If it does not begin with a
slash (/) then it is taken to be relative to the current document.

flastmod

This command prints the last modification date of the specified file, subject to the timefmt format specification. The
attributes are the same as for the fsize command.

include

This command inserts the text of another document or file into the parsed file. Any included file is subject to the usual
access control. If the directory containing the parsed file has the Option IncludesNOEXEC set, and the including the
document would cause a program to be executed, then it will not be included; this prevents the execution of CGI scripts.
Otherwise CGI scripts are invoked as normal using the complete URL given in the command, including any query string.

An attribute defines the location of the document; the inclusion is done for each attribute given to the include command.
The valid attributes are:

file

The value is a path relative to the directory containing the current document being parsed. It cannot contain ../,
nor can it be an absolute path. The virtual attribute should always be used in preference to this one.

virtual

The value is a (%-encoded) URL relative to the current document being parsed. The URL cannot contain a scheme
or hostname, only a path and an optional query string. If it does not begin with a slash (/) then it is taken to be
relative to the current document.

A URL is constructed from the attribute, and the output the server would return if the URL were accessed by the client is
included in the parsed output. Thus included files can be nested.

printenv

This prints out a listing of all existing variables and their values. Starting with Apache 1.3.12, special characters are entity
encoded (see the echo element for details) before being output. No attributes.

For example: <!--#printenv -->

Apache 1.2 and above.

set

This sets the value of a variable. Attributes:

var

The name of the variable to set.

value

The value to give a variable.

For example: <!--#set var="category" value="help" -->

Apache 1.2 and above.

Include Variables

In addition to the variables in the standard CGI environment, these are available for the echo command, for if and elif, and to
any program invoked by the document.

DATE_GMT

The current date in Greenwich Mean Time.

DATE_LOCAL

Apache module mod_include

http://httpd.apache.org/docs/mod/mod_include.html (3 of 6) [12/05/2001 4:51:25 PM]

The current date in the local time zone.

DOCUMENT_NAME

The filename (excluding directories) of the document requested by the user.

DOCUMENT_URI

The (%-decoded) URL path of the document requested by the user. Note that in the case of nested include files, this is not
then URL for the current document.

LAST_MODIFIED

The last modification date of the document requested by the user.

Variable Substitution

Variable substitution is done within quoted strings in most cases where they may reasonably occur as an argument to an SSI
directive. This includes the config, exec, flastmod, fsize, include, and set directives, as well as the arguments to conditional
operators. You can insert a literal dollar sign into the string using backslash quoting:

 <!--#if expr="$a = \$test" -->

If a variable reference needs to be substituted in the middle of a character sequence that might otherwise be considered a valid
identifier in its own right, it can be disambiguated by enclosing the reference in braces, à la shell substitution:

 <!--#set var="Zed" value="${REMOTE_HOST}_${REQUEST_METHOD}" -->

This will result in the Zed variable being set to "X_Y" if REMOTE_HOST is "X" and REQUEST_METHOD is "Y".

EXAMPLE: the below example will print "in foo" if the DOCUMENT_URI is /foo/file.html, "in bar" if it is /bar/file.html and "in
neither" otherwise:

 <!--#if expr="\"$DOCUMENT_URI\" = \"/foo/file.html\"" -->
 in foo
 <!--#elif expr="\"$DOCUMENT_URI\" = \"/bar/file.html\"" -->
 in bar
 <!--#else -->
 in neither
 <!--#endif -->

Flow Control Elements

These are available in Apache 1.2 and above. The basic flow control elements are:

 <!--#if expr="test_condition" -->
 <!--#elif expr="test_condition" -->
 <!--#else -->
 <!--#endif -->

The if element works like an if statement in a programming language. The test condition is evaluated and if the result is true, then
the text until the next elif, else. or endif element is included in the output stream.

The elif or else statements are be used the put text into the output stream if the original test_condition was false. These
elements are optional.

The endif element ends the if element and is required.

test_condition is one of the following:

string

true if string is not empty

Apache module mod_include

http://httpd.apache.org/docs/mod/mod_include.html (4 of 6) [12/05/2001 4:51:25 PM]

string1 = string2
string1 != string2
string1 < string2
string1 <= string2
string1 > string2
string1 >= string2

Compare string1 with string 2. If string2 has the form /string/ then it is compared as a regular expression. Regular
expressions have the same syntax as those found in the Unix egrep command.

(test_condition)

true if test_condition is true

! test_condition

true if test_condition is false

test_condition1 && test_condition2

true if both test_condition1 and test_condition2 are true

test_condition1 || test_condition2

true if either test_condition1 or test_condition2 is true

"=" and "!=" bind more tightly than "&&" and "||". "!" binds most tightly. Thus, the following are equivalent:

 <!--#if expr="$a = test1 && $b = test2" -->
 <!--#if expr="($a = test1) && ($b = test2)" -->

Anything that's not recognized as a variable or an operator is treated as a string. Strings can also be quoted: 'string'. Unquoted
strings can't contain whitespace (blanks and tabs) because it is used to separate tokens such as variables. If multiple strings are
found in a row, they are concatenated using blanks. So,

 string1 string2 results in string1 string2
 'string1 string2' results in string1 string2

Using Server Side Includes for ErrorDocuments

There is a document which describes how to use the features of mod_include to offer internationalized customized server error
documents.

XBitHack directive

Syntax: XBitHack on|off|full
Default: XBitHack off
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Base
Module: mod_include

The XBitHack directives controls the parsing of ordinary html documents. This directive only affects files associated with the
MIME type text/html. XBitHack can take on the following values:

off

No special treatment of executable files.

on

Any file that has the user-execute bit set will be treated as a server-parsed html document.

full

Apache module mod_include

http://httpd.apache.org/docs/mod/mod_include.html (5 of 6) [12/05/2001 4:51:25 PM]

As for on but also test the group-execute bit. If it is set, then set the Last-modified date of the returned file to be the last
modified time of the file. If it is not set, then no last-modified date is sent. Setting this bit allows clients and proxies to cache
the result of the request.

Note: you would not want to use this, for example, when you #include a CGI that produces different output on each hit
(or potentially depends on the hit).

Apache HTTP Server Version 1.3

Apache module mod_include

http://httpd.apache.org/docs/mod/mod_include.html (6 of 6) [12/05/2001 4:51:25 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_info

This module provides a comprehensive overview of the server configuration including all installed modules and directives in the configuration files.

Status: Extension
Source File: mod_info.c
Module Identifier: info_module
Compatibility: Available in Apache 1.1 and later.

Directives

AddModuleInfo●

Using mod_info

To configure it, add the following to your access.conf file.

<Location /server-info>
SetHandler server-info
</Location>

You may wish to add a <Limit> clause inside the location directive to limit access to your server configuration information.

Once configured, the server information is obtained by accessing http://your.host.dom/server-info

Note that the configuration files are read by the module at run-time, and therefore the display may not reflect the running server's
active configuration if the files have been changed since the server was last reloaded. Also, the configuration files must be readable by
the user as which the server is running (see the User directive), or else the directive settings will not be listed.

It should also be noted that if mod_info is compiled into the server, its handler capability is available in all configuration files,
including per-directory files (e.g., .htaccess). This may have security-related ramifications for your site.

AddModuleInfo

Syntax: AddModuleInfo module-name string
Context: server config, virtual host
Status: Extension
Module: mod_info
Compatibility: Apache 1.3 and above

This allows the content of string to be shown as HTML interpreted, Additional Information for the module module-name. Example:

AddModuleInfo mod_auth.c 'See http://www.apache.org/docs/mod/mod_auth.html'

Apache HTTP Server Version 1.3

Apache module mod_info

http://httpd.apache.org/docs/mod/mod_info.html [12/05/2001 4:51:26 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_isapi

This module supports ISAPI Extensions within Apache for Windows.

Status: Base
Source File: mod_isapi.c
Module Identifier: isapi_module
Compatibility: WIN32 only

Summary

This module implements the Internet Server extension API. It allows Internet Server extensions (e.g. ISAPI .dll modules) to be
served by Apache for Windows, subject to the noted restrictions.

ISAPI extension modules (.dll files) are written by third parties. The Apache Group does not author these modules, so we provide
no support for them. Please contact the ISAPI's author directly if you are experiencing problems running their ISAPI extention.
Please do not post such problems to Apache's lists or bug reporting pages.

Directives

ISAPIReadAheadBuffer●

ISAPILogNotSupported●

ISAPIAppendLogToErrors●

ISAPIAppendLogToQuery●

Usage

In the server configuration file, use the AddHandler directive to associate ISAPI files with the isapi-isa handler, and map it to
the with their file extensions. To enable any .dll file to be processed as an ISAPI extention, edit the httpd.conf file and add the
following line:

 AddHandler isapi-isa .dll

ISAPI extensions are governed by the same permissions and restrictions as CGI scripts. That is, Options ExecCGI must be set
for the directory that contains the ISAPI .dll file.

Review the Additional Notes and the Programmer's Journal for additional details and clarification of the specific ISAPI support
offered by mod_isapi.

Apache module mod_isapi

http://httpd.apache.org/docs/mod/mod_isapi.html (1 of 4) [12/05/2001 4:51:28 PM]

Additional Notes

Apache's ISAPI implementation conforms to all of the ISAPI 2.0 specification, except for the "Microsoft-specific" extensions
dealing with asynchronous I/O. Apache's I/O model does not allow asynchronous reading and writing in a manner that the ISAPI
could access. If an ISA tries to access unsupported features, including async I/O, a message is placed in the error log to help with
debugging. Since these messages can become a flood, a new directive; ISAPILogNotSupported Off, is introduced in Apache
1.3.13.

Some servers, like Microsoft IIS, load the ISA into the server, and keep it loaded until memory usage is too high, or specific
configuration options are used. Apache currently loads and unloads the ISA for each request. This is inefficient, but Apache's
request model makes this method the only method that currently works. Apache 2.0 is expected to support more effective loading
and caching methods, with more precise control over individual ISAPI modules and directories.

Also, remember that while Apache supports ISAPI Extensions, it does not support ISAPI Filters. Support for filters may be added
at a later date, but no support is planned at this time.

Programmer's Journal

If you are programming Apache 1.3 mod_isapi modules, you must limit your calls to ServerSupportFunction to the following
directives:

HSE_REQ_SEND_URL_REDIRECT_RESP

Redirect the user to another location.
This must be a fully qualified URL (e.g. http://server/location).

HSE_REQ_SEND_URL

Redirect the user to another location.
This cannot be a fully qualified URL, you are not allowed to pass the protocol or a server name (e.g. simply /location).
This redirection is handled by the server, not the browser.
Warning: in their recent documentation, Microsoft appears to have abandoned the distinction between the two
HSE_REQ_SEND_URL functions. Apache continues to treat them as two distinct functions with different requirements and
behaviors.

HSE_REQ_SEND_RESPONSE_HEADER

Apache accepts a response body following the header if it follows the blank line (two consecutive newlines) in the headers
string argument. This body cannot contain NULLs, since the headers argument is NULL terminated.

HSE_REQ_DONE_WITH_SESSION

Apache considers this a no-op, since the session will be finished when the ISAPI returns from processing.

HSE_REQ_MAP_URL_TO_PATH

Apache will translate a virtual name to a physical name.

HSE_APPEND_LOG_PARAMETER Apache 1.3.13 and later

This logged message may be captured in any of the following logs:

in the \"%{isapi-parameter}n\" component in a CustomLog directive❍

in the %q log component with the ISAPIAppendLogToQuery On directive❍

in the error log with the ISAPIAppendLogToErrors On directive❍

The first option, the %{isapi-parameter}n component, is always available and prefered.

HSE_REQ_IS_KEEP_CONN Apache 1.3.13 and later

Will return the negotiated Keep-Alive status.

HSE_REQ_SEND_RESPONSE_HEADER_EX Apache 1.3.13 and later

Will behave as documented, although the fKeepConn flag is ignored.

HSE_REQ_IS_CONNECTED Apache 1.3.13 and later

Will report false if the request has been aborted.

Apache returns FALSE to any unsupported call to ServerSupportFunction, and sets the GetLastError value to

Apache module mod_isapi

http://httpd.apache.org/docs/mod/mod_isapi.html (2 of 4) [12/05/2001 4:51:28 PM]

ERROR_INVALID_PARAMETER.

Prior to Apache 1.3.13, ReadClient was a noop, and any request with a request body greater than 48kb was rejected by mod_isapi.
As of Apache 1.3.13, ReadClient now retrieves the request body exceeding the initial buffer (defined by ISAPIReadAheadBuffer).
Based on the ISAPIReadAheadBuffer setting (number of bytes to buffer prior to calling the ISAPI handler) shorter requests are sent
complete to the extension when it is invoked. If the request is longer, the ISAPI extension must use ReadClient to retrieve the
remaining request body.

WriteClient is supported, but only with the HSE_IO_SYNC flag or no option flag (value of 0). Any other WriteClient request will
be rejected with a return value of FALSE, and a GetLastError value of ERROR_INVALID_PARAMETER.

GetServerVariable is supported, although extended server variables do not exist (as defined by other servers.) All the usual Apache
CGI environment variables are available from GetServerVariable. As of Apache 1.3.13, the ALL_HTTP and ALL_RAW and
variables are now available.

Apache 2.0 mod_isapi may support additional features introduced in later versions of the ISAPI specification, as well as limited
emulation of async I/O and the TransmitFile semantics. Apache 2.0 may also support caching of ISAPI .dlls for performance. No
further enhancements to the Apache 1.3 mod_isapi features are anticipated.

ISAPIReadAheadBuffer directive

Syntax: ISAPIReadAheadBuffer size
Default: 49152
Context: server config
Override: None
Status: Base
Module: mod_isapi
Compatibility: Apache 1.3.13 and later, Win32 only

Defines the maximum size of the Read Ahead Buffer sent to ISAPI extentions when they are initally invoked. All remaining data
must be retrieved using the ReadClient callback; some ISAPI extensions may not support the ReadClient function. Refer questions
to the ISAPI extention's author.

ISAPILogNotSupported directive

Syntax: ISAPILogNotSupported on|off
Default: on
Context: server config
Override: None
Status: Base
Module: mod_isapi
Compatibility: Apache 1.3.13 and later, Win32 only

Logs all requests for unsupported features from ISAPI extentions in the server error log. While this should be turned off once all
desired ISAPI modules are functioning, it defaults to on to help administrators track down problems.

ISAPIAppendLogToErrors directive

Syntax: ISAPIAppendLogToErrors on|off
Default: off
Context: server config
Override: None

Apache module mod_isapi

http://httpd.apache.org/docs/mod/mod_isapi.html (3 of 4) [12/05/2001 4:51:28 PM]

Status: Base
Module: mod_isapi
Compatibility: Apache 1.3.13 and later, Win32 only

Record HSE_APPEND_LOG_PARAMETER requests from ISAPI extentions to the server error log.

ISAPIAppendLogToQuery directive

Syntax: ISAPIAppendLogToQuery on|off
Default: off
Context: server config
Override: None
Status: Base
Module: mod_isapi
Compatibility: Apache 1.3.13 and later, Win32 only

Record HSE_APPEND_LOG_PARAMETER requests from ISAPI extentions to the query field (appended to the CustomLog %q
component).

Apache HTTP Server Version 1.3

Apache module mod_isapi

http://httpd.apache.org/docs/mod/mod_isapi.html (4 of 4) [12/05/2001 4:51:28 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_log_agent

This module provides for logging of the client user agents.

Status: Extension
Source File: mod_log_agent.c
Module Identifier: agent_log_module

Summary

This module is provided strictly for compatibility with NCSA httpd, and is deprecated. We recommend you use mod_log_config
instead.

Directives

AgentLog●

See also: CustomLog and LogFormat.

AgentLog

Syntax: AgentLog file-pipe
Default: AgentLog logs/agent_log
Context: server config, virtual host
Status: Extension
Module: mod_log_agent

The AgentLog directive sets the name of the file to which the server will log the UserAgent header of incoming requests. File-pipe
is one of

A filename

A filename relative to the ServerRoot.

`|' followed by a command

A program to receive the agent log information on its standard input. Note the a new program will not be started for a
VirtualHost if it inherits the AgentLog from the main server.

Security: if a program is used, then it will be run under the user who started httpd. This will be root if the server was started by root;
be sure that the program is secure.

Security: See the security tips document for details on why your security could be compromised if the directory where logfiles are
stored is writable by anyone other than the user that starts the server.

This directive is provided for compatibility with NCSA 1.4.

Module mod_log_agent

http://httpd.apache.org/docs/mod/mod_log_agent.html (1 of 2) [12/05/2001 4:51:30 PM]

Apache HTTP Server Version 1.3

Module mod_log_agent

http://httpd.apache.org/docs/mod/mod_log_agent.html (2 of 2) [12/05/2001 4:51:30 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_log_config

This module provides for logging of the requests made to the server, using the Common Log Format or a user-specified format.

Status: Base
Source File: mod_log_config.c
Module Identifier: config_log_module
Compatibility: Was an extension module prior to Apache 1.2.

Summary

This module provides for flexible logging of client requests. Logs are written in a customizable format, and may be written directly
to a file, or to an external program. Conditional logging is provided so that individual requests may be included or excluded from
the logs based on characteristics of the request.

Three directives are provided by this module: TransferLog to create a log file, LogFormat to set a custom format, and
CustomLog to define a log file and format in one step. The TransferLog and CustomLog directives can be used multiple
times in each server to cause each request to be logged to multiple files.

See also: Apache Log Files.

Directives

CookieLog●

CustomLog●

LogFormat●

TransferLog●

Custom Log Formats

The format argument to the LogFormat and CustomLog directives is a string. This string is logged to the log file for each
request. It can contain literal characters copied into the log files and the c-type control characters "\n" and "\t" to represent new-lines
and tabs. Literal quotes and back-slashes should be escaped with back-slashes.

The characteristics of the request itself are logged by placing "%" directives in the format string, which are replaced in the log file
by the values as follows:

%...a: Remote IP-address
%...A: Local IP-address
%...B: Bytes sent, excluding HTTP headers.
%...b: Bytes sent, excluding HTTP headers. In CLF format
 i.e. a '-' rather than a 0 when no bytes are sent.
%...c: Connection status when response is completed.
 'X' = connection aborted before the response completed.
 '+' = connection may be kept alive after the response is sent.

Apache module mod_log_config

http://httpd.apache.org/docs/mod/mod_log_config.html (1 of 5) [12/05/2001 4:51:32 PM]

 '-' = connection will be closed after the response is sent.
%...{FOOBAR}e: The contents of the environment variable FOOBAR
%...f: Filename
%...h: Remote host
%...H The request protocol
%...{Foobar}i: The contents of Foobar: header line(s) in the request
 sent to the server.
%...l: Remote logname (from identd, if supplied)
%...m The request method
%...{Foobar}n: The contents of note "Foobar" from another module.
%...{Foobar}o: The contents of Foobar: header line(s) in the reply.
%...p: The canonical Port of the server serving the request
%...P: The process ID of the child that serviced the request.
%...q The query string (prepended with a ? if a query string exists,
 otherwise an empty string)
%...r: First line of request
%...s: Status. For requests that got internally redirected, this is
 the status of the *original* request --- %...>s for the last.
%...t: Time, in common log format time format (standard english format)
%...{format}t: The time, in the form given by format, which should
 be in strftime(3) format. (potentially localized)
%...T: The time taken to serve the request, in seconds.
%...u: Remote user (from auth; may be bogus if return status (%s) is 401)
%...U: The URL path requested, not including any query string.
%...v: The canonical ServerName of the server serving the request.
%...V: The server name according to the UseCanonicalName setting.

The "..." can be nothing at all (e.g., "%h %u %r %s %b"), or it can indicate conditions for inclusion of the item (which will cause
it to be replaced with "-" if the condition is not met). The forms of condition are a list of HTTP status codes, which may or may not
be preceded by "!". Thus, "%400,501{User-agent}i" logs User-agent: on 400 errors and 501 errors (Bad Request, Not Implemented)
only; "%!200,304,302{Referer}i" logs Referer: on all requests which did not return some sort of normal status.

Note that there is no escaping performed on the strings from %...r, %...i and %...o. This is mainly to comply with the requirements
of the Common Log Format. This implies that clients can insert control characters into the log, so care should be taken when
dealing with raw log files.

Some commonly used log format strings are:

Common Log Format (CLF)

"%h %l %u %t \"%r\" %>s %b"

Common Log Format with Virtual Host

"%v %h %l %u %t \"%r\" %>s %b"

NCSA extended/combined log format

"%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""

Referer log format

"%{Referer}i -> %U"

Agent (Browser) log format

"%{User-agent}i"

Note that the canonical ServerName and Port of the server serving the request are used for %v and %p respectively. This happens
regardless of the UseCanonicalName setting because otherwise log analysis programs would have to duplicate the entire vhost
matching algorithm in order to decide what host really served the request.

Apache module mod_log_config

http://httpd.apache.org/docs/mod/mod_log_config.html (2 of 5) [12/05/2001 4:51:32 PM]

Security Considerations

See the security tips document for details on why your security could be compromised if the directory where logfiles are stored is
writable by anyone other than the user that starts the server.

Compatibility notes

This module is based on mod_log_config distributed with previous Apache releases, now updated to handle multiple logs.
There is now no need to re-configure Apache to use configuration log formats.

●

The module also implements the CookieLog directive, used to log user-tracking information created by mod_usertrack.
The use of CookieLog is deprecated, and a CustomLog should be defined to log user-tracking information instead.

●

As of Apache 1.3.5, this module allows conditional logging based upon the setting of environment variables. That is, you
can control whether a request should be logged or not based upon whether an arbitrary environment variable is defined or
not. This is configurable on a per-logfile basis.

●

Beginning with Apache 1.3.5, the mod_log_config module has also subsumed the RefererIgnore functionality from
mod_log_referer. The effect of RefererIgnore can be achieved by combinations of SetEnvIf directives and
conditional CustomLog definitions.

●

CookieLog directive

Syntax: CookieLog filename
Context: server config, virtual host
Module: mod_cookies
Compatibility: Only available in Apache 1.2 and above

The CookieLog directive sets the filename for logging of cookies. The filename is relative to the ServerRoot. This directive is
included only for compatibility with mod_cookies, and is deprecated.

CustomLog directive

Syntax: CustomLog file|pipe format|nickname [env=[!]environment-variable]
Context: server config, virtual host
Status: Base
Compatibility: Nickname only available in Apache 1.3 or later. Conditional logging available in 1.3.5 or later.
Module: mod_log_config

The CustomLog directive is used to log requests to the server. A log format is specified, and the logging can optionally be made
conditional on request characteristics using environment variables.

The first argument, which specifies the location to which the logs will be written, can take on one of the following two types of
values:

file

A filename, relative to the ServerRoot.

pipe

The pipe character "|", followed by the path to a program to receive the log information on its standard input. Security: if a
program is used, then it will be run under the user who started httpd. This will be root if the server was started by root; be
sure that the program is secure.

The second argument specifies what will be written to the log file. It can specify either a nickname defined by a previous LogFormat

Apache module mod_log_config

http://httpd.apache.org/docs/mod/mod_log_config.html (3 of 5) [12/05/2001 4:51:32 PM]

http://httpd.apache.org/docs/mod/mod_cookies.html

directive, or it can be an explicit format string as described in the log formats section.

For example, the following two sets of directives have exactly the same effect:

 # CustomLog with format nickname
 LogFormat "%h %l %u %t \"%r\" %>s %b" common
 CustomLog logs/access_log common

 # CustomLog with explicit format string
 CustomLog logs/access_log "%h %l %u %t \"%r\" %>s %b"

The third argument is optional and allows the decision on whether or not to log a particular request to be based on the presence or
absence of a particular variable in the server environment. If the specified environment variable is set for the request (or is not set, in
the case of a 'env=!name' clause), then the request will be logged.

Environment variables can be set on a per-request basis using the mod_setenvif and/or mod_rewrite modules. For example, if you
don't want to record requests for all GIF images on your server in a separate logfile but not your main log, you can use:

 SetEnvIf Request_URI \.gif$ gif-image
 CustomLog gif-requests.log common env=gif-image
 CustomLog nongif-requests.log common env=!gif-image

LogFormat directive

Syntax: LogFormat format|nickname [nickname]
Default: LogFormat "%h %l %u %t \"%r\" %>s %b"
Context: server config, virtual host
Status: Base
Compatibility: Nickname only available in Apache 1.3 or later
Module: mod_log_config

This directive specifies the format of the access log file.

The LogFormat directive can take one of two forms. In the first form, where only one argument is specified, this directive sets the
log format which will be used by logs specified in subsequent TransferLog directives. The single argument can specify an explicit
format as discussed in custom log formats section above. Alternatively, it can use a nickname to refer to a log format defined in a
previous LogFormat directive as described below.

The second form of the LogFormat directive associates an explicit format with a nickname. This nickname can then be used in
subsequent LogFormat or CustomLog directives rather than repeating the entire format string. A LogFormat directive which
defines a nickname does nothing else -- that is, it only defines the nickname, it doesn't actually apply the format and make it the
default. Therefore, it will not affect subsequent TransferLog directives.

TransferLog directive

Syntax: TransferLog file|pipe
Default: none
Context: server config, virtual host
Status: Base
Module: mod_log_config

This directive has exactly the same arguments and effect as the CustomLog directive, with the exception that it does not allow the
log format to be specified explicitly or for conditional logging of requests. Instead, the log format is determined by the most recently

Apache module mod_log_config

http://httpd.apache.org/docs/mod/mod_log_config.html (4 of 5) [12/05/2001 4:51:32 PM]

specified LogFormat directive (that does not define a nickname). Common Log Format is used if no other format has been
specified.

Example:

 LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""
 TransferLog logs/access_log

Apache HTTP Server Version 1.3

Apache module mod_log_config

http://httpd.apache.org/docs/mod/mod_log_config.html (5 of 5) [12/05/2001 4:51:32 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_log_referer

This module provides for logging of the documents which reference documents on the server.

Status: Extension
Source File: mod_log_referer.c
Module Identifier: referer_log_module

Summary

This module is provided strictly for compatibility with NCSA httpd, and is deprecated. We recommend you use mod_log_config
instead.

Directives

RefererIgnore●

RefererLog●

See also: CustomLog and LogFormat.

Log file format

The log file contains a separate line for each refer. Each line has the format

uri -> document

where uri is the (%-escaped) URI for the document that references the one requested by the client, and document is the (%-decoded)
local URL to the document being referred to.

RefererIgnore directive

Syntax: RefererIgnore string [string] ...
Context: server config, virtual host
Status: Extension
Module: mod_log_referer

The RefererIgnore directive adds to the list of strings to ignore in Referer headers. If any of the strings in the list is contained in the
Referer header, then no referrer information will be logged for the request. Example:

RefererIgnore www.ncsa.uiuc.edu

This avoids logging references from www.ncsa.uiuc.edu.

Apache module mod_log_referer

http://httpd.apache.org/docs/mod/mod_log_referer.html (1 of 2) [12/05/2001 4:51:33 PM]

RefererLog directive

Syntax: RefererLog file-pipe
Default: RefererLog logs/referer_log
Context: server config, virtual host
Status: Extension
Module: mod_log_referer

The RefererLog directive sets the name of the file to which the server will log the Referer header of incoming requests. File-pipe is
one of

A filename

A filename relative to the ServerRoot.

`|' followed by a command

A program to receive the referrer log information on its standard input. Note the a new program will not be started for a
VirtualHost if it inherits the RefererLog from the main server.

Security: if a program is used, then it will be run under the user who started httpd. This will be root if the server was started by root;
be sure that the program is secure.

Security: See the security tips document for details on why your security could be compromised if the directory where logfiles are
stored is writable by anyone other than the user that starts the server.

This directive is provided for compatibility with NCSA 1.4.

Apache HTTP Server Version 1.3

Apache module mod_log_referer

http://httpd.apache.org/docs/mod/mod_log_referer.html (2 of 2) [12/05/2001 4:51:33 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_mime

This module provides for determining the types of files from the filename and for association of handlers with files.

Status: Base
Source File: mod_mime.c
Module Identifier: mime_module

Summary

This module is used to determine various bits of "meta information" about documents. This information relates to the content of the
document and is returned to the browser or used in content-negotiation within the server. In addition, a "handler" can be set for a
document, which determines how the document will be processed within the server.

The directives AddCharset, AddEncoding, AddHandler, AddLanguage and AddType are all used to map file extensions onto the
meta-information for that file. Respectively they set the character set, content-encoding, handler, content-language, and MIME-type
(content-type) of documents. The directive TypesConfig is used to specify a file which also maps extensions onto MIME types. The
directives ForceType and SetHandler are used to associated all the files in a given location (e.g., a particular directory) onto a
particular MIME type or handler.

Note that changing the type or encoding of a file does not change the value of the Last-Modified header. Thus, previously
cached copies may still be used by a client or proxy, with the previous headers.

Directives

AddCharset●

AddEncoding●

AddHandler●

AddLanguage●

AddType●

DefaultLanguage●

ForceType●

RemoveEncoding●

RemoveHandler●

RemoveType●

SetHandler●

TypesConfig●

See also: MimeMagicFile.

Apache module mod_mime

http://httpd.apache.org/docs/mod/mod_mime.html (1 of 7) [12/05/2001 4:51:37 PM]

Files with Multiple Extensions

Files can have more than one extension, and the order of the extensions is normally irrelevant. For example, if the file
welcome.html.fr maps onto content type text/html and language French then the file welcome.fr.html will map onto
exactly the same information. The only exception to this is if an extension is given which Apache does not know how to handle. In
this case it will "forget" about any information it obtained from extensions to the left of the unknown extension. So, for example, if
the extensions fr and html are mapped to the appropriate language and type but extension xxx is not assigned to anything, then the
file welcome.fr.xxx.html will be associated with content-type text/html but no language.

If more than one extension is given which maps onto the same type of meta-information, then the one to the right will be used. For
example, if ".gif" maps to the MIME-type image/gif and ".html" maps to the MIME-type text/html, then the file
welcome.gif.html will be associated with the MIME-type "text/html".

Care should be taken when a file with multiple extensions gets associated with both a MIME-type and a handler. This will usually
result in the request being by the module associated with the handler. For example, if the .imap extension is mapped to the handler
"imap-file" (from mod_imap) and the .html extension is mapped to the MIME-type "text/html", then the file
world.imap.html will be associated with both the "imap-file" handler and "text/html" MIME-type. When it is processed, the
"imap-file" handler will be used, and so it will be treated as a mod_imap imagemap file.

AddCharset directive

Syntax: AddCharset charset extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_mime
Compatibility: AddCharset is only available in Apache 1.3.10 and later

The AddCharset directive maps the given filename extensions to the specified content charset. charset is the MIME charset
parameter of filenames containing extension. This mapping is added to any already in force, overriding any mappings that already
exist for the same extension.

Example:

 AddLanguage ja .ja
 AddCharset EUC-JP .euc
 AddCharset ISO-2022-JP .jis
 AddCharset SHIFT_JIS .sjis

Then the document xxxx.ja.jis will be treated as being a Japanese document whose charset is ISO-2022-JP (as will the
document xxxx.jis.ja). The AddCharset directive is useful for both to inform the client about the character encoding of the
document so that the document can be interpreted and displayed appropriately, and for content negotiation, where the server returns
one from several documents based on the client's charset preference.

The extension argument is case-insensitive, and can be specified with or without a leading dot.

See also: mod_negotiation

AddEncoding directive

Syntax: AddEncoding MIME-enc extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base

Apache module mod_mime

http://httpd.apache.org/docs/mod/mod_mime.html (2 of 7) [12/05/2001 4:51:37 PM]

Module: mod_mime

The AddEncoding directive maps the given filename extensions to the specified encoding type. MIME-enc is the MIME encoding to
use for documents containing the extension. This mapping is added to any already in force, overriding any mappings that already
exist for the same extension. Example:

AddEncoding x-gzip .gz
AddEncoding x-compress .Z

This will cause filenames containing the .gz extension to be marked as encoded using the x-gzip encoding, and filenames containing
the .Z extension to be marked as encoded with x-compress.

Old clients expect x-gzip and x-compress, however the standard dictates that they're equivalent to gzip and compress
respectively. Apache does content encoding comparisons by ignoring any leading x-. When responding with an encoding Apache
will use whatever form (i.e., x-foo or foo) the client requested. If the client didn't specifically request a particular form Apache
will use the form given by the AddEncoding directive. To make this long story short, you should always use x-gzip and
x-compress for these two specific encodings. More recent encodings, such as deflate should be specified without the x-.

The extension argument is case-insensitive, and can be specified with or without a leading dot.

See also: Files with multiple extensions

AddHandler directive

Syntax: AddHandler handler-name extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_mime
Compatibility: AddHandler is only available in Apache 1.1 and later

AddHandler maps the filename extensions extension to the handler handler-name. This mapping is added to any already in force,
overriding any mappings that already exist for the same extension. For example, to activate CGI scripts with the file extension
".cgi", you might use:

 AddHandler cgi-script .cgi

Once that has been put into your srm.conf or httpd.conf file, any file containing the ".cgi" extension will be treated as a CGI
program.

The extension argument is case-insensitive, and can be specified with or without a leading dot.

See also: Files with multiple extensions

AddLanguage directive

Syntax: AddLanguage MIME-lang extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The AddLanguage directive maps the given filename extension to the specified content language. MIME-lang is the MIME
language of filenames containing extension. This mapping is added to any already in force, overriding any mappings that already
exist for the same extension.

Apache module mod_mime

http://httpd.apache.org/docs/mod/mod_mime.html (3 of 7) [12/05/2001 4:51:37 PM]

Example:

AddEncoding x-compress .Z
AddLanguage en .en
AddLanguage fr .fr

Then the document xxxx.en.Z will be treated as being a compressed English document (as will the document xxxx.Z.en).
Although the content language is reported to the client, the browser is unlikely to use this information. The AddLanguage directive
is more useful for content negotiation, where the server returns one from several documents based on the client's language
preference.

If multiple language assignments are made for the same extension, the last one encountered is the one that is used. That is, for the
case of:

 AddLanguage en .en
 AddLanguage en-uk .en
 AddLanguage en-us .en

documents with the extension ".en" would be treated as being "en-us".

The extension argument is case-insensitive, and can be specified with or without a leading dot.

See also: Files with multiple extensions
See also: mod_negotiation

AddType directive

Syntax: AddType MIME-type extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The AddType directive maps the given filename extensions onto the specified content type. MIME-type is the MIME type to use for
filenames containing extension. This mapping is added to any already in force, overriding any mappings that already exist for the
same extension. This directive can be used to add mappings not listed in the MIME types file (see the TypesConfig directive).
Example:

AddType image/gif .gif

It is recommended that new MIME types be added using the AddType directive rather than changing the TypesConfig file.

Note that, unlike the NCSA httpd, this directive cannot be used to set the type of particular files.

The extension argument is case-insensitive, and can be specified with or without a leading dot.

See also: Files with multiple extensions

DefaultLanguage directive

Syntax: DefaultLanguage MIME-lang
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_mime
Compatibility: DefaultLanguage is only available in Apache 1.3.4 and later.

Apache module mod_mime

http://httpd.apache.org/docs/mod/mod_mime.html (4 of 7) [12/05/2001 4:51:37 PM]

The DefaultLanguage directive tells Apache that all files in the directive's scope (e.g., all files covered by the current
<Directory> container) that don't have an explicit language extension (such as .fr or .de as configured by AddLanguage) should
be considered to be in the specified MIME-lang language. This allows entire directories to be marked as containing Dutch content,
for instance, without having to rename each file. Note that unlike using extensions to specify languages, DefaultLanguage can only
specify a single language.

If no DefaultLanguage directive is in force, and a file does not have any language extensions as configured by AddLanguage, then
that file will be considered to have no language attribute.

See also: mod_negotiation
See also: Files with multiple extensions

ForceType directive

Syntax: ForceType media-type
Context: directory, .htaccess
Status: Base
Module: mod_mime
Compatibility: ForceType is only available in Apache 1.1 and later.

When placed into an .htaccess file or a <Directory> or <Location> section, this directive forces all matching files to be
served as the content type given by media type. For example, if you had a directory full of GIF files, but did not want to label them
all with ".gif", you might want to use:

 ForceType image/gif

Note that this will override any filename extensions that might determine the media type.

RemoveEncoding directive

Syntax: RemoveEncoding extension [extension] ...
Context: directory, .htaccess
Status: Base
Module: mod_mime
Compatibility: RemoveEncoding is only available in Apache 1.3.13 and later.

The RemoveEncoding directive removes any encoding associations for files with the given extensions. This allows .htaccess
files in subdirectories to undo any associations inherited from parent directories or the server config files. An example of its use
might be:

/foo/.htaccess:

AddEncoding x-gzip .gz
AddType text/plain .asc
<Files *.gz.asc>
 RemoveEncoding .gz
</Files>

This will cause foo.gz to mark as being encoded with the gzip method, but foo.gz.asc as an unencoded plaintext file.

Note:RemoveEncoding directives are processed after any AddEncoding directives, so it is possible they may undo the effects of the
latter if both occur within the same directory configuration.

The extension argument is case-insensitive, and can be specified with or without a leading dot.

Apache module mod_mime

http://httpd.apache.org/docs/mod/mod_mime.html (5 of 7) [12/05/2001 4:51:37 PM]

RemoveHandler directive

Syntax: RemoveHandler extension [extension] ...
Context: directory, .htaccess
Status: Base
Module: mod_mime
Compatibility: RemoveHandler is only available in Apache 1.3.4 and later.

The RemoveHandler directive removes any handler associations for files with the given extensions. This allows .htaccess files
in subdirectories to undo any associations inherited from parent directories or the server config files. An example of its use might
be:

/foo/.htaccess:

AddHandler server-parsed .html

/foo/bar/.htaccess:

RemoveHandler .html

This has the effect of returning .html files in the /foo/bar directory to being treated as normal files, rather than as candidates for
parsing (see the mod_include module).

The extension argument is case-insensitive, and can be specified with or without a leading dot.

RemoveType directive

Syntax: RemoveType extension [extension] ...
Context: directory, .htaccess
Status: Base
Module: mod_mime
Compatibility: RemoveType is only available in Apache 1.3.13 and later.

The RemoveType directive removes any MIME type associations for files with the given extensions. This allows .htaccess files
in subdirectories to undo any associations inherited from parent directories or the server config files. An example of its use might
be:

/foo/.htaccess:

RemoveType .cgi

This will remove any special handling of .cgi files in the /foo/ directory and any beneath it, causing the files to be treated as
being of the default type.

Note:RemoveType directives are processed after any AddType directives, so it is possible they may undo the effects of the latter
if both occur within the same directory configuration.

The extension argument is case-insensitive, and can be specified with or without a leading dot.

SetHandler directive

Syntax: SetHandler handler-name
Context: directory, .htaccess
Status: Base
Module: mod_mime
Compatibility: SetHandler is only available in Apache 1.1 and later.

Apache module mod_mime

http://httpd.apache.org/docs/mod/mod_mime.html (6 of 7) [12/05/2001 4:51:37 PM]

When placed into an .htaccess file or a <Directory> or <Location> section, this directive forces all matching files to be
parsed through the handler given by handler-name. For example, if you had a directory you wanted to be parsed entirely as
imagemap rule files, regardless of extension, you might put the following into an .htaccess file in that directory:

 SetHandler imap-file

Another example: if you wanted to have the server display a status report whenever a URL of http://servername/status
was called, you might put the following into access.conf:

 <Location /status>
 SetHandler server-status
 </Location>

TypesConfig directive

Syntax: TypesConfig file-path
Default: TypesConfig conf/mime.types
Context: server config
Status: Base
Module: mod_mime

The TypesConfig directive sets the location of the MIME types configuration file. Filename is relative to the ServerRoot. This file
sets the default list of mappings from filename extensions to content types; changing this file is not recommended. Use the AddType
directive instead. The file contains lines in the format of the arguments to an AddType command:

MIME-type extension extension ...

The extensions are lower-cased. Blank lines, and lines beginning with a hash character (`#') are ignored.

Apache HTTP Server Version 1.3

Apache module mod_mime

http://httpd.apache.org/docs/mod/mod_mime.html (7 of 7) [12/05/2001 4:51:37 PM]

http://httpd.apache.org/docs/mod/

Module mod_mime_magic

This module provides for determining the MIME type of a file by looking at a few bytes of its contents.

Status: Extension
Source File: mod_mime_magic.c
Module Identifier: mime_magic_module

Summary

This module determines the MIME type of files in the same way the Unix file(1) command works: it looks at the first few bytes of
the file. It is intended as a "second line of defense" for cases that mod_mime can't resolve. To assure that mod_mime gets first try at
determining a file's MIME type, be sure to list mod_mime_magic before mod_mime in the configuration.

This module is derived from a free version of the file(1) command for Unix, which uses "magic numbers" and other hints from
a file's contents to figure out what the contents are. This module is active only if the magic file is specified by the
MimeMagicFile directive.

Directives

MimeMagicFile●

Format of the Magic File

The contents of the file are plain ASCII text in 4-5 columns. Blank lines are allowed but ignored. Commented lines use a hash mark
"#". The remaining lines are parsed for the following columns:

Column Description

1 byte number to begin checking from
">" indicates a dependency upon the previous non-">" line

2 type of data to match

byte single character

short machine-order 16-bit integer

long machine-order 32-bit integer

string arbitrary-length string

date long integer date (seconds since Unix epoch/1970)

beshort big-endian 16-bit integer

belong big-endian 32-bit integer

bedate big-endian 32-bit integer date

leshort little-endian 16-bit integer

lelong little-endian 32-bit integer

ledate little-endian 32-bit integer date

3 contents of data to match

Apache module mod_mime_magic

http://httpd.apache.org/docs/mod/mod_mime_magic.html (1 of 4) [12/05/2001 4:51:39 PM]

4 MIME type if matched

5 MIME encoding if matched (optional)

For example, the following magic file lines would recognize some audio formats.

Sun/NeXT audio data
0 string .snd
>12 belong 1 audio/basic
>12 belong 2 audio/basic
>12 belong 3 audio/basic
>12 belong 4 audio/basic
>12 belong 5 audio/basic
>12 belong 6 audio/basic
>12 belong 7 audio/basic
>12 belong 23 audio/x-adpcm

Or these would recognize the difference between "*.doc" files containing Microsoft Word or FrameMaker documents. (These are
incompatible file formats which use the same file suffix.)

Frame
0 string \<MakerFile application/x-frame
0 string \<MIFFile application/x-frame
0 string \<MakerDictionary application/x-frame
0 string \<MakerScreenFon application/x-frame
0 string \<MML application/x-frame
0 string \<Book application/x-frame
0 string \<Maker application/x-frame

MS-Word
0 string \376\067\0\043 application/msword
0 string \320\317\021\340\241\261 application/msword
0 string \333\245-\0\0\0 application/msword

An optional MIME encoding can be included as a fifth column. For example, this can recognize gzipped files and set the encoding
for them.

gzip (GNU zip, not to be confused with [Info-ZIP/PKWARE] zip archiver)
0 string \037\213 application/octet-stream x-gzip

Performance Issues

This module is not for every system. If your system is barely keeping up with its load or if you're performing a web server
benchmark, you may not want to enable this because the processing is not free.

However, an effort was made to improve the performance of the original file(1) code to make it fit in a busy web server. It was
designed for a server where there are thousands of users who publish their own documents. This is probably very common on
intranets. Many times, it's helpful if the server can make more intelligent decisions about a file's contents than the file name allows
...even if just to reduce the "why doesn't my page work" calls when users improperly name their own files. You have to decide if the
extra work suits your environment.

When compiling an Apache server, this module should be at or near the top of the list of modules in the Configuration file. The
modules are listed in increasing priority so that will mean this one is used only as a last resort, just like it was designed to.

Notes

The following notes apply to the mod_mime_magic module and are included here for compliance with contributors' copyright
restrictions that require their acknowledgment.

Apache module mod_mime_magic

http://httpd.apache.org/docs/mod/mod_mime_magic.html (2 of 4) [12/05/2001 4:51:39 PM]

/*
 * mod_mime_magic: MIME type lookup via file magic numbers
 * Copyright (c) 1996-1997 Cisco Systems, Inc.
 *
 * This software was submitted by Cisco Systems to the Apache Group in July
 * 1997. Future revisions and derivatives of this source code must
 * acknowledge Cisco Systems as the original contributor of this module.
 * All other licensing and usage conditions are those of the Apache Group.
 *
 * Some of this code is derived from the free version of the file command
 * originally posted to comp.sources.unix. Copyright info for that program
 * is included below as required.
 * ---
 * - Copyright (c) Ian F. Darwin, 1987. Written by Ian F. Darwin.
 *
 * This software is not subject to any license of the American Telephone and
 * Telegraph Company or of the Regents of the University of California.
 *
 * Permission is granted to anyone to use this software for any purpose on any
 * computer system, and to alter it and redistribute it freely, subject to
 * the following restrictions:
 *
 * 1. The author is not responsible for the consequences of use of this
 * software, no matter how awful, even if they arise from flaws in it.
 *
 * 2. The origin of this software must not be misrepresented, either by
 * explicit claim or by omission. Since few users ever read sources, credits
 * must appear in the documentation.
 *
 * 3. Altered versions must be plainly marked as such, and must not be
 * misrepresented as being the original software. Since few users ever read
 * sources, credits must appear in the documentation.
 *
 * 4. This notice may not be removed or altered.
 * ---
 *
 * For compliance with Mr Darwin's terms: this has been very significantly
 * modified from the free "file" command.
 * - all-in-one file for compilation convenience when moving from one
 * version of Apache to the next.
 * - Memory allocation is done through the Apache API's pool structure.
 * - All functions have had necessary Apache API request or server
 * structures passed to them where necessary to call other Apache API
 * routines. (i.e., usually for logging, files, or memory allocation in
 * itself or a called function.)
 * - struct magic has been converted from an array to a single-ended linked
 * list because it only grows one record at a time, it's only accessed
 * sequentially, and the Apache API has no equivalent of realloc().
 * - Functions have been changed to get their parameters from the server
 * configuration instead of globals. (It should be reentrant now but has
 * not been tested in a threaded environment.)
 * - Places where it used to print results to stdout now saves them in a
 * list where they're used to set the MIME type in the Apache request
 * record.
 * - Command-line flags have been removed since they will never be used here.
 *
 */

Apache module mod_mime_magic

http://httpd.apache.org/docs/mod/mod_mime_magic.html (3 of 4) [12/05/2001 4:51:39 PM]

MimeMagicFile

Syntax: MimeMagicFile file-path
Default: none
Context: server config, virtual host
Status: Extension
Module: mod_mime_magic

The MimeMagicFile directive can be used to enable this module, the default file is distributed at conf/magic. Non-rooted
paths are relative to the ServerRoot. Virtual hosts will use the same file as the main server unless a more specific setting is used, in
which case the more specific setting overrides the main server's file.

Apache module mod_mime_magic

http://httpd.apache.org/docs/mod/mod_mime_magic.html (4 of 4) [12/05/2001 4:51:39 PM]

Apache HTTP Server Version 1.3

Module mod_mmap_static

This module provides mmap()ing of a statically configured list of frequently requested but not changed files.

Status: Experimental
Source File: mod_mmap_static.c
Module Identifier: mmap_static_module
Compatibility: Available in Apache 1.3 and later.

Summary

This is an experimental module and should be used with care. You can easily create a broken site using this module, read this
document carefully. mod_mmap_static maps a list of statically configured files (via MMapFile directives in the main server
configuration) into memory through the system call mmap(). This system call is available on most modern Unix derivates, but not
on all. There are sometimes system-specific limits on the size and number of files that can be mmap()d, experimentation is probably
the easiest way to find out.

This mmap()ing is done once at server start or restart, only. So whenever one of the mapped files changes on the filesystem you
have to restart the server by at least sending it a HUP or USR1 signal (see the Stopping and Restarting documentation). To reiterate
that point: if the files are modified in place without restarting the server you may end up serving requests that are completely bogus.
You should update files by unlinking the old copy and putting a new copy in place. Most tools such as rdist and mv do this. The
reason why this modules doesn't take care of changes to the files is that this check would need an extra stat() every time which is
a waste and against the intent of I/O reduction.

Directives

MMapFile●

MMapFile directive

Syntax: MMapFile filename [filename] ...
Default: None
Context: server-config
Override: Not applicable
Status: Experimental
Module: mod_mmap_static
Compatibility: Only available in Apache 1.3 or later

The MMapFile directive maps one or more files (given as whitespace separated arguments) into memory at server startup time.
They are automatically unmapped on a server shutdown. When the files have changed on the filesystem at least a HUP or USR1
signal should be send to the server to re-mmap them.

Be careful with the filename arguments: They have to literally match the filesystem path Apache's URL-to-filename translation
handlers create. We cannot compare inodes or other stuff to match paths through symbolic links etc. because that again would cost
extra stat() system calls which is not acceptable. This module may or may not work with filenames rewritten by mod_alias or

Apache module mod_mmap_static

http://httpd.apache.org/docs/mod/mod_mmap_static.html (1 of 2) [12/05/2001 4:51:41 PM]

mod_rewrite... it is an experiment after all.

Notice: You cannot use this for speeding up CGI programs or other files which are served by special content handlers. It can only be
used for regular files which are usually served by the Apache core content handler.

Example:

 MMapFile /usr/local/apache/htdocs/index.html

Note: don't bother asking for a for a MMapDir directive which recursively maps all the files in a directory. Use Unix the way it was
meant to be used. For example, see the Include directive, and consider this command:

 find /www/htdocs -type f -print \
 | sed -e 's/.*/mmapfile &/' > /www/conf/mmap.conf

Apache HTTP Server Version 1.3

Apache module mod_mmap_static

http://httpd.apache.org/docs/mod/mod_mmap_static.html (2 of 2) [12/05/2001 4:51:41 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_negotiation

This module provides for content negotiation.

Status: Base
Source File: mod_negotiation.c
Module Identifier: negotiation_module

Summary

Content negotiation, or more accurately content selection, is the selection of the document that best matches the clients capabilities,
from one of several available documents. There are two implementations of this.

A type map (a file with the handler type-map) which explicitly lists the files containing the variants.●

A MultiViews search (enabled by the MultiViews Option, where the server does an implicit filename pattern match, and
choose from amongst the results.

●

Directives

CacheNegotiatedDocs●

LanguagePriority●

See also: DefaultLanguage, AddEncoding, AddLanguage, AddType, and Options.

Type maps

A type map has the same format as RFC822 mail headers. It contains document descriptions separated by blank lines, with lines
beginning with a hash character ('#') treated as comments. A document description consists of several header records; records may
be continued on multiple lines if the continuation lines start with spaces. The leading space will be deleted and the lines
concatenated. A header record consists of a keyword name, which always ends in a colon, followed by a value. Whitespace is
allowed between the header name and value, and between the tokens of value. The headers allowed are:

Content-Encoding:

The encoding of the file. Apache only recognizes encodings that are defined by an AddEncoding directive. This normally
includes the encodings x-compress for compress'd files, and x-gzip for gzip'd files. The x- prefix is ignored for
encoding comparisons.

Content-Language:

The language of the variant, as an Internet standard language tag (RFC 1766). An example is en, meaning English.

Content-Length:

The length of the file, in bytes. If this header is not present, then the actual length of the file is used.

Content-Type:

The MIME media type of the document, with optional parameters. Parameters are separated from the media type and from
one another by a semi-colon, with a syntax of name=value. Common parameters include:

level

Apache module mod_negotiation

http://httpd.apache.org/docs/mod/mod_negotiation.html (1 of 3) [12/05/2001 4:51:42 PM]

an integer specifying the version of the media type. For text/html this defaults to 2, otherwise 0.

qs

a floating-point number with a value in the range 0.0 to 1.0, indicating the relative 'quality' of this variant compared
to the other available variants, independent of the client's capabilities. For example, a jpeg file is usually of higher
source quality than an ascii file if it is attempting to represent a photograph. However, if the resource being
represented is ascii art, then an ascii file would have a higher source quality than a jpeg file. All qs values are
therefore specific to a given resource.

Example:

Content-Type: image/jpeg; qs=0.8

URI:

The path to the file containing this variant, relative to the map file.

MultiViews

A MultiViews search is enabled by the MultiViews Option. If the server receives a request for /some/dir/foo and
/some/dir/foo does not exist, then the server reads the directory looking for all files named foo.*, and effectively fakes up a
type map which names all those files, assigning them the same media types and content-encodings it would have if the client had
asked for one of them by name. It then chooses the best match to the client's requirements, and returns that document.

CacheNegotiatedDocs directive

Syntax: CacheNegotiatedDocs
Context: server config
Status: Base
Module: mod_negotiation
Compatibility: CacheNegotiatedDocs is only available in Apache 1.1 and later.

If set, this directive allows content-negotiated documents to be cached by proxy servers. This could mean that clients behind those
proxys could retrieve versions of the documents that are not the best match for their abilities, but it will make caching more
efficient.

This directive only applies to requests which come from HTTP/1.0 browsers. HTTP/1.1 provides much better control over the
caching of negotiated documents, and this directive has no effect in responses to HTTP/1.1 requests.

LanguagePriority directive

Syntax: LanguagePriority MIME-lang [MIME-lang] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_negotiation

The LanguagePriority sets the precedence of language variants for the case where the client does not express a preference, when
handling a MultiViews request. The list of MIME-lang are in order of decreasing preference. Example:

LanguagePriority en fr de

For a request for foo.html, where foo.html.fr and foo.html.de both existed, but the browser did not express a language
preference, then foo.html.fr would be returned.

Note that this directive only has an effect if a 'best' language cannot be determined by any other means. Correctly implemented
HTTP/1.1 requests will mean this directive has no effect.

Apache module mod_negotiation

http://httpd.apache.org/docs/mod/mod_negotiation.html (2 of 3) [12/05/2001 4:51:42 PM]

See also: DefaultLanguage and AddLanguage

Apache HTTP Server Version 1.3

Apache module mod_negotiation

http://httpd.apache.org/docs/mod/mod_negotiation.html (3 of 3) [12/05/2001 4:51:42 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Apache module mod_proxy

This module provides for an HTTP 1.0 caching proxy server.

Status: Extension
Source File: mod_proxy.c
Module Identifier: proxy_module
Compatibility: Available in Apache 1.1 and later.

Summary

This module implements a proxy/cache for Apache. It implements proxying capability for FTP, CONNECT (for SSL), HTTP/0.9,
and HTTP/1.0. The module can be configured to connect to other proxy modules for these and other protocols.

This module was experimental in Apache 1.1.x. As of Apache 1.2, mod_proxy stability is greatly improved.

Directives

ProxyRequests●

ProxyRemote●

ProxyPass●

ProxyPassReverse●

ProxyBlock●

AllowCONNECT●

ProxyReceiveBufferSize●

NoProxy●

ProxyDomain●

ProxyVia●

CacheRoot●

CacheSize●

CacheMaxExpire●

CacheDefaultExpire●

CacheLastModifiedFactor●

CacheGcInterval●

CacheDirLevels●

CacheDirLength●

CacheForceCompletion●

Apache module mod_proxy

http://httpd.apache.org/docs/mod/mod_proxy.html (1 of 11) [12/05/2001 4:51:47 PM]

NoCache●

Common configuration topics

Controlling access to your proxy●

Using Netscape hostname shortcuts●

Why doesn't file type xxx download via FTP?●

Why does Apache start more slowly when using the proxy module?●

Can I use the Apache proxy module with my SOCKS proxy?●

What other functions are useful for an intranet proxy server?●

Controlling access to your proxy

You can control who can access your proxy via the normal <Directory> control block using the following example:

<Directory proxy:*>
Order Deny,Allow
Deny from [machines you'd like *not* to allow by IP address or name]
Allow from [machines you'd like to allow by IP address or name]
</Directory>

A <Files> block will also work, and is the only method known to work for all possible URLs in Apache versions earlier than
1.2b10.

Using Netscape hostname shortcuts

There is an optional patch to the proxy module to allow Netscape-like hostname shortcuts to be used. It's available from the
contrib/patches/1.2 directory on the Apache Web site.

Why doesn't file type xxx download via FTP?

You probably don't have that particular file type defined as application/octet-stream in your proxy's mime.types configuration file.
A useful line can be

application/octet-stream bin dms lha lzh exe class tgz taz

How can I force an FTP ASCII download of File xxx?

In the rare situation where you must download a specific file using the FTP ASCII transfer method (while the default transfer is in
binary mode), you can override mod_proxy's default by suffixing the request with ;type=a to force an ASCII transfer.

Why does Apache start more slowly when using the proxy module?

If you're using the ProxyBlock or NoCache directives, hostnames' IP addresses are looked up and cached during startup for later
match test. This may take a few seconds (or more) depending on the speed with which the hostname lookups occur.

Apache module mod_proxy

http://httpd.apache.org/docs/mod/mod_proxy.html (2 of 11) [12/05/2001 4:51:47 PM]

http://www.apache.org/dist/httpd/contrib/patches/1.2/netscapehost.patch

Can I use the Apache proxy module with my SOCKS proxy?

Yes. Just build Apache with the rule SOCKS4=yes in your Configuration file, and follow the instructions there. SOCKS5
capability can be added in a similar way (there's no SOCKS5 rule yet), so use the EXTRA_LDFLAGS definition, or build Apache
normally and run it with the runsocks wrapper provided with SOCKS5, if your OS supports dynamically linked libraries.

Some users have reported problems when using SOCKS version 4.2 on Solaris. The problem was solved by upgrading to SOCKS
4.3.

Remember that you'll also have to grant access to your Apache proxy machine by permitting connections on the appropriate ports in
your SOCKS daemon's configuration.

What other functions are useful for an intranet proxy server?

An Apache proxy server situated in an intranet needs to forward external requests through the company's firewall. However, when it
has to access resources within the intranet, it can bypass the firewall when accessing hosts. The NoProxy directive is useful for
specifying which hosts belong to the intranet and should be accessed directly.

Users within an intranet tend to omit the local domain name from their WWW requests, thus requesting "http://somehost/" instead
of "http://somehost.my.dom.ain/". Some commercial proxy servers let them get away with this and simply serve the request,
implying a configured local domain. When the ProxyDomain directive is used and the server is configured for proxy service,
Apache can return a redirect response and send the client to the correct, fully qualified, server address. This is the preferred method
since the user's bookmark files will then contain fully qualified hosts.

ProxyRequests directive

Syntax: ProxyRequests on|off
Default: ProxyRequests Off
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: ProxyRequests is only available in Apache 1.1 and later.

This allows or prevents Apache from functioning as a proxy server. Setting ProxyRequests to 'off' does not disable use of the
ProxyPass directive.

ProxyRemote directive

Syntax: ProxyRemote match remote-server
Default: None
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: ProxyRemote is only available in Apache 1.1 and later.

This defines remote proxies to this proxy. match is either the name of a URL-scheme that the remote server supports, or a partial
URL for which the remote server should be used, or '*' to indicate the server should be contacted for all requests. remote-server is a
partial URL for the remote server. Syntax:

 remote-server = protocol://hostname[:port]

Apache module mod_proxy

http://httpd.apache.org/docs/mod/mod_proxy.html (3 of 11) [12/05/2001 4:51:47 PM]

protocol is the protocol that should be used to communicate with the remote server; only "http" is supported by this module.

Example:

 ProxyRemote http://goodguys.com/ http://mirrorguys.com:8000
 ProxyRemote * http://cleversite.com
 ProxyRemote ftp http://ftpproxy.mydomain.com:8080

In the last example, the proxy will forward FTP requests, encapsulated as yet another HTTP proxy request, to another proxy which
can handle them.

ProxyPass directive

Syntax: ProxyPass path url
Default: None
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: ProxyPass is only available in Apache 1.1 and later.

This directive allows remote servers to be mapped into the space of the local server; the local server does not act as a proxy in the
conventional sense, but appears to be a mirror of the remote server. path is the name of a local virtual path; url is a partial URL for
the remote server.

Suppose the local server has address http://wibble.org/; then

 ProxyPass /mirror/foo/ http://foo.com/

will cause a local request for the <http://wibble.org/mirror/foo/bar> to be internally converted into a proxy request to
<http://foo.com/bar>.

ProxyPassReverse directive

Syntax: ProxyPassReverse path url
Default: None
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: ProxyPassReverse is only available in Apache 1.3b6 and later.

This directive lets Apache adjust the URL in the Location header on HTTP redirect responses. For instance this is essential when
Apache is used as a reverse proxy to avoid by-passing the reverse proxy because of HTTP redirects on the backend servers which
stay behind the reverse proxy.

path is the name of a local virtual path.
url is a partial URL for the remote server - the same way they are used for the ProxyPass directive.

Example:
Suppose the local server has address http://wibble.org/; then

 ProxyPass /mirror/foo/ http://foo.com/
 ProxyPassReverse /mirror/foo/ http://foo.com/

will not only cause a local request for the <http://wibble.org/mirror/foo/bar> to be internally converted into a proxy request to

Apache module mod_proxy

http://httpd.apache.org/docs/mod/mod_proxy.html (4 of 11) [12/05/2001 4:51:47 PM]

<http://foo.com/bar> (the functionality ProxyPass provides here). It also takes care of redirects the server foo.com sends: when
http://foo.com/bar is redirected by him to http://foo.com/quux Apache adjusts this to http://wibble.org/mirror/foo/quux before
forwarding the HTTP redirect response to the client.

Note that this ProxyPassReverse directive can also be used in conjunction with the proxy pass-through feature ("RewriteRule ...
[P]") from mod_rewrite because its doesn't depend on a corresponding ProxyPass directive.

AllowCONNECT directive

Syntax: AllowCONNECT port [port] ...
Default: AllowCONNECT 443 563
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: AllowCONNECT is only available in Apache 1.3.2 and later.

The AllowCONNECT directive specifies a list of port numbers to which the proxy CONNECT method may connect. Today's
browsers use this method when a https connection is requested and proxy tunneling over http is in effect.
By default, only the default https port (443) and the default snews port (563) are enabled. Use the AllowCONNECT directive to
overrride this default and allow connections to the listed ports only.

ProxyBlock directive

Syntax: ProxyBlock *|word|host|domain [word|host|domain] ...
Default: None
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: ProxyBlock is only available in Apache 1.2 and later.

The ProxyBlock directive specifies a list of words, hosts and/or domains, separated by spaces. HTTP, HTTPS, and FTP document
requests to sites whose names contain matched words, hosts or domains are blocked by the proxy server. The proxy module will
also attempt to determine IP addresses of list items which may be hostnames during startup, and cache them for match test as well.
Example:

 ProxyBlock joes-garage.com some-host.co.uk rocky.wotsamattau.edu

'rocky.wotsamattau.edu' would also be matched if referenced by IP address.

Note that 'wotsamattau' would also be sufficient to match 'wotsamattau.edu'.

Note also that

ProxyBlock *

blocks connections to all sites.

Apache module mod_proxy

http://httpd.apache.org/docs/mod/mod_proxy.html (5 of 11) [12/05/2001 4:51:47 PM]

ProxyReceiveBufferSize directive

Syntax: ProxyReceiveBufferSize bytes
Default: None
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: ProxyReceiveBufferSize is only available in Apache 1.3 and later.

The ProxyReceiveBufferSize directive specifies an explicit network buffer size for outgoing HTTP and FTP connections, for
increased throughput. It has to be greater than 512 or set to 0 to indicate that the system's default buffer size should be used.

Example:

 ProxyReceiveBufferSize 2048

NoProxy directive

Syntax: NoProxy Domain|SubNet|IpAddr|Hostname [Domain|SubNet|IpAddr|Hostname] ...
Default: None
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: NoProxy is only available in Apache 1.3 and later.

This directive is only useful for Apache proxy servers within intranets. The NoProxy directive specifies a list of subnets, IP
addresses, hosts and/or domains, separated by spaces. A request to a host which matches one or more of these is always served
directly, without forwarding to the configured ProxyRemote proxy server(s).

Example:

 ProxyRemote * http://firewall.mycompany.com:81
 NoProxy .mycompany.com 192.168.112.0/21

The arguments to the NoProxy directive are one of the following type list:

Domain

A Domain is a partially qualified DNS domain name, preceded by a period. It represents a list of hosts which logically
belong to the same DNS domain or zone (i.e., the suffixes of the hostnames are all ending in Domain).
Examples: .com .apache.org.
To distinguish Domains from Hostnames (both syntactically and semantically; a DNS domain can have a DNS A record,
too!), Domains are always written with a leading period.
Note: Domain name comparisons are done without regard to the case, and Domains are always assumed to be anchored in
the root of the DNS tree, therefore two domains .MyDomain.com and .mydomain.com. (note the trailing period) are
considered equal. Since a domain comparison does not involve a DNS lookup, it is much more efficient than subnet
comparison.

SubNet

A SubNet is a partially qualified internet address in numeric (dotted quad) form, optionally followed by a slash and the
netmask, specified as the number of significant bits in the SubNet. It is used to represent a subnet of hosts which can be
reached over a common network interface. In the absence of the explicit net mask it is assumed that omitted (or zero
valued) trailing digits specify the mask. (In this case, the netmask can only be multiples of 8 bits wide.)
Examples:

192.168 or 192.168.0.0

Apache module mod_proxy

http://httpd.apache.org/docs/mod/mod_proxy.html (6 of 11) [12/05/2001 4:51:47 PM]

the subnet 192.168.0.0 with an implied netmask of 16 valid bits (sometimes used in the netmask form 255.255.0.0)

192.168.112.0/21

the subnet 192.168.112.0/21 with a netmask of 21 valid bits (also used in the form 255.255.248.0)

As a degenerate case, a SubNet with 32 valid bits is the equivalent to an IPAddr, while a SubNet with zero valid bits (e.g.,
0.0.0.0/0) is the same as the constant _Default_, matching any IP address.

IPAddr

A IPAddr represents a fully qualified internet address in numeric (dotted quad) form. Usually, this address represents a host,
but there need not necessarily be a DNS domain name connected with the address.
Example: 192.168.123.7
Note: An IPAddr does not need to be resolved by the DNS system, so it can result in more effective apache performance.

See Also: DNS Issues

Hostname

A Hostname is a fully qualified DNS domain name which can be resolved to one or more IPAddrs via the DNS domain
name service. It represents a logical host (in contrast to Domains, see above) and must be resolvable to at least one IPAddr
(or often to a list of hosts with different IPAddr's).
Examples: prep.ai.mit.edu www.apache.org.
Note: In many situations, it is more effective to specify an IPAddr in place of a Hostname since a DNS lookup can be
avoided. Name resolution in Apache can take a remarkable deal of time when the connection to the name server uses a slow
PPP link.
Note: Hostname comparisons are done without regard to the case, and Hostnames are always assumed to be anchored in the
root of the DNS tree, therefore two hosts WWW.MyDomain.com and www.mydomain.com. (note the trailing period) are
considered equal.

See Also: DNS Issues

ProxyDomain directive

Syntax: ProxyDomain Domain
Default: None
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: ProxyDomain is only available in Apache 1.3 and later.

This directive is only useful for Apache proxy servers within intranets. The ProxyDomain directive specifies the default domain
which the apache proxy server will belong to. If a request to a host without a domain name is encountered, a redirection response to
the same host with the configured Domain appended will be generated.

Example:

 ProxyRemote * http://firewall.mycompany.com:81
 NoProxy .mycompany.com 192.168.112.0/21
 ProxyDomain .mycompany.com

ProxyVia directive

Syntax: ProxyVia on|off|full|block
Default: ProxyVia off
Context: server config, virtual host

Apache module mod_proxy

http://httpd.apache.org/docs/mod/mod_proxy.html (7 of 11) [12/05/2001 4:51:47 PM]

Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: ProxyVia is only available in Apache 1.3.2 and later.

This directive controls the use of the Via: HTTP header by the proxy. Its intended use is to control the flow of of proxy requests
along a chain of proxy servers. See RFC2068 (HTTP/1.1) for an explanation of Via: header lines.

If set to off, which is the default, no special processing is performed. If a request or reply contains a Via: header, it is passed
through unchanged.

●

If set to on, each request and reply will get a Via: header line added for the current host.●

If set to full, each generated Via: header line will additionally have the Apache server version shown as a Via: comment
field.

●

If set to block, every proxy request will have all its Via: header lines removed. No new Via: header will be generated.●

CacheForceCompletion directive

Syntax: CacheForceCompletion percentage
Default: 90
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: CacheForceCompletion is only available in Apache 1.3.1 and later.

If an http transfer that is being cached is cancelled, the proxy module will complete the transfer to cache if more than the percentage
specified has already been transferred.

This is a percentage, and must be a number between 1 and 100, or 0 to use the default. 100 will cause a document to be cached only
if the transfer was allowed to complete. A number between 60 and 90 is recommended.

CacheRoot directive

Syntax: CacheRoot directory
Default: None
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: CacheRoot is only available in Apache 1.1 and later.

Sets the name of the directory to contain cache files; this must be writable by the httpd server. (see the User directive).
Setting CacheRoot enables proxy cacheing; without defining a CacheRoot, proxy functionality will be available if
ProxyRequests are set to On, but no cacheing will be available.

CacheSize directive

Syntax: CacheSize kilobytes
Default: CacheSize 5
Context: server config, virtual host

Apache module mod_proxy

http://httpd.apache.org/docs/mod/mod_proxy.html (8 of 11) [12/05/2001 4:51:47 PM]

Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: CacheSize is only available in Apache 1.1 and later.

Sets the desired space usage of the cache, in KB (1024-byte units). Although usage may grow above this setting, the garbage
collection will delete files until the usage is at or below this setting.
Depending on the expected proxy traffic volume and CacheGcInterval, use a value which is at least 20 to 40 % lower than the
available space.

CacheGcInterval directive

Syntax: CacheGcInterval hours
Default: None
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: CacheGcinterval is only available in Apache 1.1 and later.

Check the cache after the specified number of hours, and delete files if the space usage is greater than that set by CacheSize. Note
that hours accepts a float value, you could for example use CacheGcInterval 1.5 to check the cache every 90 minutes. (If
unset, no garbage collection will be performed, and the cache will grow indefinitely.) Note also that the larger the
CacheGcInterval, the more extra space beyond the configured CacheSize will be needed for the cache between garbage
collections.

CacheMaxExpire directive

Syntax: CacheMaxExpire hours
Default: CacheMaxExpire 24
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: CacheMaxExpire is only available in Apache 1.1 and later.

Specifies the maximum number of hours for which cachable HTTP documents will be retained without checking the origin server.
Thus, documents will be out of date at most this number of hours This restriction is enforced even if an expiry date was supplied
with the document.

CacheLastModifiedFactor directive

Syntax: CacheLastModifiedFactor factor
Default: CacheLastModifiedFactor 0.1
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: CacheLastModifiedFactor is only available in Apache 1.1 and later.

If the origin HTTP server did not supply an expiry date for the document, then estimate one using the formula

Apache module mod_proxy

http://httpd.apache.org/docs/mod/mod_proxy.html (9 of 11) [12/05/2001 4:51:47 PM]

 expiry-period = time-since-last-modification * factor

For example, if the document was last modified 10 hours ago, and factor is 0.1, then the expiry period will be set to 10*0.1 = 1
hour.

If the expiry-period would be longer than that set by CacheMaxExpire, then the latter takes precedence.

CacheDirLevels directive

Syntax: CacheDirLevels levels
Default: CacheDirLevels 3
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: CacheDirLevels is only available in Apache 1.1 and later.

CacheDirLevels sets the number of levels of subdirectories in the cache. Cached data will be saved this many directory levels below
CacheRoot.

CacheDirLength directive

Syntax: CacheDirLength length
Default: CacheDirLength 1
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: CacheDirLength is only available in Apache 1.1 and later.

CacheDirLength sets the number of characters in proxy cache subdirectory names.

CacheDefaultExpire directive

Syntax: CacheDefaultExpire hours
Default: CacheDefaultExpire 1
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: CacheDefaultExpire is only available in Apache 1.1 and later.

If the document is fetched via a protocol that does not support expiry times, then use the specified number of hours as the expiry
time. CacheMaxExpire does not override this setting.

Apache module mod_proxy

http://httpd.apache.org/docs/mod/mod_proxy.html (10 of 11) [12/05/2001 4:51:47 PM]

NoCache directive

Syntax: NoCache *|word|host|domain [word|host|domain] ...
Default: None
Context: server config, virtual host
Override: Not applicable
Status: Base
Module: mod_proxy
Compatibility: NoCache is only available in Apache 1.1 and later.

The NoCache directive specifies a list of words, hosts and/or domains, separated by spaces. HTTP and non-passworded FTP
documents from matched words, hosts or domains are not cached by the proxy server. The proxy module will also attempt to
determine IP addresses of list items which may be hostnames during startup, and cache them for match test as well. Example:

 NoCache joes-garage.com some-host.co.uk bullwinkle.wotsamattau.edu

'bullwinkle.wotsamattau.edu' would also be matched if referenced by IP address.

Note that 'wotsamattau' would also be sufficient to match 'wotsamattau.edu'.

Note also that

NoCache *

disables caching completely.

Apache HTTP Server Version 1.3

Apache module mod_proxy

http://httpd.apache.org/docs/mod/mod_proxy.html (11 of 11) [12/05/2001 4:51:47 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_rewrite
URL Rewriting Engine

This module provides a rule-based rewriting engine to rewrite requested URLs on the fly.

Status: Extension
Source File: mod_rewrite.c
Module Identifier: rewrite_module
Compatibility: Available in Apache 1.2 and later.

Summary

``The great thing about mod_rewrite is it gives you all the
configurability and flexibility of Sendmail. The downside to
mod_rewrite is that it gives you all the configurability and flexibility
of Sendmail.''

-- Brian Behlendorf
Apache Group

`` Despite the tons of examples and docs, mod_rewrite is voodoo.
Damned cool voodoo, but still voodoo. ''

-- Brian Moore
bem@news.cmc.net

Welcome to mod_rewrite, the Swiss Army Knife of URL manipulation!

This module uses a rule-based rewriting engine (based on a regular-expression parser) to rewrite requested URLs on
the fly. It supports an unlimited number of rules and an unlimited number of attached rule conditions for each rule to
provide a really flexible and powerful URL manipulation mechanism. The URL manipulations can depend on various
tests, for instance server variables, environment variables, HTTP headers, time stamps and even external database
lookups in various formats can be used to achieve a really granular URL matching.

This module operates on the full URLs (including the path-info part) both in per-server context (httpd.conf) and
per-directory context (.htaccess) and can even generate query-string parts on result. The rewritten result can lead
to internal sub-processing, external request redirection or even to an internal proxy throughput.

But all this functionality and flexibility has its drawback: complexity. So don't expect to understand this entire module
in just one day.

This module was invented and originally written in April 1996
and gifted exclusively to the The Apache Group in July 1997 by

Ralf S. Engelschall
rse@engelschall.com
www.engelschall.com

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (1 of 19) [12/05/2001 4:51:57 PM]

http://www.engelschall.com/
mailto:rse@engelschall.com
http://www.engelschall.com/

Table Of Contents

Internal Processing

API Phases●

Ruleset Processing●

Regex Back-Reference Availability●

Configuration Directives

RewriteEngine●

RewriteOptions●

RewriteLog●

RewriteLogLevel●

RewriteLock●

RewriteMap●

RewriteBase●

RewriteCond●

RewriteRule●

Miscellaneous

Environment Variables●

Practical Solutions●

Internal Processing

The internal processing of this module is very complex but needs to be explained once even to the average user to
avoid common mistakes and to let you exploit its full functionality.

API Phases

First you have to understand that when Apache processes a HTTP request it does this in phases. A hook for each of
these phases is provided by the Apache API. Mod_rewrite uses two of these hooks: the URL-to-filename translation
hook which is used after the HTTP request has been read but before any authorization starts and the Fixup hook which
is triggered after the authorization phases and after the per-directory config files (.htaccess) have been read, but
before the content handler is activated.

So, after a request comes in and Apache has determined the corresponding server (or virtual server) the rewriting
engine starts processing of all mod_rewrite directives from the per-server configuration in the URL-to-filename phase.
A few steps later when the final data directories are found, the per-directory configuration directives of mod_rewrite
are triggered in the Fixup phase. In both situations mod_rewrite rewrites URLs either to new URLs or to filenames,
although there is no obvious distinction between them. This is a usage of the API which was not intended to be this
way when the API was designed, but as of Apache 1.x this is the only way mod_rewrite can operate. To make this
point more clear remember the following two points:

Although mod_rewrite rewrites URLs to URLs, URLs to filenames and even filenames to filenames, the API
currently provides only a URL-to-filename hook. In Apache 2.0 the two missing hooks will be added to make
the processing more clear. But this point has no drawbacks for the user, it is just a fact which should be
remembered: Apache does more in the URL-to-filename hook than the API intends for it.

1.

Unbelievably mod_rewrite provides URL manipulations in per-directory context, i.e., within .htaccess2.

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (2 of 19) [12/05/2001 4:51:57 PM]

files, although these are reached a very long time after the URLs have been translated to filenames. It has to be
this way because .htaccess files live in the filesystem, so processing has already reached this stage. In
other words: According to the API phases at this time it is too late for any URL manipulations. To overcome
this chicken and egg problem mod_rewrite uses a trick: When you manipulate a URL/filename in
per-directory context mod_rewrite first rewrites the filename back to its corresponding URL (which is usually
impossible, but see the RewriteBase directive below for the trick to achieve this) and then initiates a new
internal sub-request with the new URL. This restarts processing of the API phases.

Again mod_rewrite tries hard to make this complicated step totally transparent to the user, but you should
remember here: While URL manipulations in per-server context are really fast and efficient, per-directory
rewrites are slow and inefficient due to this chicken and egg problem. But on the other hand this is the only
way mod_rewrite can provide (locally restricted) URL manipulations to the average user.

Don't forget these two points!

Ruleset Processing

Now when mod_rewrite is triggered in these two API phases, it reads the configured rulesets from its configuration
structure (which itself was either created on startup for per-server context or during the directory walk of the Apache
kernel for per-directory context). Then the URL rewriting engine is started with the contained ruleset (one or more
rules together with their conditions). The operation of the URL rewriting engine itself is exactly the same for both
configuration contexts. Only the final result processing is different.

The order of rules in the ruleset is important because the rewriting engine processes them in a special (and not very
obvious) order. The rule is this: The rewriting engine loops through the ruleset rule by rule (RewriteRule
directives) and when a particular rule matches it optionally loops through existing corresponding conditions
(RewriteCond directives). For historical reasons the conditions are given first, and so the control flow is a little bit
long-winded. See Figure 1 for more details.

Figure 1: The control flow through the rewriting ruleset

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (3 of 19) [12/05/2001 4:51:57 PM]

As you can see, first the URL is matched against the Pattern of each rule. When it fails mod_rewrite immediately
stops processing this rule and continues with the next rule. If the Pattern matches, mod_rewrite looks for
corresponding rule conditions. If none are present, it just substitutes the URL with a new value which is constructed
from the string Substitution and goes on with its rule-looping. But if conditions exist, it starts an inner loop for
processing them in the order that they are listed. For conditions the logic is different: we don't match a pattern against
the current URL. Instead we first create a string TestString by expanding variables, back-references, map lookups, etc.
and then we try to match CondPattern against it. If the pattern doesn't match, the complete set of conditions and the
corresponding rule fails. If the pattern matches, then the next condition is processed until no more conditions are
available. If all conditions match, processing is continued with the substitution of the URL with Substitution.

Quoting Special Characters

As of Apache 1.3.20, special characters in TestString and Substitution strings can be escaped (that is, treated as normal
characters without their usual special meaning) by prefixing them with a slosh ('\') character. In other words, you can
include an actual dollar-sign character in a Substitution string by using '\$'; this keeps mod_rewrite from trying to
treat it as a backreference.

Regex Back-Reference Availability

One important thing here has to be remembered: Whenever you use parentheses in Pattern or in one of the
CondPattern, back-references are internally created which can be used with the strings $N and %N (see below). These
are available for creating the strings Substitution and TestString. Figure 2 shows to which locations the
back-references are transfered for expansion.

Figure 2: The back-reference flow through a rule

We know this was a crash course on mod_rewrite's internal processing. But you will benefit from this knowledge
when reading the following documentation of the available directives.

Configuration Directives

RewriteEngine

Syntax: RewriteEngine on|off
Default: RewriteEngine off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (4 of 19) [12/05/2001 4:51:57 PM]

Module: mod_rewrite.c
Compatibility: Apache 1.2

The RewriteEngine directive enables or disables the runtime rewriting engine. If it is set to off this module does
no runtime processing at all. It does not even update the SCRIPT_URx environment variables.

Use this directive to disable the module instead of commenting out all the RewriteRule directives!

Note that, by default, rewrite configurations are not inherited. This means that you need to have a RewriteEngine
on directive for each virtual host in which you wish to use it.

RewriteOptions

Syntax: RewriteOptions Option
Default: None
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod_rewrite.c
Compatibility: Apache 1.2

The RewriteOptions directive sets some special options for the current per-server or per-directory configuration.
The Option strings can be one of the following:

'inherit'
This forces the current configuration to inherit the configuration of the parent. In per-virtual-server context
this means that the maps, conditions and rules of the main server are inherited. In per-directory context this
means that conditions and rules of the parent directory's .htaccess configuration are inherited.

●

RewriteLog

Syntax: RewriteLog file-path
Default: None
Context: server config, virtual host
Override: Not applicable
Status: Extension
Module: mod_rewrite.c
Compatibility: Apache 1.2

The RewriteLog directive sets the name of the file to which the server logs any rewriting actions it performs. If the
name does not begin with a slash ('/') then it is assumed to be relative to the Server Root. The directive should occur
only once per server config.

Note: To disable the logging of rewriting actions it is not recommended to set Filename
to /dev/null, because although the rewriting engine does not then output to a logfile
it still creates the logfile output internally. This will slow down the server with no
advantage to the administrator! To disable logging either remove or comment out the
RewriteLog directive or use RewriteLogLevel 0!

Security: See the Apache Security Tips document for details on why your security
could be compromised if the directory where logfiles are stored is writable by anyone
other than the user that starts the server.

Example:

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (5 of 19) [12/05/2001 4:51:57 PM]

RewriteLog "/usr/local/var/apache/logs/rewrite.log"

RewriteLogLevel

Syntax: RewriteLogLevel Level
Default: RewriteLogLevel 0
Context: server config, virtual host
Override: Not applicable
Status: Extension
Module: mod_rewrite.c
Compatibility: Apache 1.2

The RewriteLogLevel directive sets the verbosity level of the rewriting logfile. The default level 0 means no
logging, while 9 or more means that practically all actions are logged.

To disable the logging of rewriting actions simply set Level to 0. This disables all rewrite action logs.

Notice: Using a high value for Level will slow down your Apache server dramatically!
Use the rewriting logfile at a Level greater than 2 only for debugging!

Example:

RewriteLogLevel 3

RewriteLock

Syntax: RewriteLock file-path
Default: None
Context: server config
Override: Not applicable
Status: Extension
Module: mod_rewrite.c
Compatibility: Apache 1.3

This directive sets the filename for a synchronization lockfile which mod_rewrite needs to communicate with
RewriteMap programs. Set this lockfile to a local path (not on a NFS-mounted device) when you want to use a
rewriting map-program. It is not required for other types of rewriting maps.

RewriteMap

Syntax: RewriteMap MapName MapType:MapSource
Default: not used per default
Context: server config, virtual host
Override: Not applicable
Status: Extension
Module: mod_rewrite.c
Compatibility: Apache 1.2 (partially), Apache 1.3

The RewriteMap directive defines a Rewriting Map which can be used inside rule substitution strings by the
mapping-functions to insert/substitute fields through a key lookup. The source of this lookup can be of various types.

The MapName is the name of the map and will be used to specify a mapping-function for the substitution strings of a
rewriting rule via one of the following constructs:

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (6 of 19) [12/05/2001 4:51:57 PM]

${ MapName : LookupKey }
${ MapName : LookupKey | DefaultValue }

When such a construct occurs the map MapName is consulted and the key LookupKey is looked-up. If the key is
found, the map-function construct is substituted by SubstValue. If the key is not found then it is substituted by
DefaultValue or by the empty string if no DefaultValue was specified.

The following combinations for MapType and MapSource can be used:

Standard Plain Text
MapType: txt, MapSource: Unix filesystem path to valid regular file

This is the standard rewriting map feature where the MapSource is a plain ASCII file containing either blank
lines, comment lines (starting with a '#' character) or pairs like the following - one per line.

MatchingKey SubstValue

Example:

##
map.txt -- rewriting map
##

Ralf.S.Engelschall rse # Bastard Operator From Hell
Mr.Joe.Average joe # Mr. Average

RewriteMap real-to-user txt:/path/to/file/map.txt

●

Randomized Plain Text
MapType: rnd, MapSource: Unix filesystem path to valid regular file

This is identical to the Standard Plain Text variant above but with a special post-processing feature: After
looking up a value it is parsed according to contained ``|'' characters which have the meaning of ``or''. In other
words they indicate a set of alternatives from which the actual returned value is chosen randomly. Although
this sounds crazy and useless, it was actually designed for load balancing in a reverse proxy situation where
the looked up values are server names. Example:

##
map.txt -- rewriting map
##

static www1|www2|www3|www4
dynamic www5|www6

RewriteMap servers rnd:/path/to/file/map.txt

●

Hash File
MapType: dbm, MapSource: Unix filesystem path to valid regular file

Here the source is a binary NDBM format file containing the same contents as a Plain Text format file, but in
a special representation which is optimized for really fast lookups. You can create such a file with any NDBM
tool or with the following Perl script:

●

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (7 of 19) [12/05/2001 4:51:57 PM]

#!/path/to/bin/perl
##
txt2dbm -- convert txt map to dbm format
##

($txtmap, $dbmmap) = @ARGV;
open(TXT, "<$txtmap");
dbmopen(%DB, $dbmmap, 0644);
while (<TXT>) {
 next if (m|^s*#.*| or m|^s*$|);
 $DB{$1} = $2 if (m|^\s*(\S+)\s+(\S+)$|);
}
dbmclose(%DB);
close(TXT)

$ txt2dbm map.txt map.db

Internal Function
MapType: int, MapSource: Internal Apache function

Here the source is an internal Apache function. Currently you cannot create your own, but the following
functions already exists:

toupper:
Converts the looked up key to all upper case.

❍

tolower:
Converts the looked up key to all lower case.

❍

escape:
Translates special characters in the looked up key to hex-encodings.

❍

unescape:
Translates hex-encodings in the looked up key back to special characters.

❍

●

External Rewriting Program
MapType: prg, MapSource: Unix filesystem path to valid regular file

Here the source is a program, not a map file. To create it you can use the language of your choice, but the
result has to be a executable (i.e., either object-code or a script with the magic cookie trick
'#!/path/to/interpreter' as the first line).

This program is started once at startup of the Apache servers and then communicates with the rewriting engine
over its stdin and stdout file-handles. For each map-function lookup it will receive the key to lookup as a
newline-terminated string on stdin. It then has to give back the looked-up value as a newline-terminated
string on stdout or the four-character string ``NULL'' if it fails (i.e., there is no corresponding value for the
given key). A trivial program which will implement a 1:1 map (i.e., key == value) could be:

#!/usr/bin/perl
$| = 1;
while (<STDIN>) {
 # ...put here any transformations or lookups...
 print $_;
}

But be very careful:

``Keep it simple, stupid'' (KISS), because if this program hangs it will hang the Apache server when
the rule occurs.

1.

Avoid one common mistake: never do buffered I/O on stdout! This will cause a deadloop! Hence
the ``$|=1'' in the above example...

2.

Use the RewriteLock directive to define a lockfile mod_rewrite can use to synchronize the3.

●

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (8 of 19) [12/05/2001 4:51:57 PM]

communication to the program. By default no such synchronization takes place.

The RewriteMap directive can occur more than once. For each mapping-function use one RewriteMap directive
to declare its rewriting mapfile. While you cannot declare a map in per-directory context it is of course possible to use
this map in per-directory context.

Note: For plain text and DBM format files the looked-up keys are cached in-core until
the mtime of the mapfile changes or the server does a restart. This way you can have
map-functions in rules which are used for every request. This is no problem, because
the external lookup only happens once!

RewriteBase

Syntax: RewriteBase URL-path
Default: default is the physical directory path
Context: directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod_rewrite.c
Compatibility: Apache 1.2

The RewriteBase directive explicitly sets the base URL for per-directory rewrites. As you will see below,
RewriteRule can be used in per-directory config files (.htaccess). There it will act locally, i.e., the local
directory prefix is stripped at this stage of processing and your rewriting rules act only on the remainder. At the end it
is automatically added back to the path.

When a substitution occurs for a new URL, this module has to re-inject the URL into the server processing. To be able
to do this it needs to know what the corresponding URL-prefix or URL-base is. By default this prefix is the
corresponding filepath itself. But at most websites URLs are NOT directly related to physical filename paths, so
this assumption will usually be wrong! There you have to use the RewriteBase directive to specify the correct
URL-prefix.

Notice: If your webserver's URLs are not directly related to physical file paths, you
have to use RewriteBase in every .htaccess files where you want to use
RewriteRule directives.

Example:

Assume the following per-directory config file:

#
/abc/def/.htaccess -- per-dir config file for directory /abc/def
Remember: /abc/def is the physical path of /xyz, i.e., the server
has a 'Alias /xyz /abc/def' directive e.g.
#

RewriteEngine On

let the server know that we were reached via /xyz and not
via the physical path prefix /abc/def
RewriteBase /xyz

now the rewriting rules
RewriteRule ^oldstuff\.html$ newstuff.html

In the above example, a request to /xyz/oldstuff.html gets correctly rewritten to the physical
file /abc/def/newstuff.html.

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (9 of 19) [12/05/2001 4:51:57 PM]

Note - For Apache hackers:
The following list gives detailed information about the internal processing steps:

Request:
 /xyz/oldstuff.html

Internal Processing:
 /xyz/oldstuff.html -> /abc/def/oldstuff.html (per-server Alias)
 /abc/def/oldstuff.html -> /abc/def/newstuff.html (per-dir RewriteRule)
 /abc/def/newstuff.html -> /xyz/newstuff.html (per-dir RewriteBase)
 /xyz/newstuff.html -> /abc/def/newstuff.html (per-server Alias)

Result:
 /abc/def/newstuff.html

This seems very complicated but is the correct Apache internal processing, because the per-directory rewriting
comes too late in the process. So, when it occurs the (rewritten) request has to be re-injected into the Apache
kernel! BUT: While this seems like a serious overhead, it really isn't, because this re-injection happens fully
internally to the Apache server and the same procedure is used by many other operations inside Apache. So, you
can be sure the design and implementation is correct.

RewriteCond

Syntax: RewriteCond TestString CondPattern
Default: None
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod_rewrite.c
Compatibility: Apache 1.2 (partially), Apache 1.3

The RewriteCond directive defines a rule condition. Precede a RewriteRule directive with one or more
RewriteCond directives. The following rewriting rule is only used if its pattern matches the current state of the URI
and if these additional conditions apply too.

TestString is a string which can contains the following expanded constructs in addition to plain text:

RewriteRule backreferences: These are backreferences of the form

$N

(0 <= N <= 9) which provide access to the grouped parts (parenthesis!) of the pattern from the corresponding
RewriteRule directive (the one following the current bunch of RewriteCond directives).

●

RewriteCond backreferences: These are backreferences of the form

%N

(1 <= N <= 9) which provide access to the grouped parts (parentheses!) of the pattern from the last matched
RewriteCond directive in the current bunch of conditions.

●

RewriteMap expansions: These are expansions of the form

${mapname:key|default}

See the documentation for RewriteMap for more details.

●

Server-Variables: These are variables of the form

%{ NAME_OF_VARIABLE }

where NAME_OF_VARIABLE can be a string taken from the following list:

●

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (10 of 19) [12/05/2001 4:51:57 PM]

HTTP headers:

HTTP_USER_AGENT
HTTP_REFERER
HTTP_COOKIE
HTTP_FORWARDED
HTTP_HOST
HTTP_PROXY_CONNECTION
HTTP_ACCEPT

connection & request:

REMOTE_ADDR
REMOTE_HOST
REMOTE_USER
REMOTE_IDENT
REQUEST_METHOD
SCRIPT_FILENAME
PATH_INFO
QUERY_STRING
AUTH_TYPE

server internals:

DOCUMENT_ROOT
SERVER_ADMIN
SERVER_NAME
SERVER_ADDR
SERVER_PORT
SERVER_PROTOCOL
SERVER_SOFTWARE

system stuff:

TIME_YEAR
TIME_MON
TIME_DAY
TIME_HOUR
TIME_MIN
TIME_SEC
TIME_WDAY
TIME

specials:

API_VERSION
THE_REQUEST
REQUEST_URI
REQUEST_FILENAME
IS_SUBREQ

Notice: These variables all correspond to the similarly named HTTP MIME-headers, C
variables of the Apache server or struct tm fields of the Unix system. Most are
documented elsewhere in the Manual or in the CGI specification. Those that are special
to mod_rewrite include:

IS_SUBREQ

Will contain the text "true" if the request currently being processed is a
sub-request, "false" otherwise. Sub-requests may be generated by modules that
need to resolve additional files or URIs in order to complete their tasks.

API_VERSION

This is the version of the Apache module API (the internal interface between
server and module) in the current httpd build, as defined in include/ap_mmn.h.
The module API version corresponds to the version of Apache in use (in the
release version of Apache 1.3.14, for instance, it is 19990320:10), but is mainly
of interest to module authors.

THE_REQUEST

The full HTTP request line sent by the browser to the server (e.g., "GET
/index.html HTTP/1.1"). This does not include any additional headers
sent by the browser.

REQUEST_URI

The resource requested in the HTTP request line. (In the example above, this
would be "/index.html".)

REQUEST_FILENAME

The full local filesystem path to the file or script matching the request.

Special Notes:

The variables SCRIPT_FILENAME and REQUEST_FILENAME contain the same value, i.e., the value of
the filename field of the internal request_rec structure of the Apache server. The first name is just the
commonly known CGI variable name while the second is the consistent counterpart to REQUEST_URI
(which contains the value of the uri field of request_rec).

1.

There is the special format: %{ENV:variable} where variable can be any environment variable. This is
looked-up via internal Apache structures and (if not found there) via getenv() from the Apache server
process.

2.

There is the special format: %{HTTP:header} where header can be any HTTP MIME-header name. This is
looked-up from the HTTP request. Example: %{HTTP:Proxy-Connection} is the value of the HTTP
header ``Proxy-Connection:''.

3.

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (11 of 19) [12/05/2001 4:51:57 PM]

There is the special format %{LA-U:variable} for look-aheads which perform an internal (URL-based)
sub-request to determine the final value of variable. Use this when you want to use a variable for rewriting
which is actually set later in an API phase and thus is not available at the current stage. For instance when you
want to rewrite according to the REMOTE_USER variable from within the per-server context (httpd.conf
file) you have to use %{LA-U:REMOTE_USER} because this variable is set by the authorization phases
which come after the URL translation phase where mod_rewrite operates. On the other hand, because
mod_rewrite implements its per-directory context (.htaccess file) via the Fixup phase of the API and
because the authorization phases come before this phase, you just can use %{REMOTE_USER} there.

4.

There is the special format: %{LA-F:variable} which performs an internal (filename-based) sub-request
to determine the final value of variable. Most of the time this is the same as LA-U above.

5.

CondPattern is the condition pattern, i.e., a regular expression which is applied to the current instance of the
TestString, i.e., TestString is evaluated and then matched against CondPattern.

Remember: CondPattern is a standard Extended Regular Expression with some additions:

You can prefix the pattern string with a '!' character (exclamation mark) to specify a non-matching pattern.1.

There are some special variants of CondPatterns. Instead of real regular expression strings you can also use
one of the following:

'<CondPattern' (is lexically lower)
Treats the CondPattern as a plain string and compares it lexically to TestString. True if TestString is
lexically lower than CondPattern.

❍

'>CondPattern' (is lexically greater)
Treats the CondPattern as a plain string and compares it lexically to TestString. True if TestString is
lexically greater than CondPattern.

❍

'=CondPattern' (is lexically equal)
Treats the CondPattern as a plain string and compares it lexically to TestString. True if TestString is
lexically equal to CondPattern, i.e the two strings are exactly equal (character by character). If
CondPattern is just "" (two quotation marks) this compares TestString to the empty string.

❍

'-d' (is directory)
Treats the TestString as a pathname and tests if it exists and is a directory.

❍

'-f' (is regular file)
Treats the TestString as a pathname and tests if it exists and is a regular file.

❍

'-s' (is regular file with size)
Treats the TestString as a pathname and tests if it exists and is a regular file with size greater than
zero.

❍

'-l' (is symbolic link)
Treats the TestString as a pathname and tests if it exists and is a symbolic link.

❍

'-F' (is existing file via subrequest)
Checks if TestString is a valid file and accessible via all the server's currently-configured access
controls for that path. This uses an internal subrequest to determine the check, so use it with care
because it decreases your servers performance!

❍

'-U' (is existing URL via subrequest)
Checks if TestString is a valid URL and accessible via all the server's currently-configured access
controls for that path. This uses an internal subrequest to determine the check, so use it with care
because it decreases your server's performance!

❍

Notice: All of these tests can also be prefixed by an exclamation mark ('!') to negate
their meaning.

2.

Additionally you can set special flags for CondPattern by appending

[flags]

as the third argument to the RewriteCond directive. Flags is a comma-separated list of the following flags:

'nocase|NC' (no case)
This makes the test case-insensitive, i.e., there is no difference between 'A-Z' and 'a-z' both in the expanded
TestString and the CondPattern. This flag is effective only for comparisons between TestString and
CondPattern. It has no effect on filesystem and subrequest checks.

●

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (12 of 19) [12/05/2001 4:51:57 PM]

'ornext|OR' (or next condition)
Use this to combine rule conditions with a local OR instead of the implicit AND. Typical example:

RewriteCond %{REMOTE_HOST} ^host1.* [OR]
RewriteCond %{REMOTE_HOST} ^host2.* [OR]
RewriteCond %{REMOTE_HOST} ^host3.*
RewriteRule ...some special stuff for any of these hosts...

Without this flag you would have to write the cond/rule three times.

●

Example:

To rewrite the Homepage of a site according to the ``User-Agent:'' header of the request, you can
use the following:

RewriteCond %{HTTP_USER_AGENT} ^Mozilla.*
RewriteRule ^/$ /homepage.max.html [L]

RewriteCond %{HTTP_USER_AGENT} ^Lynx.*
RewriteRule ^/$ /homepage.min.html [L]

RewriteRule ^/$ /homepage.std.html [L]

Interpretation: If you use Netscape Navigator as your browser (which identifies itself as 'Mozilla'),
then you get the max homepage, which includes Frames, etc. If you use the Lynx browser (which is
Terminal-based), then you get the min homepage, which contains no images, no tables, etc. If you use
any other browser you get the standard homepage.

RewriteRule

Syntax: RewriteRule Pattern Substitution
Default: None
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod_rewrite.c
Compatibility: Apache 1.2 (partially), Apache 1.3

The RewriteRule directive is the real rewriting workhorse. The directive can occur more than once. Each directive
then defines one single rewriting rule. The definition order of these rules is important, because this order is used
when applying the rules at run-time.

Pattern can be (for Apache 1.1.x a System V8 and for Apache 1.2.x and later a POSIX) regular expression which gets
applied to the current URL. Here ``current'' means the value of the URL when this rule gets applied. This may not be
the originally requested URL, because any number of rules may already have matched and made alterations to it.

Some hints about the syntax of regular expressions:

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (13 of 19) [12/05/2001 4:51:57 PM]

Text:
 . Any single character
 [chars] Character class: One of chars
 [^chars] Character class: None of chars
 text1|text2 Alternative: text1 or text2

Quantifiers:
 ? 0 or 1 of the preceding text
 * 0 or N of the preceding text (N > 0)
 + 1 or N of the preceding text (N > 1)

Grouping:
 (text) Grouping of text
 (either to set the borders of an alternative or
 for making backreferences where the Nth group can
 be used on the RHS of a RewriteRule with $N)

Anchors:
 ^ Start of line anchor
 $ End of line anchor

Escaping:
 \char escape that particular char
 (for instance to specify the chars ".[]()" etc.)

For more information about regular expressions either have a look at your local regex(3) manpage or its
src/regex/regex.3 copy in the Apache 1.3 distribution. If you are interested in more detailed information about
regular expressions and their variants (POSIX regex, Perl regex, etc.) have a look at the following dedicated book on
this topic:

Mastering Regular Expressions
Jeffrey E.F. Friedl
Nutshell Handbook Series
O'Reilly & Associates, Inc. 1997
ISBN 1-56592-257-3

Additionally in mod_rewrite the NOT character ('!') is a possible pattern prefix. This gives you the ability to negate a
pattern; to say, for instance: ``if the current URL does NOT match this pattern''. This can be used for exceptional
cases, where it is easier to match the negative pattern, or as a last default rule.

Notice: When using the NOT character to negate a pattern you cannot have grouped
wildcard parts in the pattern. This is impossible because when the pattern does NOT
match, there are no contents for the groups. In consequence, if negated patterns are
used, you cannot use $N in the substitution string!

Substitution of a rewriting rule is the string which is substituted for (or replaces) the original URL for which Pattern
matched. Beside plain text you can use

back-references $N to the RewriteRule pattern1.

back-references %N to the last matched RewriteCond pattern2.

server-variables as in rule condition test-strings (%{VARNAME})3.

mapping-function calls (${mapname:key|default})4.

Back-references are $N (N=0..9) identifiers which will be replaced by the contents of the Nth group of the matched
Pattern. The server-variables are the same as for the TestString of a RewriteCond directive. The mapping-functions
come from the RewriteMap directive and are explained there. These three types of variables are expanded in the
order of the above list.

As already mentioned above, all the rewriting rules are applied to the Substitution (in the order of definition in the
config file). The URL is completely replaced by the Substitution and the rewriting process goes on until there are no
more rules unless explicitly terminated by a L flag - see below.

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (14 of 19) [12/05/2001 4:51:57 PM]

There is a special substitution string named '-' which means: NO substitution! Sounds silly? No, it is useful to
provide rewriting rules which only match some URLs but do no substitution, e.g., in conjunction with the C (chain)
flag to be able to have more than one pattern to be applied before a substitution occurs.

One more note: You can even create URLs in the substitution string containing a query string part. Just use a question
mark inside the substitution string to indicate that the following stuff should be re-injected into the QUERY_STRING.
When you want to erase an existing query string, end the substitution string with just the question mark.

Note: There is a special feature: When you prefix a substitution field with
http://thishost[:thisport] then mod_rewrite automatically strips it out. This
auto-reduction on implicit external redirect URLs is a useful and important feature
when used in combination with a mapping-function which generates the hostname part.
Have a look at the first example in the example section below to understand this.

Remember: An unconditional external redirect to your own server will not work with
the prefix http://thishost because of this feature. To achieve such a
self-redirect, you have to use the R-flag (see below).

Additionally you can set special flags for Substitution by appending

[flags]

as the third argument to the RewriteRule directive. Flags is a comma-separated list of the following flags:

'redirect|R [=code]' (force redirect)
Prefix Substitution with http://thishost[:thisport]/ (which makes the new URL a URI) to force
a external redirection. If no code is given a HTTP response of 302 (MOVED TEMPORARILY) is used. If you
want to use other response codes in the range 300-400 just specify them as a number or use one of the
following symbolic names: temp (default), permanent, seeother. Use it for rules which should
canonicalize the URL and give it back to the client, e.g., translate ``/~'' into ``/u/'' or always append a slash
to /u/user, etc.

Note: When you use this flag, make sure that the substitution field is a valid URL! If not, you are redirecting
to an invalid location! And remember that this flag itself only prefixes the URL with
http://thishost[:thisport]/, rewriting continues. Usually you also want to stop and do the
redirection immediately. To stop the rewriting you also have to provide the 'L' flag.

●

'forbidden|F' (force URL to be forbidden)
This forces the current URL to be forbidden, i.e., it immediately sends back a HTTP response of 403
(FORBIDDEN). Use this flag in conjunction with appropriate RewriteConds to conditionally block some
URLs.

●

'gone|G' (force URL to be gone)
This forces the current URL to be gone, i.e., it immediately sends back a HTTP response of 410 (GONE). Use
this flag to mark pages which no longer exist as gone.

●

'proxy|P' (force proxy)
This flag forces the substitution part to be internally forced as a proxy request and immediately (i.e., rewriting
rule processing stops here) put through the proxy module. You have to make sure that the substitution string is
a valid URI (e.g., typically starting with http://hostname) which can be handled by the Apache proxy
module. If not you get an error from the proxy module. Use this flag to achieve a more powerful
implementation of the ProxyPass directive, to map some remote stuff into the namespace of the local server.

Notice: To use this functionality make sure you have the proxy module compiled into your Apache server
program. If you don't know please check whether mod_proxy.c is part of the ``httpd -l'' output. If yes,
this functionality is available to mod_rewrite. If not, then you first have to rebuild the ``httpd'' program with
mod_proxy enabled.

●

'last|L' (last rule)
Stop the rewriting process here and don't apply any more rewriting rules. This corresponds to the Perl last
command or the break command from the C language. Use this flag to prevent the currently rewritten URL
from being rewritten further by following rules. For example, use it to rewrite the root-path URL ('/') to a real
one, e.g., '/e/www/'.

●

'next|N' (next round)●

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (15 of 19) [12/05/2001 4:51:57 PM]

Re-run the rewriting process (starting again with the first rewriting rule). Here the URL to match is again not
the original URL but the URL from the last rewriting rule. This corresponds to the Perl next command or the
continue command from the C language. Use this flag to restart the rewriting process, i.e., to immediately
go to the top of the loop.
But be careful not to create an infinite loop!

'chain|C' (chained with next rule)
This flag chains the current rule with the next rule (which itself can be chained with the following rule, etc.).
This has the following effect: if a rule matches, then processing continues as usual, i.e., the flag has no effect.
If the rule does not match, then all following chained rules are skipped. For instance, use it to remove the
``.www'' part inside a per-directory rule set when you let an external redirect happen (where the ``.www'' part
should not to occur!).

●

'type|T=MIME-type' (force MIME type)
Force the MIME-type of the target file to be MIME-type. For instance, this can be used to simulate the
mod_alias directive ScriptAlias which internally forces all files inside the mapped directory to have a
MIME type of ``application/x-httpd-cgi''.

●

'nosubreq|NS' (used only if no internal sub-request)
This flag forces the rewriting engine to skip a rewriting rule if the current request is an internal sub-request.
For instance, sub-requests occur internally in Apache when mod_include tries to find out information about
possible directory default files (index.xxx). On sub-requests it is not always useful and even sometimes
causes a failure to if the complete set of rules are applied. Use this flag to exclude some rules.

Use the following rule for your decision: whenever you prefix some URLs with CGI-scripts to force them to
be processed by the CGI-script, the chance is high that you will run into problems (or even overhead) on
sub-requests. In these cases, use this flag.

●

'nocase|NC' (no case)
This makes the Pattern case-insensitive, i.e., there is no difference between 'A-Z' and 'a-z' when Pattern is
matched against the current URL.

●

'qsappend|QSA' (query string append)
This flag forces the rewriting engine to append a query string part in the substitution string to the existing one
instead of replacing it. Use this when you want to add more data to the query string via a rewrite rule.

●

'noescape|NE' (no URI escaping of output)
This flag keeps mod_rewrite from applying the usual URI escaping rules to the result of a rewrite. Ordinarily,
special characters (such as '%', '$', ';', and so on) will be escaped into their hexcode equivalents ('%25', '%24',
and '%3B', respectively); this flag prevents this from being done. This allows percent symbols to appear in the
output, as in

 RewriteRule /foo/(.*) /bar?arg=P1\%3d$1 [R,NE]

which would turn '/foo/zed' into a safe request for '/bar?arg=P1=zed'.

Notice: The noescape flag is only available with Apache 1.3.20 and later versions.

●

'passthrough|PT' (pass through to next handler)
This flag forces the rewriting engine to set the uri field of the internal request_rec structure to the value
of the filename field. This flag is just a hack to be able to post-process the output of RewriteRule
directives by Alias, ScriptAlias, Redirect, etc. directives from other URI-to-filename translators. A
trivial example to show the semantics: If you want to rewrite /abc to /def via the rewriting engine of
mod_rewrite and then /def to /ghi with mod_alias:

 RewriteRule ^/abc(.*) /def$1 [PT]
 Alias /def /ghi

If you omit the PT flag then mod_rewrite will do its job fine, i.e., it rewrites uri=/abc/... to
filename=/def/... as a full API-compliant URI-to-filename translator should do. Then mod_alias
comes and tries to do a URI-to-filename transition which will not work.

Note: You have to use this flag if you want to intermix directives of different modules which contain
URL-to-filename translators. The typical example is the use of mod_alias and mod_rewrite..

●

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (16 of 19) [12/05/2001 4:51:57 PM]

Note - For Apache hackers:
If the current Apache API had a filename-to-filename hook additionally to the URI-to-filename hook then
we wouldn't need this flag! But without such a hook this flag is the only solution. The Apache Group has
discussed this problem and will add such a hook in Apache version 2.0.

'skip|S=num' (skip next rule(s))
This flag forces the rewriting engine to skip the next num rules in sequence when the current rule matches.
Use this to make pseudo if-then-else constructs: The last rule of the then-clause becomes skip=N where N is
the number of rules in the else-clause. (This is not the same as the 'chain|C' flag!)

●

'env|E=VAR:VAL' (set environment variable)
This forces an environment variable named VAR to be set to the value VAL, where VAL can contain regexp
backreferences $N and %N which will be expanded. You can use this flag more than once to set more than one
variable. The variables can be later dereferenced in many situations, but usually from within XSSI (via
<!--#echo var="VAR"-->) or CGI (e.g. $ENV{'VAR'}). Additionally you can dereference it in a
following RewriteCond pattern via %{ENV:VAR}. Use this to strip but remember information from URLs.

●

Note: Never forget that Pattern is applied to a complete URL in per-server
configuration files. But in per-directory configuration files, the per-directory prefix
(which always is the same for a specific directory!) is automatically removed for
the pattern matching and automatically added after the substitution has been done.
This feature is essential for many sorts of rewriting, because without this prefix
stripping you have to match the parent directory which is not always possible.

There is one exception: If a substitution string starts with ``http://'' then the
directory prefix will not be added and an external redirect or proxy throughput (if flag
P is used!) is forced!

Note: To enable the rewriting engine for per-directory configuration files you need to
set ``RewriteEngine On'' in these files and ``Options FollowSymLinks''
must be enabled. If your administrator has disabled override of FollowSymLinks for
a user's directory, then you cannot use the rewriting engine. This restriction is needed
for security reasons.

Here are all possible substitution combinations and their meanings:

Inside per-server configuration (httpd.conf)
for request ``GET /somepath/pathinfo'':

Given Rule Resulting Substitution
-- ----------------------------------
^/somepath(.*) otherpath$1 not supported, because invalid!

^/somepath(.*) otherpath$1 [R] not supported, because invalid!

^/somepath(.*) otherpath$1 [P] not supported, because invalid!
-- ----------------------------------
^/somepath(.*) /otherpath$1 /otherpath/pathinfo

^/somepath(.*) /otherpath$1 [R] http://thishost/otherpath/pathinfo
 via external redirection

^/somepath(.*) /otherpath$1 [P] not supported, because silly!
-- ----------------------------------
^/somepath(.*) http://thishost/otherpath$1 /otherpath/pathinfo

^/somepath(.*) http://thishost/otherpath$1 [R] http://thishost/otherpath/pathinfo
 via external redirection

^/somepath(.*) http://thishost/otherpath$1 [P] not supported, because silly!

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (17 of 19) [12/05/2001 4:51:57 PM]

-- ----------------------------------
^/somepath(.*) http://otherhost/otherpath$1 http://otherhost/otherpath/pathinfo
 via external redirection

^/somepath(.*) http://otherhost/otherpath$1 [R] http://otherhost/otherpath/pathinfo
 via external redirection
 (the [R] flag is redundant)

^/somepath(.*) http://otherhost/otherpath$1 [P] http://otherhost/otherpath/pathinfo
 via internal proxy

Inside per-directory configuration for /somepath
(i.e., file .htaccess in dir /physical/path/to/somepath containing RewriteBase /somepath)
for request ``GET /somepath/localpath/pathinfo'':

Given Rule Resulting Substitution
-- ----------------------------------
^localpath(.*) otherpath$1 /somepath/otherpath/pathinfo

^localpath(.*) otherpath$1 [R]
http://thishost/somepath/otherpath/pathinfo
 via external redirection

^localpath(.*) otherpath$1 [P] not supported, because silly!
-- ----------------------------------
^localpath(.*) /otherpath$1 /otherpath/pathinfo

^localpath(.*) /otherpath$1 [R] http://thishost/otherpath/pathinfo
 via external redirection

^localpath(.*) /otherpath$1 [P] not supported, because silly!
-- ----------------------------------
^localpath(.*) http://thishost/otherpath$1 /otherpath/pathinfo

^localpath(.*) http://thishost/otherpath$1 [R] http://thishost/otherpath/pathinfo
 via external redirection

^localpath(.*) http://thishost/otherpath$1 [P] not supported, because silly!
-- ----------------------------------
^localpath(.*) http://otherhost/otherpath$1 http://otherhost/otherpath/pathinfo
 via external redirection

^localpath(.*) http://otherhost/otherpath$1 [R] http://otherhost/otherpath/pathinfo
 via external redirection
 (the [R] flag is redundant)

^localpath(.*) http://otherhost/otherpath$1 [P] http://otherhost/otherpath/pathinfo
 via internal proxy

Example:

We want to rewrite URLs of the form

/ Language /~ Realname /.../ File

into

/u/ Username /.../ File . Language

We take the rewrite mapfile from above and save it under /path/to/file/map.txt. Then we
only have to add the following lines to the Apache server configuration file:

RewriteLog /path/to/file/rewrite.log
RewriteMap real-to-user txt:/path/to/file/map.txt

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (18 of 19) [12/05/2001 4:51:57 PM]

RewriteRule ^/([^/]+)/~([^/]+)/(.*)$ /u/${real-to-user:$2|nobody}/$3.$1

Miscellaneous

Environment Variables

This module keeps track of two additional (non-standard) CGI/SSI environment variables named SCRIPT_URL and
SCRIPT_URI. These contain the logical Web-view to the current resource, while the standard CGI/SSI variables
SCRIPT_NAME and SCRIPT_FILENAME contain the physical System-view.

Notice: These variables hold the URI/URL as they were initially requested, i.e., before any rewriting. This is important
because the rewriting process is primarily used to rewrite logical URLs to physical pathnames.

Example:

SCRIPT_NAME=/sw/lib/w3s/tree/global/u/rse/.www/index.html
SCRIPT_FILENAME=/u/rse/.www/index.html
SCRIPT_URL=/u/rse/
SCRIPT_URI=http://en1.engelschall.com/u/rse/

Practical Solutions

We also have an URL Rewriting Guide available, which provides a collection of practical solutions for URL-based
problems. There you can find real-life rulesets and additional information about mod_rewrite.

Apache HTTP Server Version 1.3

Apache module mod_rewrite

http://httpd.apache.org/docs/mod/mod_rewrite.html (19 of 19) [12/05/2001 4:51:58 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_setenvif

This module provides the ability to set environment variables based upon attributes of the request.

Status: Base
Source File: mod_setenvif.c
Module Identifier: setenvif_module
Compatibility: Available in Apache 1.3 and later.

Summary

The mod_setenvif module allows you to set environment variables according to whether different aspects of the request match
regular expressions you specify. These environment variables can be used by other parts of the server to make decisions about
actions to be taken.

The directives are considered in the order they appear in the configuration files. So more complex sequences can be used, such as
this example, which sets netscape if the browser is mozilla but not MSIE.

 BrowserMatch ^Mozilla netscape
 BrowserMatch MSIE !netscape

For additional information, we provide a document on Environment Variables in Apache.

Directives

BrowserMatch●

BrowserMatchNoCase●

SetEnvIf●

SetEnvIfNoCase●

BrowserMatch directive

Syntax: BrowserMatch regex env-variable[=value] [env-variable[=value]] ...
Default: none
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_setenvif
Compatibility: Apache 1.2 and above (in Apache 1.2 this directive was found in the now-obsolete mod_browser module); use in
.htaccess files only supported with 1.3.13 and later

Apache module mod_setenvif

http://httpd.apache.org/docs/mod/mod_setenvif.html (1 of 4) [12/05/2001 4:52:00 PM]

The BrowserMatch directive defines environment variables based on the User-Agent HTTP request header field. The first argument
should be a POSIX.2 extended regular expression (similar to an egrep-style regex). The rest of the arguments give the names of
variables to set, and optionally values to which they should be set. These take the form of

varname, or1.

!varname, or2.

varname=value3.

In the first form, the value will be set to "1". The second will remove the given variable if already defined, and the third will set the
variable to the value given by value. If a User-Agent string matches more than one entry, they will be merged. Entries are processed
in the order in which they appear, and later entries can override earlier ones.

For example:

 BrowserMatch ^Mozilla forms jpeg=yes browser=netscape
 BrowserMatch "^Mozilla/[2-3]" tables agif frames javascript
 BrowserMatch MSIE !javascript

Note that the regular expression string is case-sensitive. For case-INsensitive matching, see the BrowserMatchNoCase directive.

The BrowserMatch and BrowserMatchNoCase directives are special cases of the SetEnvIf and SetEnvIfNoCase directives. The
following two lines have the same effect:

 BrowserMatchNoCase Robot is_a_robot
 SetEnvIfNoCase User-Agent Robot is_a_robot

BrowserMatchNoCase directive

Syntax: BrowserMatchNoCase regex env-variable[=value] [env-variable[=value]] ...
Default: none
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_setenvif
Compatibility: Apache 1.2 and above (in Apache 1.2 this directive was found in the now-obsolete mod_browser module)

The BrowserMatchNoCase directive is semantically identical to the BrowserMatch directive. However, it provides for
case-insensitive matching. For example:

 BrowserMatchNoCase mac platform=macintosh
 BrowserMatchNoCase win platform=windows

The BrowserMatch and BrowserMatchNoCase directives are special cases of the SetEnvIf and SetEnvIfNoCase directives. The
following two lines have the same effect:

 BrowserMatchNoCase Robot is_a_robot
 SetEnvIfNoCase User-Agent Robot is_a_robot

Apache module mod_setenvif

http://httpd.apache.org/docs/mod/mod_setenvif.html (2 of 4) [12/05/2001 4:52:00 PM]

SetEnvIf directive

Syntax: SetEnvIf attribute regex env-variable[=value] [env-variable[=value]] ...
Default: none
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_setenvif
Compatibility: Apache 1.3 and above; the Request_Protocol keyword and environment-variable matching are only available with
1.3.7 and later; use in .htaccess files only supported with 1.3.13 and later

The SetEnvIf directive defines environment variables based on attributes of the request. These attributes can be the values of
various HTTP request header fields (see RFC2616 for more information about these), or of other aspects of the request, including
the following:

Remote_Host - the hostname (if available) of the client making the request●

Remote_Addr - the IP address of the client making the request●

Remote_User - the authenticated username (if available)●

Request_Method - the name of the method being used (GET, POST, et cetera)●

Request_Protocol - the name and version of the protocol with which the request was made (e.g., "HTTP/0.9", "HTTP/1.1",
etc.)

●

Request_URI - the portion of the URL following the scheme and host portion●

Some of the more commonly used request header field names include Host, User-Agent, and Referer.

If the attribute name doesn't match any of the special keywords, nor any of the request's header field names, it is tested as the name
of an environment variable in the list of those associated with the request. This allows SetEnvIf directives to test against the
result of prior matches.

Only those environment variables defined by earlier SetEnvIf[NoCase] directives are available for
testing in this manner. 'Earlier' means that they were defined at a broader scope (such as server-wide) or
previously in the current directive's scope.

Example:

 SetEnvIf Request_URI "\.gif$" object_is_image=gif
 SetEnvIf Request_URI "\.jpg$" object_is_image=jpg
 SetEnvIf Request_URI "\.xbm$" object_is_image=xbm
 :
 SetEnvIf Referer www\.mydomain\.com intra_site_referral
 :
 SetEnvIf object_is_image xbm XBIT_PROCESSING=1

The first three will set the environment variable object_is_image if the request was for an image file, and the fourth sets
intra_site_referral if the referring page was somewhere on the www.mydomain.com Web site.

SetEnvIfNoCase directive

Syntax: SetEnvIfNoCase attribute regex env-variable[=value] [env-variable[=value]] ...
Default: none
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod_setenvif

Apache module mod_setenvif

http://httpd.apache.org/docs/mod/mod_setenvif.html (3 of 4) [12/05/2001 4:52:00 PM]

http://www.rfc-editor.org/rfc/rfc2616.txt

Compatibility: Apache 1.3 and above; the Request_Protocol keyword and environment-variable matching are only available with
1.3.7 and later; use in .htaccess files only supported with 1.3.13 and later

The SetEnvIfNoCase is semantically identical to the SetEnvIf directive, and differs only in that the regular expression matching is
performed in a case-insensitive manner. For example:

 SetEnvIfNoCase Host Apache\.Org site=apache

This will cause the site environment variable to be set to "apache" if the HTTP request header field Host: was included and
contained Apache.Org, apache.org, or any other combination.

Apache HTTP Server Version 1.3

Apache module mod_setenvif

http://httpd.apache.org/docs/mod/mod_setenvif.html (4 of 4) [12/05/2001 4:52:00 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_so

This module provides for loading of executable code and modules into the server at start-up or restart time.

Status: Base (Windows); Experimental (Unix)
Source File: mod_so.c
Module Identifier: so_module
Compatibility: Available in Apache 1.3 and later.

Summary

This is an experimental module. On selected operating systems it can be used to load modules into Apache at runtime via the
Dynamic Shared Object (DSO) mechanism, rather than requiring a recompilation.

On Unix, the loaded code typically comes from shared object files (usually with .so extension), whilst on Windows this module
loads DLL files. This module is only available in Apache 1.3 and up.

In previous releases, the functionality of this module was provided for Unix by mod_dld, and for Windows by mod_dll. On
Windows, mod_dll was used in beta release 1.3b1 through 1.3b5. mod_so combines these two modules into a single module for all
operating systems.

Directives

LoadFile●

LoadModule●

Creating DLL Modules for Windows

The Apache module API is unchanged between the Unix and Windows versions. Many modules will run on Windows with no or
little change from Unix, although others rely on aspects of the Unix architecture which are not present in Windows, and will not
work.

When a module does work, it can be added to the server in one of two ways. As with Unix, it can be compiled into the server.
Because Apache for Windows does not have the Configure program of Apache for Unix, the module's source file must be added
to the ApacheCore project file, and its symbols must be added to the os\win32\modules.c file.

The second way is to compile the module as a DLL, a shared library that can be loaded into the server at runtime, using the
LoadModule directive. These module DLLs can be distributed and run on any Apache for Windows installation, without
recompilation of the server.

To create a module DLL, a small change is necessary to the module's source file: The module record must be exported from the
DLL (which will be created later; see below). To do this, add the MODULE_VAR_EXPORT (defined in the Apache header files) to
your module's module record definition. For example, if your module has:

 module foo_module;

Apache module mod_so

http://httpd.apache.org/docs/mod/mod_so.html (1 of 2) [12/05/2001 4:52:02 PM]

Replace the above with:

 module MODULE_VAR_EXPORT foo_module;

Note that this will only be activated on Windows, so the module can continue to be used, unchanged, with Unix if needed. Also, if
you are familiar with .DEF files, you can export the module record with that method instead.

Now, create a DLL containing your module. You will need to link this against the ApacheCore.lib export library that is created
when the ApacheCore.dll shared library is compiled. You may also have to change the compiler settings to ensure that the Apache
header files are correctly located.

This should create a DLL version of your module. Now simply place it in the modules directory of your server root, and use the
LoadModule directive to load it.

LoadFile directive

Syntax: LoadFile filename [filename] ...
Context: server config
Status: Base
Module: mod_so

The LoadFile directive links in the named object files or libraries when the server is started or restarted; this is used to load
additional code which may be required for some module to work. Filename is either an absolute path or relative to ServerRoot.

LoadModule directive

Syntax: LoadModule module filename
Context: server config
Status: Base
Module: mod_so

The LoadModule directive links in the object file or library filename and adds the module structure named module to the list of
active modules. Module is the name of the external variable of type module in the file, and is listed as the Module Identifier in the
module documentation. Example (Unix, and for Windows as of Apache 1.3.15):

LoadModule status_module modules/mod_status.so

Example (Windows prior to Apache 1.3.15, and some 3rd party modules):

LoadModule foo_module modules/ApacheModuleFoo.dll

Note that all modules bundled with the Apache Win32 binary distribution were renamed as of Apache version 1.3.15.

Win32 Apache modules are often distributed with the old style names, or even a name such as libfoo.dll. Whatever the name of the
module, the LoadModule directive requires the exact filename, no assumption is made about the filename extension.

Apache HTTP Server Version 1.3

Apache module mod_so

http://httpd.apache.org/docs/mod/mod_so.html (2 of 2) [12/05/2001 4:52:02 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_speling

This module attempts to correct misspellings of URLs that users might have entered, by ignoring capitalization and by allowing up
to one misspelling.

Status: Extension
Source File: mod_speling.c
Module Identifier: speling_module
Compatibility: Available in Apache 1.3 and later. Available as an External module in Apache 1.1 and later.

Summary

Requests to documents sometimes cannot be served by the core apache server because the request was misspelled or miscapitalized.
This module addresses this problem by trying to find a matching document, even after all other modules gave up. It does its work by
comparing each document name in the requested directory against the requested document name without regard to case, and
allowing up to one misspelling (character insertion / omission / transposition or wrong character). A list is built with all document
names which were matched using this strategy.

If, after scanning the directory,

no matching document was found, Apache will proceed as usual and return a "document not found" error.●

only one document is found that "almost" matches the request, then it is returned in the form of a redirection response.●

more than one document with a close match was found, then the list of the matches is returned to the client, and the client
can select the correct candidate.

●

Directives

CheckSpelling●

CheckSpelling directive

Syntax: CheckSpelling on|off
Default: CheckSpelling Off
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Base
Module: mod_speling
Compatibility: CheckSpelling was available as a separately available module for Apache 1.1, but was limited to miscapitalizations.
As of Apache 1.3, it is part of the Apache distribution. Prior to Apache 1.3.2, the CheckSpelling directive was only available in the
"server" and "virtual host" contexts.

This directive enables or disables the spelling module. When enabled, keep in mind that

the directory scan which is necessary for the spelling correction will have an impact on the server's performance when many
spelling corrections have to be performed at the same time.

●

Apache module mod_speling

http://httpd.apache.org/docs/mod/mod_speling.html (1 of 2) [12/05/2001 4:52:03 PM]

the document trees should not contain sensitive files which could be matched inadvertently by a spelling "correction".●

the module is unable to correct misspelled user names (as in http://my.host/~apahce/), just file names or directory
names.

●

spelling corrections apply strictly to existing files, so a request for the <Location /status> may get incorrectly treated as the
negotiated file "/stats.html".

●

Apache HTTP Server Version 1.3

Apache module mod_speling

http://httpd.apache.org/docs/mod/mod_speling.html (2 of 2) [12/05/2001 4:52:03 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_status

This module provides information on server activity and performance.

Status: Base
Source File: mod_status.c
Module Identifier: status_module
Compatibility: Available in Apache 1.1 and later.

Summary

The Status module allows a server administrator to find out how well their server is performing. A HTML page is presented that
gives the current server statistics in an easily readable form. If required this page can be made to automatically refresh (given a
compatible browser). Another page gives a simple machine-readable list of the current server state.

The details given are:

The number of children serving requests●

The number of idle children●

The status of each child, the number of requests that child has performed and the total number of bytes served by the child
(*)

●

A total number of accesses and byte count served (*)●

The time the server was started/restarted and the time it has been running for●

Averages giving the number of requests per second, the number of bytes served per second and the average number of bytes
per request (*)

●

The current percentage CPU used by each child and in total by Apache (*)●

The current hosts and requests being processed (*)●

Details marked "(*)" are only available with ExtendedStatus On.

Directives

ExtendedStatus●

Enabling Status Support

To enable status reports only for browsers from the foo.com domain add this code to your httpd.conf configuration file

 <Location /server-status>
 SetHandler server-status

 Order Deny,Allow
 Deny from all
 Allow from .foo.com

Apache module mod_status

http://httpd.apache.org/docs/mod/mod_status.html (1 of 2) [12/05/2001 4:52:04 PM]

 </Location>

You can now access server statistics by using a Web browser to access the page
http://your.server.name/server-status

Note that mod_status will only work when you are running Apache in standalone mode and not inetd mode.

Automatic Updates

You can get the status page to update itself automatically if you have a browser that supports "refresh". Access the page
http://your.server.name/server-status?refresh=N to refresh the page every N seconds.

Machine Readable Status File

A machine-readable version of the status file is available by accessing the page
http://your.server.name/server-status?auto. This is useful when automatically run, see the Perl program in the
/support directory of Apache, log_server_status.

It should be noted that if mod_status is compiled into the server, its handler capability is available in all
configuration files, including per-directory files (e.g., .htaccess). This may have security-related ramifications
for your site.

ExtendedStatus directive

Syntax: ExtendedStatus On|Off
Default: ExtendedStatus Off
Context: server config
Status: Base
Module: mod_status
Compatibility: ExtendedStatus is only available in Apache 1.3.2 and later.

This directive controls whether the server keeps track of extended status information for each request. This is only useful if the
status module is enabled on the server.

This setting applies to the entire server, and cannot be enabled or disabled on a virtualhost-by-virtualhost basis.

Apache HTTP Server Version 1.3

Apache module mod_status

http://httpd.apache.org/docs/mod/mod_status.html (2 of 2) [12/05/2001 4:52:04 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_unique_id

This module provides an environment variable with a unique identifier for each request.

Status: Extension
Source File: mod_unique_id.c
Module Identifier: unique_id_module
Compatibility: Available in Apache 1.3 and later.

Summary

This module provides a magic token for each request which is guaranteed to be unique across "all" requests under very specific
conditions. The unique identifier is even unique across multiple machines in a properly configured cluster of machines. The
environment variable UNIQUE_ID is set to the identifier for each request. Unique identifiers are useful for various reasons which
are beyond the scope of this document.

Directives

This module has no directives.

Theory

First a brief recap of how the Apache server works on Unix machines. On Unix machines, Apache creates several children, the
children process requests one at a time. Each child can serve multiple requests in its lifetime. For the purpose of this discussion, the
children don't share any data with each other. We'll refer to the children as httpd processes.

Your website has one or more machines under your administrative control, together we'll call them a cluster of machines. Each
machine can possibly run multiple instances of Apache. All of these collectively are considered "the universe", and with certain
assumptions we'll show that in this universe we can generate unique identifiers for each request, without extensive communication
between machines in the cluster.

The machines in your cluster should satisfy these requirements. (Even if you have only one machine you should synchronize its
clock with NTP.)

The machines' times are synchronized via NTP or other network time protocol.●

The machines' hostnames all differ, such that the module can do a hostname lookup on the hostname and receive a different
IP address for each machine in the cluster.

●

As far as operating system assumptions go, we assume that pids (process ids) fit in 32-bits. If the operating system uses more than
32-bits for a pid, the fix is trivial but must be performed in the code.

Given those assumptions, at a single point in time we can identify any httpd process on any machine in the cluster from all other
httpd processes. The machine's IP address and the pid of the httpd process are sufficient to do this. So in order to generate unique
identifiers for requests we need only distinguish between different points in time.

To distinguish time we will use a Unix timestamp (seconds since January 1, 1970 UTC), and a 16-bit counter. The timestamp has
only one second granularity, so the counter is used to represent up to 65536 values during a single second. The quadruple (ip_addr,
pid, time_stamp, counter) is sufficient to enumerate 65536 requests per second per httpd process. There are issues however with pid

Apache module mod_unique_id

http://httpd.apache.org/docs/mod/mod_unique_id.html (1 of 2) [12/05/2001 4:52:05 PM]

reuse over time, and the counter is used to alleviate this issue.

When an httpd child is created, the counter is initialized with (current microseconds divided by 10) modulo 65536 (this formula
was chosen to eliminate some variance problems with the low order bits of the microsecond timers on some systems). When a
unique identifier is generated, the time stamp used is the time the request arrived at the web server. The counter is incremented
every time an identifier is generated (and allowed to roll over).

The kernel generates a pid for each process as it forks the process, and pids are allowed to roll over (they're 16-bits on many Unixes,
but newer systems have expanded to 32-bits). So over time the same pid will be reused. However unless it is reused within the same
second, it does not destroy the uniqueness of our quadruple. That is, we assume the system does not spawn 65536 processes in a one
second interval (it may even be 32768 processes on some Unixes, but even this isn't likely to happen).

Suppose that time repeats itself for some reason. That is, suppose that the system's clock is screwed up and it revisits a past time (or
it is too far forward, is reset correctly, and then revisits the future time). In this case we can easily show that we can get pid and time
stamp reuse. The choice of initializer for the counter is intended to help defeat this. Note that we really want a random number to
initialize the counter, but there aren't any readily available numbers on most systems (i.e., you can't use rand() because you need to
seed the generator, and can't seed it with the time because time, at least at one second resolution, has repeated itself). This is not a
perfect defense.

How good a defense is it? Suppose that one of your machines serves at most 500 requests per second (which is a very reasonable
upper bound at this writing, because systems generally do more than just shovel out static files). To do that it will require a number
of children which depends on how many concurrent clients you have. But we'll be pessimistic and suppose that a single child is able
to serve 500 requests per second. There are 1000 possible starting counter values such that two sequences of 500 requests overlap.
So there is a 1.5% chance that if time (at one second resolution) repeats itself this child will repeat a counter value, and uniqueness
will be broken. This was a very pessimistic example, and with real world values it's even less likely to occur. If your system is such
that it's still likely to occur, then perhaps you should make the counter 32 bits (by editing the code).

You may be concerned about the clock being "set back" during summer daylight savings. However this isn't an issue because the
times used here are UTC, which "always" go forward. Note that x86 based Unixes may need proper configuration for this to be true
-- they should be configured to assume that the motherboard clock is on UTC and compensate appropriately. But even still, if you're
running NTP then your UTC time will be correct very shortly after reboot.

The UNIQUE_ID environment variable is constructed by encoding the 112-bit (32-bit IP address, 32 bit pid, 32 bit time stamp, 16
bit counter) quadruple using the alphabet [A-Za-z0-9@-] in a manner similar to MIME base64 encoding, producing 19
characters. The MIME base64 alphabet is actually [A-Za-z0-9+/] however + and / need to be specially encoded in URLs,
which makes them less desirable. All values are encoded in network byte ordering so that the encoding is comparable across
architectures of different byte ordering. The actual ordering of the encoding is: time stamp, IP address, pid, counter. This ordering
has a purpose, but it should be emphasized that applications should not dissect the encoding. Applications should treat the entire
encoded UNIQUE_ID as an opaque token, which can be compared against other UNIQUE_IDs for equality only.

The ordering was chosen such that it's possible to change the encoding in the future without worrying about collision with an
existing database of UNIQUE_IDs. The new encodings should also keep the time stamp as the first element, and can otherwise use
the same alphabet and bit length. Since the time stamps are essentially an increasing sequence, it's sufficient to have a flag second in
which all machines in the cluster stop serving and request, and stop using the old encoding format. Afterwards they can resume
requests and begin issuing the new encodings.

This is a relatively portable solution. It is extended to multithreaded systems like Windows NT, which add the thread-id to the ID,
producing a 144-bit (including 32-bit tid) quadruple that generates a 24 character UNIQUE_ID value. The identifiers generated
have essentially an infinite life-time because future identifiers can be made longer as required. Essentially no communication is
required between machines in the cluster (only NTP synchronization is required, which is low overhead), and no communication
between httpd processes is required (the communication is implicit in the pid value assigned by the kernel). In very specific
situations the identifier can be shortened, but more information needs to be assumed (for example the 32-bit IP address is overkill
for any site, but there is no portable shorter replacement for it). This module may be extended to include an entire IPv6 address, but
that is overkill for nearly all server configurations.

Apache HTTP Server Version 1.3

Apache module mod_unique_id

http://httpd.apache.org/docs/mod/mod_unique_id.html (2 of 2) [12/05/2001 4:52:05 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_userdir

This module provides for user-specific directories.

Status: Base
Source File: mod_userdir.c
Module Identifier: userdir_module

Directives

UserDir●

UserDir directive

Syntax: UserDir directory-filename
Default: UserDir public_html
Context: server config, virtual host
Status: Base
Module: mod_userdir
Compatibility: All forms except the UserDir public_html form are only available in Apache 1.1 or above. Use of the
enabled keyword, or disabled with a list of usernames, is only available in Apache 1.3 and above.

The UserDir directive sets the real directory in a user's home directory to use when a request for a document for a user is received.
Directory-filename is one of the following:

The name of a directory or a pattern such as those shown below.●

The keyword disabled. This turns off all username-to-directory translations except those explicitly named with the enabled
keyword (see below).

●

The keyword disabled followed by a space-delimited list of usernames. Usernames that appear in such a list will never have
directory translation performed, even if they appear in an enabled clause.

●

The keyword enabled followed by a space-delimited list of usernames. These usernames will have directory translation
performed even if a global disable is in effect, but not if they also appear in a disabled clause.

●

If neither the enabled nor the disabled keywords appear in the Userdir directive, the argument is treated as a filename pattern, and is
used to turn the name into a directory specification. A request for http://www.foo.com/~bob/one/two.html will be
translated to:

UserDir public_html -> ~bob/public_html/one/two.html
UserDir /usr/web -> /usr/web/bob/one/two.html
UserDir /home/*/www -> /home/bob/www/one/two.html

The following directives will send redirects to the client:

UserDir http://www.foo.com/users -> http://www.foo.com/users/bob/one/two.html
UserDir http://www.foo.com/*/usr -> http://www.foo.com/bob/usr/one/two.html

Apache module mod_userdir

http://httpd.apache.org/docs/mod/mod_userdir.html (1 of 2) [12/05/2001 4:52:07 PM]

UserDir http://www.foo.com/~*/ -> http://www.foo.com/~bob/one/two.html

Be careful when using this directive; for instance, "UserDir ./" would map "/~root" to "/" - which is
probably undesirable. If you are running Apache 1.3 or above, it is strongly recommended that your
configuration include a "UserDir disabled root" declaration. See also the <Directory> directive and the
Security Tips page for more information.

Apache HTTP Server Version 1.3

Apache module mod_userdir

http://httpd.apache.org/docs/mod/mod_userdir.html (2 of 2) [12/05/2001 4:52:07 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_usertrack

This module uses cookies to provide for a clickstream log of user activity on a site.

Status: Extension
Source File: mod_usertrack.c
Module Identifier: usertrack_module
Compatibility: Known as mod_cookies prior to Apache 1.3.

Summary

Previous releases of Apache have included a module which generates a 'clickstream' log of user activity on a site using cookies. This
was called the "cookies" module, mod_cookies. In Apache 1.2 and later this module has been renamed the "user tracking" module,
mod_usertrack. This module has been simplified and new directives added.

Directives

CookieDomain●

CookieExpires●

CookieName●

CookieStyle●

CookieTracking●

Logging

Previously, the cookies module (now the user tracking module) did its own logging, using the CookieLog directive. In this
release, this module does no logging at all. Instead, a configurable log format file should be used to log user click-streams. This is
possible because the logging module now allows multiple log files. The cookie itself is logged by using the text %{cookie}n in
the log file format. For example:

CustomLog logs/clickstream "%{cookie}n %r %t"

For backward compatibility the configurable log module implements the old CookieLog directive, but this should be upgraded to
the above CustomLog directive.

2-digit or 4-digit dates for cookies?

(the following is from message <022701bda43d$9d32bbb0$1201a8c0@christian.office.sane.com> in the new-httpd archives)

From: "Christian Allen" <christian@sane.com>
Subject: Re: Apache Y2K bug in mod_usertrack.c
Date: Tue, 30 Jun 1998 11:41:56 -0400

Apache module mod_usertrack

http://httpd.apache.org/docs/mod/mod_usertrack.html (1 of 3) [12/05/2001 4:52:08 PM]

Did some work with cookies and dug up some info that might be useful.

True, Netscape claims that the correct format NOW is four digit dates, and
four digit dates do in fact work... for Netscape 4.x (Communicator), that
is. However, 3.x and below do NOT accept them. It seems that Netscape
originally had a 2-digit standard, and then with all of the Y2K hype and
probably a few complaints, changed to a four digit date for Communicator.
Fortunately, 4.x also understands the 2-digit format, and so the best way to
ensure that your expiration date is legible to the client's browser is to
use 2-digit dates.

However, this does not limit expiration dates to the year 2000; if you use
an expiration year of "13", for example, it is interpreted as 2013, NOT
1913! In fact, you can use an expiration year of up to "37", and it will be
understood as "2037" by both MSIE and Netscape versions 3.x and up (not sure
about versions previous to those). Not sure why Netscape used that
particular year as its cut-off point, but my guess is that it was in respect
to UNIX's 2038 problem. Netscape/MSIE 4.x seem to be able to understand
2-digit years beyond that, at least until "50" for sure (I think they
understand up until about "70", but not for sure).

Summary: Mozilla 3.x and up understands two digit dates up until "37"
(2037). Mozilla 4.x understands up until at least "50" (2050) in 2-digit
form, but also understands 4-digit years, which can probably reach up until
9999. Your best bet for sending a long-life cookie is to send it for some
time late in the year "37".

CookieDomain directive

Syntax: CookieDomain domain
Context: server config, virtual host, directory, .htaccess
Status: optional
Module: mod_usertrack Compatibility: Apache 1.3.21 and later

This directive controls the setting of the domain to which the tracking cookie applies. If not present, no domain is included in the
cookie header field.

The domain string must begin with a dot, and must include at least one embedded dot. That is, ".foo.com" is legal, but
"foo.bar.com" and ".com" are not.

CookieExpires directive

Syntax: CookieExpires expiry-period
Context: 1.3.20 and earlier: server config, virtual host; 1.3.21 and later: server config, virtual host, directory, .htaccess
Status: optional
Module: mod_usertrack

When used, this directive sets an expiry time on the cookie generated by the usertrack module. The expiry-period can be given
either as a number of seconds, or in the format such as "2 weeks 3 days 7 hours". Valid denominations are: years, months, weeks,
hours, minutes and seconds. If the expiry time is in any format other than one number indicating the number of seconds, it must be
enclosed by double quotes.

If this directive is not used, cookies last only for the current browser session.

Apache module mod_usertrack

http://httpd.apache.org/docs/mod/mod_usertrack.html (2 of 3) [12/05/2001 4:52:08 PM]

CookieName directive

Syntax: CookieName token
Default: Apache
Context: server config, virtual host, directory, .htaccess
Status: optional
Module: mod_usertrack
Compatibility: Apache 1.3.7 and later

This directive allows you to change the name of the cookie this module uses for its tracking purposes. By default the cookie is
named "Apache".

You must specify a valid cookie name; results are unpredictable if you use a name containing unusual characters. Valid characters
include A-Z, a-z, 0-9, "_", and "-".

CookieStyle directive

Syntax: CookieStyle Netscape|Cookie|Cookie2|RFC2109|RFC2965
Context: server config, virtual host, directory, .htaccess
Status: optional
Module: mod_usertrack

This directive controls the format of the cookie header field. The three formats allowed are:

Netscape, which is the original but now deprecated syntax. This is the default, and the syntax Apache has historically used.●

Cookie or RFC2109, which is the syntax that superseded the Netscape syntax.●

Cookie2 or RFC2965, which is the most current cookie syntax.●

Not all clients can understand all of these formats. but you should use the newest one that is generally acceptable to your users'
browsers.

CookieTracking directive

Syntax: CookieTracking on|off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: optional
Module: mod_usertrack

When the user track module is compiled in, and "CookieTracking on" is set, Apache will start sending a user-tracking cookie for all
new requests. This directive can be used to turn this behavior on or off on a per-server or per-directory basis. By default, compiling
mod_usertrack will not activate cookies.

Apache HTTP Server Version 1.3

Apache module mod_usertrack

http://httpd.apache.org/docs/mod/mod_usertrack.html (3 of 3) [12/05/2001 4:52:08 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Module mod_vhost_alias

This module provides support for dynamically configured mass virtual hosting.

Status: Extension
Source File: mod_vhost_alias.c
Module Identifier: vhost_alias_module
Compatibility: Available in Apache 1.3.7 and later.

Summary

This module creates dynamically configured virtual hosts, by allowing the IP address and/or the Host: header of the HTTP request
to be used as part of the pathname to determine what files to serve. This allows for easy use of a huge number of virtual hosts with
similar configurations.

Directives

VirtualDocumentRoot●

VirtualDocumentRootIP●

VirtualScriptAlias●

VirtualScriptAliasIP●

See also: UseCanonicalName.

Directory Name Interpolation

All the directives in this module interpolate a string into a pathname. The interpolated string (henceforth called the "name") may be
either the server name (see the UseCanonicalName directive for details on how this is determined) or the IP address of the
virtual host on the server in dotted-quad format. The interpolation is controlled by specifiers inspired by printf which have a
number of formats:

%%

insert a %

%p

insert the port number of the virtual host

%N.M

insert (part of) the name

N and M are used to specify substrings of the name. N selects from the dot-separated components of the name, and M selects
characters within whatever N has selected. M is optional and defaults to zero if it isn't present; the dot must be present if and only if
M is present. The interpretation is as follows:

0

Apache module mod_vhost_alias

http://httpd.apache.org/docs/mod/mod_vhost_alias.html (1 of 4) [12/05/2001 4:52:10 PM]

the whole name

1

the first part

2

the second part

-1

the last part

-2

the penultimate part

2+

the second and all subsequent parts

-2+

the penultimate and all preceding parts

1+ and -1+

the same as 0

If N or M is greater than the number of parts available a single underscore is interpolated.

Examples

For simple name-based virtual hosts you might use the following directives in your server configuration file:

 UseCanonicalName Off
 VirtualDocumentRoot /usr/local/apache/vhosts/%0

A request for http://www.example.com/directory/file.html will be satisfied by the file
/usr/local/apache/vhosts/www.example.com/directory/file.html.

For a very large number of virtual hosts it is a good idea to arrange the files to reduce the size of the vhosts directory. To do this
you might use the following in your configuration file:

 UseCanonicalName Off
 VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.1/%2.2/%2.3/%2

A request for http://www.example.isp.com/directory/file.html will be satisfied by the file
/usr/local/apache/vhosts/isp.com/e/x/a/example/directory/file.html. A more even spread of files can
be achieved by hashing from the end of the name, for example:

 VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.-1/%2.-2/%2.-3/%2

The example request would come from
/usr/local/apache/vhosts/isp.com/e/l/p/example/directory/file.html. Alternatively you might use:

 VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.1/%2.2/%2.3/%2.4+

The example request would come from
/usr/local/apache/vhosts/isp.com/e/x/a/mple/directory/file.html.

For IP-based virtual hosting you might use the following in your configuration file:

 UseCanonicalName DNS
 VirtualDocumentRootIP /usr/local/apache/vhosts/%1/%2/%3/%4/docs
 VirtualScriptAliasIP /usr/local/apache/vhosts/%1/%2/%3/%4/cgi-bin

A request for http://www.example.isp.com/directory/file.html would be satisfied by the file

Apache module mod_vhost_alias

http://httpd.apache.org/docs/mod/mod_vhost_alias.html (2 of 4) [12/05/2001 4:52:10 PM]

/usr/local/apache/vhosts/10/20/30/40/docs/directory/file.html if the IP address of
www.example.com were 10.20.30.40. A request for http://www.example.isp.com/cgi-bin/script.pl would be
satisfied by executing the program /usr/local/apache/vhosts/10/20/30/40/cgi-bin/script.pl.

If you want to include the . character in a VirtualDocumentRoot directive, but it clashes with a % directive, you can work
around the problem in the following way:

 VirtualDocumentRoot /usr/local/apache/vhosts/%2.0.%3.0

A request for http://www.example.isp.com/directory/file.html will be satisfied by the file
/usr/local/apache/vhosts/example.isp/directory/file.html.

The LogFormat directives %V and %A are useful in conjunction with this module.

VirtualDocumentRoot directive

Syntax: VirtualDocumentRoot interpolated-directory
Default: None
Context: server config, virtual host
Status: Extension
Module: mod_vhost_alias
Compatibility: VirtualDocumentRoot is only available in 1.3.7 and later.

The VirtualDocumentRoot directive allows you to determine where Apache will find your documents based on the value of
the server name. The result of expanding interpolated-directory is used as the root of the document tree in a similar manner to the
DocumentRoot directive's argument. If interpolated-directory is none then VirtualDocumentRoot is turned off. This
directive cannot be used in the same context as VirtualDocumentRootIP.

VirtualDocumentRootIP directive

Syntax: VirtualDocumentRootIP interpolated-directory
Default: None
Context: server config, virtual host
Status: Extension
Module: mod_vhost_alias
Compatibility: VirtualDocumentRootIP is only available in 1.3.7 and later.

The VirtualDocumentRootIP directive is like the VirtualDocumentRoot directive, except that it uses the IP address of
the server end of the connection instead of the server name.

VirtualScriptAlias directive

Syntax: VirtualScriptAlias interpolated-directory
Default: None
Context: server config, virtual host
Status: Extension
Module: mod_vhost_alias
Compatibility: VirtualScriptAlias is only available in 1.3.7 and later.

The VirtualScriptAlias directive allows you to determine where Apache will find CGI scripts in a similar manner to
VirtualDocumentRoot does for other documents. It matches requests for URIs starting /cgi-bin/, much like

Apache module mod_vhost_alias

http://httpd.apache.org/docs/mod/mod_vhost_alias.html (3 of 4) [12/05/2001 4:52:10 PM]

ScriptAlias /cgi-bin/ would.

VirtualScriptAliasIP directive

Syntax: VirtualScriptAliasIP interpolated-directory
Default: None
Context: server config, virtual host
Status: Extension
Module: mod_vhost_alias
Compatibility: VirtualScriptAliasIP is only available in 1.3.7 and later.

The VirtualScriptAliasIP directive is like the VirtualScriptAlias directive, except that it uses the IP address of the
server end of the connection instead of the server name.

Apache HTTP Server Version 1.3

Apache module mod_vhost_alias

http://httpd.apache.org/docs/mod/mod_vhost_alias.html (4 of 4) [12/05/2001 4:52:10 PM]

http://httpd.apache.org/docs/mod/

Apache HTTP Server Version 1.3

Apache API notes

These are some notes on the Apache API and the data structures you have to deal with, etc. They are not yet nearly complete, but
hopefully, they will help you get your bearings. Keep in mind that the API is still subject to change as we gain experience with it.
(See the TODO file for what might be coming). However, it will be easy to adapt modules to any changes that are made. (We have
more modules to adapt than you do).

A few notes on general pedagogical style here. In the interest of conciseness, all structure declarations here are incomplete --- the
real ones have more slots that I'm not telling you about. For the most part, these are reserved to one component of the server core or
another, and should be altered by modules with caution. However, in some cases, they really are things I just haven't gotten around
to yet. Welcome to the bleeding edge.

Finally, here's an outline, to give you some bare idea of what's coming up, and in what order:

Basic concepts.

Handlers, Modules, and Requests❍

A brief tour of a module❍

●

How handlers work

A brief tour of the request_rec❍

Where request_rec structures come from❍

Handling requests, declining, and returning error codes❍

Special considerations for response handlers❍

Special considerations for authentication handlers❍

Special considerations for logging handlers❍

●

Resource allocation and resource pools●

Configuration, commands and the like

Per-directory configuration structures❍

Command handling❍

Side notes --- per-server configuration, virtual servers, etc.❍

●

Basic concepts.

We begin with an overview of the basic concepts behind the API, and how they are manifested in the code.

Handlers, Modules, and Requests

Apache breaks down request handling into a series of steps, more or less the same way the Netscape server API does (although this
API has a few more stages than NetSite does, as hooks for stuff I thought might be useful in the future). These are:

URI -> Filename translation●

Auth ID checking [is the user who they say they are?]●

Auth access checking [is the user authorized here?]●

Apache API notes

http://httpd.apache.org/docs/misc/API.html (1 of 13) [12/05/2001 4:52:17 PM]

Access checking other than auth●

Determining MIME type of the object requested●

`Fixups' --- there aren't any of these yet, but the phase is intended as a hook for possible extensions like SetEnv, which
don't really fit well elsewhere.

●

Actually sending a response back to the client.●

Logging the request●

These phases are handled by looking at each of a succession of modules, looking to see if each of them has a handler for the phase,
and attempting invoking it if so. The handler can typically do one of three things:

Handle the request, and indicate that it has done so by returning the magic constant OK.●

Decline to handle the request, by returning the magic integer constant DECLINED. In this case, the server behaves in all
respects as if the handler simply hadn't been there.

●

Signal an error, by returning one of the HTTP error codes. This terminates normal handling of the request, although an
ErrorDocument may be invoked to try to mop up, and it will be logged in any case.

●

Most phases are terminated by the first module that handles them; however, for logging, `fixups', and non-access authentication
checking, all handlers always run (barring an error). Also, the response phase is unique in that modules may declare multiple
handlers for it, via a dispatch table keyed on the MIME type of the requested object. Modules may declare a response-phase handler
which can handle any request, by giving it the key */* (i.e., a wildcard MIME type specification). However, wildcard handlers are
only invoked if the server has already tried and failed to find a more specific response handler for the MIME type of the requested
object (either none existed, or they all declined).

The handlers themselves are functions of one argument (a request_rec structure. vide infra), which returns an integer, as above.

A brief tour of a module

At this point, we need to explain the structure of a module. Our candidate will be one of the messier ones, the CGI module --- this
handles both CGI scripts and the ScriptAlias config file command. It's actually a great deal more complicated than most
modules, but if we're going to have only one example, it might as well be the one with its fingers in every place.

Let's begin with handlers. In order to handle the CGI scripts, the module declares a response handler for them. Because of
ScriptAlias, it also has handlers for the name translation phase (to recognize ScriptAliased URIs), the type-checking
phase (any ScriptAliased request is typed as a CGI script).

The module needs to maintain some per (virtual) server information, namely, the ScriptAliases in effect; the module structure
therefore contains pointers to a functions which builds these structures, and to another which combines two of them (in case the
main server and a virtual server both have ScriptAliases declared).

Finally, this module contains code to handle the ScriptAlias command itself. This particular module only declares one
command, but there could be more, so modules have command tables which declare their commands, and describe where they are
permitted, and how they are to be invoked.

A final note on the declared types of the arguments of some of these commands: a pool is a pointer to a resource pool structure;
these are used by the server to keep track of the memory which has been allocated, files opened, etc., either to service a particular
request, or to handle the process of configuring itself. That way, when the request is over (or, for the configuration pool, when the
server is restarting), the memory can be freed, and the files closed, en masse, without anyone having to write explicit code to track
them all down and dispose of them. Also, a cmd_parms structure contains various information about the config file being read,
and other status information, which is sometimes of use to the function which processes a config-file command (such as
ScriptAlias). With no further ado, the module itself:

/* Declarations of handlers. */

int translate_scriptalias (request_rec *);
int type_scriptalias (request_rec *);
int cgi_handler (request_rec *);

/* Subsidiary dispatch table for response-phase handlers, by MIME type */

handler_rec cgi_handlers[] = {

Apache API notes

http://httpd.apache.org/docs/misc/API.html (2 of 13) [12/05/2001 4:52:17 PM]

{ "application/x-httpd-cgi", cgi_handler },
{ NULL }
};

/* Declarations of routines to manipulate the module's configuration
 * info. Note that these are returned, and passed in, as void *'s;
 * the server core keeps track of them, but it doesn't, and can't,
 * know their internal structure.
 */

void *make_cgi_server_config (pool *);
void *merge_cgi_server_config (pool *, void *, void *);

/* Declarations of routines to handle config-file commands */

extern char *script_alias(cmd_parms *, void *per_dir_config, char *fake,
 char *real);

command_rec cgi_cmds[] = {
{ "ScriptAlias", script_alias, NULL, RSRC_CONF, TAKE2,
 "a fakename and a realname"},
{ NULL }
};

module cgi_module = {
 STANDARD_MODULE_STUFF,
 NULL, /* initializer */
 NULL, /* dir config creator */
 NULL, /* dir merger --- default is to override */
 make_cgi_server_config, /* server config */
 merge_cgi_server_config, /* merge server config */
 cgi_cmds, /* command table */
 cgi_handlers, /* handlers */
 translate_scriptalias, /* filename translation */
 NULL, /* check_user_id */
 NULL, /* check auth */
 NULL, /* check access */
 type_scriptalias, /* type_checker */
 NULL, /* fixups */
 NULL, /* logger */
 NULL /* header parser */
};

How handlers work

The sole argument to handlers is a request_rec structure. This structure describes a particular request which has been made to
the server, on behalf of a client. In most cases, each connection to the client generates only one request_rec structure.

A brief tour of the request_rec

The request_rec contains pointers to a resource pool which will be cleared when the server is finished handling the request; to
structures containing per-server and per-connection information, and most importantly, information on the request itself.

The most important such information is a small set of character strings describing attributes of the object being requested, including
its URI, filename, content-type and content-encoding (these being filled in by the translation and type-check handlers which handle
the request, respectively).

Other commonly used data items are tables giving the MIME headers on the client's original request, MIME headers to be sent back
with the response (which modules can add to at will), and environment variables for any subprocesses which are spawned off in the
course of servicing the request. These tables are manipulated using the ap_table_get and ap_table_set routines.

Apache API notes

http://httpd.apache.org/docs/misc/API.html (3 of 13) [12/05/2001 4:52:17 PM]

Note that the Content-type header value cannot be set by module content-handlers using the ap_table_*() routines.
Rather, it is set by pointing the content_type field in the request_rec structure to an appropriate string. E.g.,

 r->content_type = "text/html";

Finally, there are pointers to two data structures which, in turn, point to per-module configuration structures. Specifically, these hold
pointers to the data structures which the module has built to describe the way it has been configured to operate in a given directory
(via .htaccess files or <Directory> sections), for private data it has built in the course of servicing the request (so modules'
handlers for one phase can pass `notes' to their handlers for other phases). There is another such configuration vector in the
server_rec data structure pointed to by the request_rec, which contains per (virtual) server configuration data.

Here is an abridged declaration, giving the fields most commonly used:

struct request_rec {

 pool *pool;
 conn_rec *connection;
 server_rec *server;

 /* What object is being requested */

 char *uri;
 char *filename;
 char *path_info;
 char *args; /* QUERY_ARGS, if any */
 struct stat finfo; /* Set by server core;
 * st_mode set to zero if no such file */

 char *content_type;
 char *content_encoding;

 /* MIME header environments, in and out. Also, an array containing
 * environment variables to be passed to subprocesses, so people can
 * write modules to add to that environment.
 *
 * The difference between headers_out and err_headers_out is that
 * the latter are printed even on error, and persist across internal
 * redirects (so the headers printed for ErrorDocument handlers will
 * have them).
 */

 table *headers_in;
 table *headers_out;
 table *err_headers_out;
 table *subprocess_env;

 /* Info about the request itself... */

 int header_only; /* HEAD request, as opposed to GET */
 char *protocol; /* Protocol, as given to us, or HTTP/0.9 */
 char *method; /* GET, HEAD, POST, etc. */
 int method_number; /* M_GET, M_POST, etc. */

 /* Info for logging */

 char *the_request;
 int bytes_sent;

 /* A flag which modules can set, to indicate that the data being
 * returned is volatile, and clients should be told not to cache it.
 */

Apache API notes

http://httpd.apache.org/docs/misc/API.html (4 of 13) [12/05/2001 4:52:17 PM]

 int no_cache;

 /* Various other config info which may change with .htaccess files
 * These are config vectors, with one void* pointer for each module
 * (the thing pointed to being the module's business).
 */

 void *per_dir_config; /* Options set in config files, etc. */
 void *request_config; /* Notes on *this* request */

};

Where request_rec structures come from

Most request_rec structures are built by reading an HTTP request from a client, and filling in the fields. However, there are a
few exceptions:

If the request is to an imagemap, a type map (i.e., a *.var file), or a CGI script which returned a local `Location:', then the
resource which the user requested is going to be ultimately located by some URI other than what the client originally
supplied. In this case, the server does an internal redirect, constructing a new request_rec for the new URI, and
processing it almost exactly as if the client had requested the new URI directly.

●

If some handler signaled an error, and an ErrorDocument is in scope, the same internal redirect machinery comes into
play.

●

Finally, a handler occasionally needs to investigate `what would happen if' some other request were run. For instance, the
directory indexing module needs to know what MIME type would be assigned to a request for each directory entry, in order
to figure out what icon to use.

Such handlers can construct a sub-request, using the functions ap_sub_req_lookup_file,
ap_sub_req_lookup_uri, and ap_sub_req_method_uri; these construct a new request_rec structure and
processes it as you would expect, up to but not including the point of actually sending a response. (These functions skip
over the access checks if the sub-request is for a file in the same directory as the original request).

(Server-side includes work by building sub-requests and then actually invoking the response handler for them, via the
function ap_run_sub_req).

●

Handling requests, declining, and returning error codes

As discussed above, each handler, when invoked to handle a particular request_rec, has to return an int to indicate what
happened. That can either be

OK --- the request was handled successfully. This may or may not terminate the phase.●

DECLINED --- no erroneous condition exists, but the module declines to handle the phase; the server tries to find another.●

an HTTP error code, which aborts handling of the request.●

Note that if the error code returned is REDIRECT, then the module should put a Location in the request's headers_out, to
indicate where the client should be redirected to.

Special considerations for response handlers

Handlers for most phases do their work by simply setting a few fields in the request_rec structure (or, in the case of access
checkers, simply by returning the correct error code). However, response handlers have to actually send a request back to the client.

They should begin by sending an HTTP response header, using the function ap_send_http_header. (You don't have to do
anything special to skip sending the header for HTTP/0.9 requests; the function figures out on its own that it shouldn't do anything).
If the request is marked header_only, that's all they should do; they should return after that, without attempting any further
output.

Otherwise, they should produce a request body which responds to the client as appropriate. The primitives for this are ap_rputc
and ap_rprintf, for internally generated output, and ap_send_fd, to copy the contents of some FILE * straight to the client.

Apache API notes

http://httpd.apache.org/docs/misc/API.html (5 of 13) [12/05/2001 4:52:17 PM]

At this point, you should more or less understand the following piece of code, which is the handler which handles GET requests
which have no more specific handler; it also shows how conditional GETs can be handled, if it's desirable to do so in a particular
response handler --- ap_set_last_modified checks against the If-modified-since value supplied by the client, if any,
and returns an appropriate code (which will, if nonzero, be USE_LOCAL_COPY). No similar considerations apply for
ap_set_content_length, but it returns an error code for symmetry.

int default_handler (request_rec *r)
{
 int errstatus;
 FILE *f;

 if (r->method_number != M_GET) return DECLINED;
 if (r->finfo.st_mode == 0) return NOT_FOUND;

 if ((errstatus = ap_set_content_length (r, r->finfo.st_size))
 || (errstatus = ap_set_last_modified (r, r->finfo.st_mtime)))
 return errstatus;

 f = fopen (r->filename, "r");

 if (f == NULL) {
 log_reason("file permissions deny server access",
 r->filename, r);
 return FORBIDDEN;
 }

 register_timeout ("send", r);
 ap_send_http_header (r);

 if (!r->header_only) send_fd (f, r);
 ap_pfclose (r->pool, f);
 return OK;
}

Finally, if all of this is too much of a challenge, there are a few ways out of it. First off, as shown above, a response handler which
has not yet produced any output can simply return an error code, in which case the server will automatically produce an error
response. Secondly, it can punt to some other handler by invoking ap_internal_redirect, which is how the internal
redirection machinery discussed above is invoked. A response handler which has internally redirected should always return OK.

(Invoking ap_internal_redirect from handlers which are not response handlers will lead to serious confusion).

Special considerations for authentication handlers

Stuff that should be discussed here in detail:

Authentication-phase handlers not invoked unless auth is configured for the directory.●

Common auth configuration stored in the core per-dir configuration; it has accessors ap_auth_type, ap_auth_name,
and ap_requires.

●

Common routines, to handle the protocol end of things, at least for HTTP basic authentication
(ap_get_basic_auth_pw, which sets the connection->user structure field automatically, and
ap_note_basic_auth_failure, which arranges for the proper WWW-Authenticate: header to be sent back).

●

Special considerations for logging handlers

When a request has internally redirected, there is the question of what to log. Apache handles this by bundling the entire chain of
redirects into a list of request_rec structures which are threaded through the r->prev and r->next pointers. The
request_rec which is passed to the logging handlers in such cases is the one which was originally built for the initial request
from the client; note that the bytes_sent field will only be correct in the last request in the chain (the one for which a response was
actually sent).

Apache API notes

http://httpd.apache.org/docs/misc/API.html (6 of 13) [12/05/2001 4:52:17 PM]

Resource allocation and resource pools

One of the problems of writing and designing a server-pool server is that of preventing leakage, that is, allocating resources
(memory, open files, etc.), without subsequently releasing them. The resource pool machinery is designed to make it easy to prevent
this from happening, by allowing resource to be allocated in such a way that they are automatically released when the server is done
with them.

The way this works is as follows: the memory which is allocated, file opened, etc., to deal with a particular request are tied to a
resource pool which is allocated for the request. The pool is a data structure which itself tracks the resources in question.

When the request has been processed, the pool is cleared. At that point, all the memory associated with it is released for reuse, all
files associated with it are closed, and any other clean-up functions which are associated with the pool are run. When this is over,
we can be confident that all the resource tied to the pool have been released, and that none of them have leaked.

Server restarts, and allocation of memory and resources for per-server configuration, are handled in a similar way. There is a
configuration pool, which keeps track of resources which were allocated while reading the server configuration files, and handling
the commands therein (for instance, the memory that was allocated for per-server module configuration, log files and other files that
were opened, and so forth). When the server restarts, and has to reread the configuration files, the configuration pool is cleared, and
so the memory and file descriptors which were taken up by reading them the last time are made available for reuse.

It should be noted that use of the pool machinery isn't generally obligatory, except for situations like logging handlers, where you
really need to register cleanups to make sure that the log file gets closed when the server restarts (this is most easily done by using
the function ap_pfopen, which also arranges for the underlying file descriptor to be closed before any child processes, such as for
CGI scripts, are execed), or in case you are using the timeout machinery (which isn't yet even documented here). However, there
are two benefits to using it: resources allocated to a pool never leak (even if you allocate a scratch string, and just forget about it);
also, for memory allocation, ap_palloc is generally faster than malloc.

We begin here by describing how memory is allocated to pools, and then discuss how other resources are tracked by the resource
pool machinery.

Allocation of memory in pools

Memory is allocated to pools by calling the function ap_palloc, which takes two arguments, one being a pointer to a resource
pool structure, and the other being the amount of memory to allocate (in chars). Within handlers for handling requests, the most
common way of getting a resource pool structure is by looking at the pool slot of the relevant request_rec; hence the repeated
appearance of the following idiom in module code:

int my_handler(request_rec *r)
{
 struct my_structure *foo;
 ...

 foo = (foo *)ap_palloc (r->pool, sizeof(my_structure));
}

Note that there is no ap_pfree --- ap_palloced memory is freed only when the associated resource pool is cleared. This means
that ap_palloc does not have to do as much accounting as malloc(); all it does in the typical case is to round up the size,
bump a pointer, and do a range check.

(It also raises the possibility that heavy use of ap_palloc could cause a server process to grow excessively large. There are two
ways to deal with this, which are dealt with below; briefly, you can use malloc, and try to be sure that all of the memory gets
explicitly freed, or you can allocate a sub-pool of the main pool, allocate your memory in the sub-pool, and clear it out
periodically. The latter technique is discussed in the section on sub-pools below, and is used in the directory-indexing code, in order
to avoid excessive storage allocation when listing directories with thousands of files).

Apache API notes

http://httpd.apache.org/docs/misc/API.html (7 of 13) [12/05/2001 4:52:17 PM]

Allocating initialized memory

There are functions which allocate initialized memory, and are frequently useful. The function ap_pcalloc has the same
interface as ap_palloc, but clears out the memory it allocates before it returns it. The function ap_pstrdup takes a resource
pool and a char * as arguments, and allocates memory for a copy of the string the pointer points to, returning a pointer to the
copy. Finally ap_pstrcat is a varargs-style function, which takes a pointer to a resource pool, and at least two char *
arguments, the last of which must be NULL. It allocates enough memory to fit copies of each of the strings, as a unit; for instance:

 ap_pstrcat (r->pool, "foo", "/", "bar", NULL);

returns a pointer to 8 bytes worth of memory, initialized to "foo/bar".

Commonly-used pools in the Apache Web server

A pool is really defined by its lifetime more than anything else. There are some static pools in http_main which are passed to
various non-http_main functions as arguments at opportune times. Here they are:

permanent_pool

never passed to anything else, this is the ancestor of all pools❍

pconf

subpool of permanent_pool❍

created at the beginning of a config "cycle"; exists until the server is terminated or restarts; passed to all config-time
routines, either via cmd->pool, or as the "pool *p" argument on those which don't take pools

❍

passed to the module init() functions❍

ptemp

sorry I lie, this pool isn't called this currently in 1.3, I renamed it this in my pthreads development. I'm referring to
the use of ptrans in the parent... contrast this with the later definition of ptrans in the child.

❍

subpool of permanent_pool❍

created at the beginning of a config "cycle"; exists until the end of config parsing; passed to config-time routines
via cmd->temp_pool. Somewhat of a "bastard child" because it isn't available everywhere. Used for temporary
scratch space which may be needed by some config routines but which is deleted at the end of config.

❍

pchild

subpool of permanent_pool❍

created when a child is spawned (or a thread is created); lives until that child (thread) is destroyed❍

passed to the module child_init functions❍

destruction happens right after the child_exit functions are called... (which may explain why I think child_exit is
redundant and unneeded)

❍

ptrans

should be a subpool of pchild, but currently is a subpool of permanent_pool, see above❍

cleared by the child before going into the accept() loop to receive a connection❍

used as connection->pool❍

r->pool

for the main request this is a subpool of connection->pool; for subrequests it is a subpool of the parent request's
pool.

❍

exists until the end of the request (i.e., ap_destroy_sub_req, or in child_main after process_request has finished)❍

note that r itself is allocated from r->pool; i.e., r->pool is first created and then r is the first thing palloc()d from it❍

For almost everything folks do, r->pool is the pool to use. But you can see how other lifetimes, such as pchild, are useful to some
modules... such as modules that need to open a database connection once per child, and wish to clean it up when the child dies.

You can also see how some bugs have manifested themself, such as setting connection->user to a value from r->pool -- in this case
connection exists for the lifetime of ptrans, which is longer than r->pool (especially if r->pool is a subrequest!). So the correct thing

Apache API notes

http://httpd.apache.org/docs/misc/API.html (8 of 13) [12/05/2001 4:52:17 PM]

to do is to allocate from connection->pool.

And there was another interesting bug in mod_include/mod_cgi. You'll see in those that they do this test to decide if they should use
r->pool or r->main->pool. In this case the resource that they are registering for cleanup is a child process. If it were registered in
r->pool, then the code would wait() for the child when the subrequest finishes. With mod_include this could be any old #include,
and the delay can be up to 3 seconds... and happened quite frequently. Instead the subprocess is registered in r->main->pool which
causes it to be cleaned up when the entire request is done -- i.e., after the output has been sent to the client and logging has
happened.

Tracking open files, etc.

As indicated above, resource pools are also used to track other sorts of resources besides memory. The most common are open files.
The routine which is typically used for this is ap_pfopen, which takes a resource pool and two strings as arguments; the strings
are the same as the typical arguments to fopen, e.g.,

 ...
 FILE *f = ap_pfopen (r->pool, r->filename, "r");

 if (f == NULL) { ... } else { ... }

There is also a ap_popenf routine, which parallels the lower-level open system call. Both of these routines arrange for the file to
be closed when the resource pool in question is cleared.

Unlike the case for memory, there are functions to close files allocated with ap_pfopen, and ap_popenf, namely
ap_pfclose and ap_pclosef. (This is because, on many systems, the number of files which a single process can have open is
quite limited). It is important to use these functions to close files allocated with ap_pfopen and ap_popenf, since to do
otherwise could cause fatal errors on systems such as Linux, which react badly if the same FILE* is closed more than once.

(Using the close functions is not mandatory, since the file will eventually be closed regardless, but you should consider it in cases
where your module is opening, or could open, a lot of files).

Other sorts of resources --- cleanup functions

More text goes here. Describe the the cleanup primitives in terms of which the file stuff is implemented; also,
spawn_process.

Pool cleanups live until clear_pool() is called: clear_pool(a) recursively calls destroy_pool() on all subpools of a; then calls all the
cleanups for a; then releases all the memory for a. destroy_pool(a) calls clear_pool(a) and then releases the pool structure itself. i.e.,
clear_pool(a) doesn't delete a, it just frees up all the resources and you can start using it again immediately.

Fine control --- creating and dealing with sub-pools, with a note on sub-requests

On rare occasions, too-free use of ap_palloc() and the associated primitives may result in undesirably profligate resource
allocation. You can deal with such a case by creating a sub-pool, allocating within the sub-pool rather than the main pool, and
clearing or destroying the sub-pool, which releases the resources which were associated with it. (This really is a rare situation; the
only case in which it comes up in the standard module set is in case of listing directories, and then only with very large directories.
Unnecessary use of the primitives discussed here can hair up your code quite a bit, with very little gain).

The primitive for creating a sub-pool is ap_make_sub_pool, which takes another pool (the parent pool) as an argument. When
the main pool is cleared, the sub-pool will be destroyed. The sub-pool may also be cleared or destroyed at any time, by calling the
functions ap_clear_pool and ap_destroy_pool, respectively. (The difference is that ap_clear_pool frees resources
associated with the pool, while ap_destroy_pool also deallocates the pool itself. In the former case, you can allocate new
resources within the pool, and clear it again, and so forth; in the latter case, it is simply gone).

One final note --- sub-requests have their own resource pools, which are sub-pools of the resource pool for the main request. The
polite way to reclaim the resources associated with a sub request which you have allocated (using the ap_sub_req_...
functions) is ap_destroy_sub_req, which frees the resource pool. Before calling this function, be sure to copy anything that
you care about which might be allocated in the sub-request's resource pool into someplace a little less volatile (for instance, the
filename in its request_rec structure).

Apache API notes

http://httpd.apache.org/docs/misc/API.html (9 of 13) [12/05/2001 4:52:17 PM]

(Again, under most circumstances, you shouldn't feel obliged to call this function; only 2K of memory or so are allocated for a
typical sub request, and it will be freed anyway when the main request pool is cleared. It is only when you are allocating many,
many sub-requests for a single main request that you should seriously consider the ap_destroy_... functions).

Configuration, commands and the like

One of the design goals for this server was to maintain external compatibility with the NCSA 1.3 server --- that is, to read the same
configuration files, to process all the directives therein correctly, and in general to be a drop-in replacement for NCSA. On the other
hand, another design goal was to move as much of the server's functionality into modules which have as little as possible to do with
the monolithic server core. The only way to reconcile these goals is to move the handling of most commands from the central server
into the modules.

However, just giving the modules command tables is not enough to divorce them completely from the server core. The server has to
remember the commands in order to act on them later. That involves maintaining data which is private to the modules, and which
can be either per-server, or per-directory. Most things are per-directory, including in particular access control and authorization
information, but also information on how to determine file types from suffixes, which can be modified by AddType and
DefaultType directives, and so forth. In general, the governing philosophy is that anything which can be made configurable by
directory should be; per-server information is generally used in the standard set of modules for information like Aliases and
Redirects which come into play before the request is tied to a particular place in the underlying file system.

Another requirement for emulating the NCSA server is being able to handle the per-directory configuration files, generally called
.htaccess files, though even in the NCSA server they can contain directives which have nothing at all to do with access control.
Accordingly, after URI -> filename translation, but before performing any other phase, the server walks down the directory
hierarchy of the underlying filesystem, following the translated pathname, to read any .htaccess files which might be present.
The information which is read in then has to be merged with the applicable information from the server's own config files (either
from the <Directory> sections in access.conf, or from defaults in srm.conf, which actually behaves for most purposes
almost exactly like <Directory />).

Finally, after having served a request which involved reading .htaccess files, we need to discard the storage allocated for
handling them. That is solved the same way it is solved wherever else similar problems come up, by tying those structures to the
per-transaction resource pool.

Per-directory configuration structures

Let's look out how all of this plays out in mod_mime.c, which defines the file typing handler which emulates the NCSA server's
behavior of determining file types from suffixes. What we'll be looking at, here, is the code which implements the AddType and
AddEncoding commands. These commands can appear in .htaccess files, so they must be handled in the module's private
per-directory data, which in fact, consists of two separate tables for MIME types and encoding information, and is declared as
follows:

typedef struct {
 table *forced_types; /* Additional AddTyped stuff */
 table *encoding_types; /* Added with AddEncoding... */
} mime_dir_config;

When the server is reading a configuration file, or <Directory> section, which includes one of the MIME module's commands,
it needs to create a mime_dir_config structure, so those commands have something to act on. It does this by invoking the
function it finds in the module's `create per-dir config slot', with two arguments: the name of the directory to which this
configuration information applies (or NULL for srm.conf), and a pointer to a resource pool in which the allocation should
happen.

(If we are reading a .htaccess file, that resource pool is the per-request resource pool for the request; otherwise it is a resource
pool which is used for configuration data, and cleared on restarts. Either way, it is important for the structure being created to vanish
when the pool is cleared, by registering a cleanup on the pool if necessary).

For the MIME module, the per-dir config creation function just ap_pallocs the structure above, and a creates a couple of
tables to fill it. That looks like this:

void *create_mime_dir_config (pool *p, char *dummy)
{

Apache API notes

http://httpd.apache.org/docs/misc/API.html (10 of 13) [12/05/2001 4:52:17 PM]

 mime_dir_config *new =
 (mime_dir_config *) ap_palloc (p, sizeof(mime_dir_config));

 new->forced_types = ap_make_table (p, 4);
 new->encoding_types = ap_make_table (p, 4);

 return new;
}

Now, suppose we've just read in a .htaccess file. We already have the per-directory configuration structure for the next
directory up in the hierarchy. If the .htaccess file we just read in didn't have any AddType or AddEncoding commands, its
per-directory config structure for the MIME module is still valid, and we can just use it. Otherwise, we need to merge the two
structures somehow.

To do that, the server invokes the module's per-directory config merge function, if one is present. That function takes three
arguments: the two structures being merged, and a resource pool in which to allocate the result. For the MIME module, all that
needs to be done is overlay the tables from the new per-directory config structure with those from the parent:

void *merge_mime_dir_configs (pool *p, void *parent_dirv, void *subdirv)
{
 mime_dir_config *parent_dir = (mime_dir_config *)parent_dirv;
 mime_dir_config *subdir = (mime_dir_config *)subdirv;
 mime_dir_config *new =
 (mime_dir_config *)ap_palloc (p, sizeof(mime_dir_config));

 new->forced_types = ap_overlay_tables (p, subdir->forced_types,
 parent_dir->forced_types);
 new->encoding_types = ap_overlay_tables (p, subdir->encoding_types,
 parent_dir->encoding_types);

 return new;
}

As a note --- if there is no per-directory merge function present, the server will just use the subdirectory's configuration info, and
ignore the parent's. For some modules, that works just fine (e.g., for the includes module, whose per-directory configuration
information consists solely of the state of the XBITHACK), and for those modules, you can just not declare one, and leave the
corresponding structure slot in the module itself NULL.

Command handling

Now that we have these structures, we need to be able to figure out how to fill them. That involves processing the actual AddType
and AddEncoding commands. To find commands, the server looks in the module's command table. That table contains
information on how many arguments the commands take, and in what formats, where it is permitted, and so forth. That information
is sufficient to allow the server to invoke most command-handling functions with pre-parsed arguments. Without further ado, let's
look at the AddType command handler, which looks like this (the AddEncoding command looks basically the same, and won't
be shown here):

char *add_type(cmd_parms *cmd, mime_dir_config *m, char *ct, char *ext)
{
 if (*ext == '.') ++ext;
 ap_table_set (m->forced_types, ext, ct);
 return NULL;
}

This command handler is unusually simple. As you can see, it takes four arguments, two of which are pre-parsed arguments, the
third being the per-directory configuration structure for the module in question, and the fourth being a pointer to a cmd_parms
structure. That structure contains a bunch of arguments which are frequently of use to some, but not all, commands, including a
resource pool (from which memory can be allocated, and to which cleanups should be tied), and the (virtual) server being
configured, from which the module's per-server configuration data can be obtained if required.

Another way in which this particular command handler is unusually simple is that there are no error conditions which it can
encounter. If there were, it could return an error message instead of NULL; this causes an error to be printed out on the server's

Apache API notes

http://httpd.apache.org/docs/misc/API.html (11 of 13) [12/05/2001 4:52:17 PM]

stderr, followed by a quick exit, if it is in the main config files; for a .htaccess file, the syntax error is logged in the server
error log (along with an indication of where it came from), and the request is bounced with a server error response (HTTP error
status, code 500).

The MIME module's command table has entries for these commands, which look like this:

command_rec mime_cmds[] = {
{ "AddType", add_type, NULL, OR_FILEINFO, TAKE2,
 "a mime type followed by a file extension" },
{ "AddEncoding", add_encoding, NULL, OR_FILEINFO, TAKE2,
 "an encoding (e.g., gzip), followed by a file extension" },
{ NULL }
};

The entries in these tables are:

The name of the command●

The function which handles it●

a (void *) pointer, which is passed in the cmd_parms structure to the command handler --- this is useful in case many
similar commands are handled by the same function.

●

A bit mask indicating where the command may appear. There are mask bits corresponding to each AllowOverride
option, and an additional mask bit, RSRC_CONF, indicating that the command may appear in the server's own config files,
but not in any .htaccess file.

●

A flag indicating how many arguments the command handler wants pre-parsed, and how they should be passed in. TAKE2
indicates two pre-parsed arguments. Other options are TAKE1, which indicates one pre-parsed argument, FLAG, which
indicates that the argument should be On or Off, and is passed in as a boolean flag, RAW_ARGS, which causes the server to
give the command the raw, unparsed arguments (everything but the command name itself). There is also ITERATE, which
means that the handler looks the same as TAKE1, but that if multiple arguments are present, it should be called multiple
times, and finally ITERATE2, which indicates that the command handler looks like a TAKE2, but if more arguments are
present, then it should be called multiple times, holding the first argument constant.

●

Finally, we have a string which describes the arguments that should be present. If the arguments in the actual config file are
not as required, this string will be used to help give a more specific error message. (You can safely leave this NULL).

●

Finally, having set this all up, we have to use it. This is ultimately done in the module's handlers, specifically for its file-typing
handler, which looks more or less like this; note that the per-directory configuration structure is extracted from the
request_rec's per-directory configuration vector by using the ap_get_module_config function.

int find_ct(request_rec *r)
{
 int i;
 char *fn = ap_pstrdup (r->pool, r->filename);
 mime_dir_config *conf = (mime_dir_config *)
 ap_get_module_config(r->per_dir_config, &mime_module);
 char *type;

 if (S_ISDIR(r->finfo.st_mode)) {
 r->content_type = DIR_MAGIC_TYPE;
 return OK;
 }

 if((i=ap_rind(fn,'.')) < 0) return DECLINED;
 ++i;

 if ((type = ap_table_get (conf->encoding_types, &fn[i])))
 {
 r->content_encoding = type;

 /* go back to previous extension to try to use it as a type */

 fn[i-1] = '\0';
 if((i=ap_rind(fn,'.')) < 0) return OK;

Apache API notes

http://httpd.apache.org/docs/misc/API.html (12 of 13) [12/05/2001 4:52:17 PM]

 ++i;
 }

 if ((type = ap_table_get (conf->forced_types, &fn[i])))
 {
 r->content_type = type;
 }

 return OK;
}

Side notes --- per-server configuration, virtual servers, etc.

The basic ideas behind per-server module configuration are basically the same as those for per-directory configuration; there is a
creation function and a merge function, the latter being invoked where a virtual server has partially overridden the base server
configuration, and a combined structure must be computed. (As with per-directory configuration, the default if no merge function is
specified, and a module is configured in some virtual server, is that the base configuration is simply ignored).

The only substantial difference is that when a command needs to configure the per-server private module data, it needs to go to the
cmd_parms data to get at it. Here's an example, from the alias module, which also indicates how a syntax error can be returned
(note that the per-directory configuration argument to the command handler is declared as a dummy, since the module doesn't
actually have per-directory config data):

char *add_redirect(cmd_parms *cmd, void *dummy, char *f, char *url)
{
 server_rec *s = cmd->server;
 alias_server_conf *conf = (alias_server_conf *)
 ap_get_module_config(s->module_config,&alias_module);
 alias_entry *new = ap_push_array (conf->redirects);

 if (!ap_is_url (url)) return "Redirect to non-URL";

 new->fake = f; new->real = url;
 return NULL;
}

Apache HTTP Server Version 1.3

Apache API notes

http://httpd.apache.org/docs/misc/API.html (13 of 13) [12/05/2001 4:52:17 PM]

http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Apache Miscellaneous Documentation

Below is a list of additional documentation pages that apply to the Apache web server development project.

API

Description of Apache's Application Programming Interface.

FAQ

Frequently-Asked Questions concerning the Apache project and server.

Reading Client Input in Apache 1.2

Describes differences between Apache 1.1 and 1.2 in how modules read information from the client.

Compatibility with NCSA

Notes about Apache's compatibility with the NCSA server.

How to use XSSI and Negotiation for custom ErrorDocuments

Describes a solution which uses XSSI and negotiation to custom-tailor the Apache ErrorDocuments to taste, adding the
advantage of returning internationalized versions of the error messages depending on the client's language preferences.

File Descriptor use in Apache

Describes how Apache uses file descriptors and talks about various limits imposed on the number of descriptors available
by various operating systems.

FIN_WAIT_2

A description of the causes of Apache processes going into the FIN_WAIT_2 state, and what you can do about it.

"How-To"

Instructions about how to accomplish some commonly-desired server functionality changes.

HTTP Features list

A tab-separate table of HTTP features implemented and tested in Apache.

Known Client Problems

A list of problems in HTTP clients which can be mitigated by Apache.

No PGP

Why we took PEM and PGP support out of the base Apache distribution.

Performance Notes (BSD 4.4)

Some notes about ways to improve/optimize Apache performance on BSD 4.4 systems.

Performance Notes (Digital UNIX)

Extracts of USENET postings describing how to optimize Apache performance on Digital UNIX systems.

Performance Notes (HPUX)

Email from an HP engineer on how to optimize HP-UX 10.20.

Performance Notes (General)

Some generic notes about how to improve the performance of your machine/OS.

Performance Notes -- Apache Tuning

Apache Miscellaneous Documentation

http://httpd.apache.org/docs/misc/index.html (1 of 2) [12/05/2001 4:52:19 PM]

http://httpd.apache.org/docs/misc/HTTP_Features.tsv

Notes about how to (run-time and compile-time) configure Apache for highest performance. Notes explaining why Apache
does some things, and why it doesn't do other things (which make it slower/faster).

Security Tips

Some "do"s - and "don't"s - for keeping your Apache web site secure.

Virtual Hosts (IP-based)

Excerpts and notes about configuring and using Apache IP-based virtual hosts.

Windows Bug with Web Keepalive

A brief description of a known problem with Microsoft Windows and web sites accessed using keepalive connections.

Apache HTTP Server Version 1.3

Apache Miscellaneous Documentation

http://httpd.apache.org/docs/misc/index.html (2 of 2) [12/05/2001 4:52:19 PM]

http://httpd.apache.org/docs/misc/

Apache HTTP Server

PATH_INFO Changes in the CGI Environment

Overview

As implemented in Apache 1.1.1 and earlier versions, the method Apache used to create PATH_INFO in the CGI environment was
counterintuitive, and could result in crashes in certain cases. In Apache 1.2 and beyond, this behavior has changed. Although this
results in some compatibility problems with certain legacy CGI applications, the Apache 1.2 behavior is still compatible with the
CGI/1.1 specification, and CGI scripts can be easily modified (see below).

The Problem

Apache 1.1.1 and earlier implemented the PATH_INFO and SCRIPT_NAME environment variables by looking at the filename, not
the URL. While this resulted in the correct values in many cases, when the filesystem path was overloaded to contain path
information, it could result in errant behavior. For example, if the following appeared in a config file:

 Alias /cgi-ralph /usr/local/httpd/cgi-bin/user.cgi/ralph

In this case, user.cgi is the CGI script, the "/ralph" is information to be passed onto the CGI. If this configuration was in place,
and a request came for "/cgi-ralph/script/", the code would set PATH_INFO to "/ralph/script", and
SCRIPT_NAME to "/cgi-". Obviously, the latter is incorrect. In certain cases, this could even cause the server to crash.

The Solution

Apache 1.2 and later now determine SCRIPT_NAME and PATH_INFO by looking directly at the URL, and determining how much
of the URL is client-modifiable, and setting PATH_INFO to it. To use the above example, PATH_INFO would be set to
"/script", and SCRIPT_NAME to "/cgi-ralph". This makes sense and results in no server behavior problems. It also
permits the script to be guaranteed that "http://$SERVER_NAME:$SERVER_PORT$SCRIPT_NAME$PATH_INFO" will
always be an accessible URL that points to the current script, something which was not necessarily true with previous versions of
Apache.

However, the "/ralph" information from the Alias directive is lost. This is unfortunate, but we feel that using the filesystem to
pass along this sort of information is not a recommended method, and a script making use of it "deserves" not to work. Apache
1.2b3 and later, however, do provide a workaround.

Compatibility with Previous Servers

It may be necessary for a script that was designed for earlier versions of Apache or other servers to need the information that the old
PATH_INFO variable provided. For this purpose, Apache 1.2 (1.2b3 and later) sets an additional variable, FILEPATH_INFO. This
environment variable contains the value that PATH_INFO would have had with Apache 1.1.1.

A script that wishes to work with both Apache 1.2 and earlier versions can simply test for the existence of FILEPATH_INFO, and
use it if available. Otherwise, it can use PATH_INFO. For example, in Perl, one might use:

 $path_info = $ENV{'FILEPATH_INFO'} || $ENV{'PATH_INFO'};

PATH_INFO Changes in the CGI Environment

http://httpd.apache.org/docs/cgi_path.html (1 of 2) [12/05/2001 4:52:20 PM]

By doing this, a script can work with all servers supporting the CGI/1.1 specification, including all versions of Apache.

Apache HTTP Server

PATH_INFO Changes in the CGI Environment

http://httpd.apache.org/docs/cgi_path.html (2 of 2) [12/05/2001 4:52:20 PM]

Apache HTTP Server

Apache Keep-Alive Support

What is Keep-Alive?

The Keep-Alive extension to HTTP, as defined by the HTTP/1.1 draft, allows persistent connections. These long-lived HTTP
sessions allow multiple requests to be send over the same TCP connection, and in some cases have been shown to result in an
almost 50% speedup in latency times for HTML documents with lots of images.

Enabling Keep-Alive Support

Apache 1.1 comes with Keep-Alive support on by default, however there are some directives you can use to modify Apache's
behavior:

Note: Apache 1.2 uses a different syntax for the KeepAlive directive.

KeepAlive

Syntax: KeepAlive max-requests
Default: KeepAlive 5
Context: server config
Status: Core

This directive enables Keep-Alive support. Set max-requests to the maximum number of requests you want Apache to entertain per
connection. A limit is imposed to prevent a client from hogging your server resources. Set this to 0 to disable support.

KeepAliveTimeout

Syntax: KeepAliveTimeout seconds
Default: KeepAliveTimeout 15
Context: server config
Status: Core

The number of seconds Apache will wait for a subsequent request before closing the connection. Once a request has been received,
the timeout value specified by the Timeout directive applies.

When Keep-Alive Is Used

In order for Keep-Alive support to be used, first the browser must support it. Many current browsers, including Netscape Navigator
2.0, and Spyglass Mosaic-based browsers (including Microsoft Internet Explorer) do. Note, however, that some Windows 95-based
browsers misbehave with Keep-Alive-supporting servers; they may occasionally hang on a connect. This has been observed with
several Windows browsers, and occurs when connecting to any Keep-Alive server, not just Apache. Netscape 3.0b5 and later
versions are known to work around this problem.

Apache Keep-Alive Support

http://httpd.apache.org/docs/keepalive.html (1 of 2) [12/05/2001 4:52:21 PM]

However, Keep-Alive support only is active with files where the length is known beforehand. This means that most CGI scripts,
server-side included files and directory listings will not use the Keep-Alive protocol. While this should be completely transparent to
the end user, it is something the web-master may want to keep in mind.

Apache HTTP Server

Apache Keep-Alive Support

http://httpd.apache.org/docs/keepalive.html (2 of 2) [12/05/2001 4:52:21 PM]

Apache HTTP Server

Multiple Log Files

It is now possible to specify multiple log files, each with a fully customizable format. This is compatible with existing
configurations. Multiple log files are implemented as part of the mod_log_config module which as of Apache 1.2 is the default log
module.

Using Multiple Log Files

Multiple log files be created with either the TransferLog or CustomLog directive. These directives can be repeated to create
more than one log file (in previous releases, only one logfile could be given per server configuration). The TransferLog
directive creates a log file in the standard "common log format", although this can be customized with LogFormat. The syntax of
these two directives is the same as for the config log module in previous Apache releases.

The real power of multiple log files come from the ability to create log files in different formats. For example, as well as a CLF
transfer log, the server could log the user agent of each client, or the referrer information, or any other aspect of the request, such as
the language preferences of the user.

The new CustomLog directive takes both a filename to log to, and a log file format.

Syntax: CustomLog filename "format"
Context: server config, virtual host
Status: base
Module: mod_log_config

The first argument is the filename to log to. This is used exactly like the argument to TransferLog, that is, it is either a file as a
full path or relative to the current server root, or |programname. Be aware that anyone who can write to the directory where a log file
is written can gain access to the uid that starts the server. See the security tips document for details.

The format argument specifies a format for each line of the log file. The options available for the format are exactly the same as for
the argument of the LogFormat directive. If the format includes any spaces (which it will do in almost all cases) it should be
enclosed in double quotes.

Use with Virtual Hosts

If a <VirtualHost> section does not contain any TransferLog or CustomLog directives, the logs defined for the main server
will be used. If it does contain one or more of these directives, requests serviced by this virtual host will only be logged in the log
files defined within its definition, not in any of the main server's log files. See the examples below.

Examples

To create a normal (CLF) format log file in logs/access_log, and a log of user agents:

TransferLog logs/access_log
CustomLog logs/agents "%{user-agent}i"

To define a CLF transfer log and a referrer log which log all accesses to both the main server and a virtual host:

Apache Multiple Log Files

http://httpd.apache.org/docs/multilogs.html (1 of 2) [12/05/2001 4:52:22 PM]

TransferLog logs/access_log
CustomLog logs/referer "%{referer}i"

<VirtualHost>
 DocumentRoot /whatever
 ServerName my.virtual.host
</VirtualHost>

Since no TransferLog or CustomLog directives appear inside the <VirtualHost> section, any requests for this virtual host will be
logged in the main server's log files. If however the directive

TransferLog logs/vhost_access_log

was added inside the virtual host definition, then accesses to this virtual host will be logged in vhost_access_log file (in common log
format), and not in logs/access_log or logs/referer.

Apache HTTP Server

Apache Multiple Log Files

http://httpd.apache.org/docs/multilogs.html (2 of 2) [12/05/2001 4:52:22 PM]

Apache HTTP Server

Server Pool Management

We found that many people were using values for "MaxServers" either too high or too low, and were hanging themselves on it. The
model we adopted is still based on long-lived minimal-forking processes, but instead of specifying one number of persistent
processes, the web-master specifies a maximum and minimum number of processes to be "spare" - every couple of seconds the
parent checks the actual number of spare servers and adjusts accordingly. This should keep the number of servers concurrently
running relatively low while still ensuring minimal forking.

We renamed the current StartServers to MinSpareServers, created separate StartServers parameter which means what it says, and
renamed MaxServers to MaxSpareServers (though the old name still works, for NCSA 1.4 back-compatibility). The old names were
generally regarded as too confusing.

The defaults for each variable are:

MinSpareServers 5
MaxSpareServers 10
StartServers 5

There is an absolute maximum number of simultaneous children defined by a compile-time limit which defaults to 256 and a
"MaxClients" directive which specifies the number of simultaneous children that will be allowed. MaxClients can be adjusted up to
the compile-time limit (HARD_SERVER_LIMIT, defined in httpd.h). If you need more than 256 simultaneous children, you need
to modify both HARD_SERVER_LIMIT and MaxClients.

In versions before 1.2, HARD_SERVER_LIMIT defaulted to 150.

We do not recommend changing either of these values unless:

You know you have the server resources to handle more1.

You use the machine for other purposes and must limit the amount of memory Apache uses2.

Apache HTTP Server

Server Pool Management

http://httpd.apache.org/docs/process-model.html [12/05/2001 4:52:23 PM]

Apache HTTP Server

Source Re-organisation

As of 1.3, the Apache source directories have been re-organised. This re-organisation is designed to simplify the directory structure,
make it easier to add additional modules, and to give module authors a way of specifying compile time options or distribute binary
modules.

Summary of Changes

The source changes are:

The non-module source files have moved from src into src/main●

The module source files previously in src have moved to src/modules/standard●

The support directory is now in src/support●

The existing symbol names used for global Apache function and variable identifiers have been renamed in the source. This
way namespace conflicts are avoided when linking Apache with third-party libraries. See the file
src/include/compat.h both for the list of renamed symbol names and for a way to get source backward
compatibility in existing third-party module sources.

●

In addition, the following enhancements have been made:

OS abstractions can be added in the src/os directory. Currently this contains information for unix, OS/2 and Windows 32
platforms.

●

Configuration syntax has been simplified for adding new modules. Users no longer need to enter the module's
structure name. In addition, new modules can be located anywhere on the file system, or typically in new or existing
directories under src/modules.

●

Module authors can give simpler instructions for adding their modules to Apache compilation. They can also now provide
compile time information required by Configure, such as additional libraries required.

●

Module authors can distribute pre-compiled (.a or .o) versions of their modules if required, along with a "module definition
file" which contains the information required by Configure.

●

All the sub-directories (main, modules/* and os/*) are built as libraries.●

The new Apache Autoconf-style Interface (APACI) script named configure replaced the old top-level Makefile and
src/helpers/InstallApache stuff.

●

Adding Modules

Modules are added to Apache by adding a reference to them in src/Configuration then running Configure and make. In
earlier version of Apache before 1.3, the line added to Configuration looked like this:

 Module status_module mod_status.o

From 1.3 onwards, the AddModule line should be used instead, and typically looks like this:

 AddModule modules/standard/mod_status.o

The argument to AddModule is the path, relative to src, to the module file's source or object file.

Normally when adding a module you should follow the instructions of the module author. However if the module comes as a single
source file, say mod_foo.c, then the recommended way to add the module to Apache is as follows:

Source Re-organisation

http://httpd.apache.org/docs/sourcereorg.html (1 of 4) [12/05/2001 4:52:25 PM]

Put mod_foo.c into the directory src/modules/extra●

Go to the src directory and add the following line to Configuration
AddModule modules/extra/mod_foo.o

●

Run ./Configure●

Run make●

New Facilities for Module Authors

In previous releases of Apache, new modules were added to the src directory, and if the module required any additional
compilation options (such as libraries) they would have to be added to Configuration. Also the user would have to be told the
module's structure name to add on the Module line of Configuration.

From Apache 1.3 onwards, module authors can make use of these new features:

Simplified Configuration command AddModule which only requires a path to the module source or object file●

If the module requires compile time options (such as extra libraries) these can be specified in the module file source or an
external "module definition file".

●

If a module is distributed as binary (.o or .a) then an external "module definition file" can also be distributed which gives the
information Configure needs to add the module, such as extra libraries and the module's structure name.

●

Modules can be installed anywhere on the file system, although a directory under src/modules is recommended.●

If the module is in its own directory, Apache can automatically create a Makefile to build the module given a file containing
the module's dependencies.

●

For building a third-party module outside the Apache source tree the new apxs support tool can be used to compile the
module into a dynamic shared object (DSO), install it into the existing Apache installation and optionally activating it in the
Apache httpd.conf file. The only requirement is that Apache has DSO-support for the used platform and the module
mod_so was built into the server binary httpd.

●

The rest of this document shows how to package modules for Apache 1.3 and later and what to tell end-users of the module.

Building a simple source distribution

Consider a simple add-on module, distributed as a single file. For example, say it is called mod_demo.c. The archive for this module
should consist of two files, in a suitable directory name. For example:

mod_demo/mod_demo.c●

mod_demo/Makefile.tmpl●

(Of course end-user instructions, README's, etc can also be supplied in the archive). The end user should be told to extract this
archive in the src/modules directory of their Apache source tree. This will create a new directory src/modules/mod_demo.
Then they need to add the following line to the Configuration file:

 AddModule modules/mod_demo/mod_demo.o

then run Configure and make as normal.

The mod_demo/Makefile.tmpl should contain the dependencies of the module source. For example, a simple module which
just interfaces to some standard Apache module API functions might look this this:

 mod_demo.o: mod_demo.c $(INCDIR)/httpd.h $(INCDIR)/http_protocol.h

When the user runs Configure Apache will create a full makefile to build this module. If this module also requires some
additional built-time options to be given, such as libraries, see the next section.

If the module also comes with header files, these can be added to the archive. If the module consists of multiple source files it can
be built into a library file using a supplied makefile. In this case, distribute the makefile as mod_demo/Makefile and do not
include a mod_demo/Makefile.tmpl. If Configure sees a Makefile.tmpl it assumes it is safe to overwrite any existing
Makefile.

Source Re-organisation

http://httpd.apache.org/docs/sourcereorg.html (2 of 4) [12/05/2001 4:52:25 PM]

See the Apache src/modules/standard for an example of a module directory where the makefile is created automatically
from a Makefile.tmpl file (note that this directory also shows how to distribute multiple modules in a single directory). See
src/modules/proxy and src/modules/example for examples of modules built using custom makefiles (to build a library
and an object file, respectively).

Adding Compile time Information

Apache source files (or module definition files, see below) can contain information used by Configure to add compile-time
options such as additional libraries. For example, if mod_demo in the example above also requires that Apache be linked against a
DBM library, then the following text could be inserted into the mod_demo.c source:

/*
 * Module definition information - the part between the -START and -END
 * lines below is used by Configure. This could be stored in a separate
 * instead.
 *
 * MODULE-DEFINITION-START
 * Name: demo_module
 * ConfigStart
 LIBS="$LIBS $DBM_LIB"
 if ["X$DBM_LIB" != "X"]; then
 echo " + using $DBM_LIB for mod_demo"
 fi
 * ConfigEnd
 * MODULE-DEFINITION-END
 */

Note that this is contained inside a C language comment to hide it from the compiler. Anything between the lines which contains
MODULE-DEFINITION-START and MODULE-DEFINITION-END is used by Configure. The Name: line gives the module's
structure name. This is not really necessary in this case since if not present Configure will guess at a name based on the filename
(e.g., given "mod_demo" it will remove the leading "mod_" and append "_module" to get a structure name. This works with all
modules distributed with Apache).

The lines between ConfigStart and ConfigEnd as executed by Configure and can be used to add compile-time options and
libraries. In this case it adds the DBM library (from $DBM_LIB) to the standard compilation libraries ($LIB) and displays a
message.

See the default distribution's mod_auth_dbm.c for an example of an embedded module definition.

Module Definition Information for Binary Distribitions

If the module is to be distributed as binary (object or library) rather than source, it is not possible to add the module definition
information to the source file. In this case it can be placed in a separate file which has the same base name as the object or library
file, but with a .module extension. So, for example, if the distributed module object file is mod_demo.o, the module definition file
should be called mod_demo.module. It contains the same information as above, but does not need to be inside a C comment or
delimited with MODULE-DEFINITION-START etc. For example:

Name: demo_module
ConfigStart
 LIBS="$LIBS $DBM_LIB"
 if ["X$DBM_LIB" != "X"]; then
 echo " + using $DBM_LIB for mod_demo"
 fi
ConfigEnd

See the default distribution's mod_auth_db.module for an example of a separate module definition file.

Source Re-organisation

http://httpd.apache.org/docs/sourcereorg.html (3 of 4) [12/05/2001 4:52:25 PM]

Apache HTTP Server

Source Re-organisation

http://httpd.apache.org/docs/sourcereorg.html (4 of 4) [12/05/2001 4:52:25 PM]

Apache HTTP Server Version 1.3

Compatibility Notes with NCSA's Server

While Apache is for the most part a drop-in replacement for NCSA's httpd, there are a couple gotcha's to watch out for. These are
mostly due to the fact that the parser for config and access control files was rewritten from scratch, so certain liberties the earlier
servers took may not be available here. These are all easily fixable. If you know of other problems that belong here, let us know.

Please also check the known client problems page.

As of Apache 1.3.1, methods named in a <Limit> section must be listed in upper-case. Lower- or mixed-case method names
will result in a configuration error.

1.

The basic mod_auth AuthGroupFile-specified group file format allows commas between user names - Apache does not.2.

If you follow the NCSA guidelines for setting up access restrictions based on client domain, you may well have added
entries for AuthType, AuthName, AuthUserFile or AuthGroupFile. None of these are needed (or
appropriate) for restricting access based on client domain. When Apache sees AuthType it (reasonably) assumes you are
using some authorization type based on username and password. Please remove AuthType, it's unnecessary even for
NCSA.

3.

OldScriptAlias is no longer supported.4.

exec cgi="" produces reasonable malformed header responses when used to invoke non-CGI scripts.
The NCSA code ignores the missing header (bad idea).
Solution: write CGI to the CGI spec and use include virtual, or use exec cmd="" instead.

5.

Icons for FancyIndexing broken - well, no, they're not broken, we've just upgraded the icons from flat .xbm files to pretty
and much smaller .gif files, courtesy of Kevin Hughes at EIT. If you are using the same srm.conf from an old distribution,
make sure you add the new AddIcon, AddIconByType, and DefaultIcon directives.

6.

Apache versions before 1.2b1 will ignore the last line of configuration files if the last line does not have a trailing newline.
This affects configuration files (httpd.conf, access.conf and srm.conf), and htpasswd and htgroup files.

7.

Apache does not permit commas delimiting the methods in <Limit>.8.

Apache's <VirtualHost> treats all addresses as "optional" (i.e., the server should continue booting if it can't resolve the
address). Whereas in NCSA the default is to fail booting unless an added optional keyword is included.

9.

Apache does not implement OnDeny; use ErrorDocument instead.10.

Apache (as of 1.3) always performs the equivalent of HostnameLookups minimal. minimal is not an option to
HostnameLookups.

11.

To embed spaces in directive arguments NCSA used a backslash before the space. Apache treats backslashes as normal
characters. To embed spaces surround the argument with double-quotes instead.

12.

Apache does not implement the NCSA referer directive. See PR#968 for a few brief suggestions on alternative ways to
implement the same thing under Apache.

13.

Apache does not allow ServerRoot settings inside a VirtualHost container. There is only one global ServerRoot in Apache;
any desired changes in paths for virtual hosts need to be made with the explicit directives, e.g., DocumentRoot,
TransferLog, etc.

14.

The AddType directive cannot be used to set the type of particular files. Instead, you can scope you directives using
<Files> blocks.

15.

More to come when we notice them....

Apache HTTP Server: Notes about Compatibility with NCSA's Server

http://httpd.apache.org/docs/misc/compat_notes.html (1 of 2) [12/05/2001 4:52:27 PM]

http://httpd.apache.org/bug_report.html
mailto:kevinh@eit.com
http://www.eit.com/
http://bugs.apache.org/index/full/968

Apache HTTP Server Version 1.3

Apache HTTP Server: Notes about Compatibility with NCSA's Server

http://httpd.apache.org/docs/misc/compat_notes.html (2 of 2) [12/05/2001 4:52:27 PM]

http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Using XSSI and ErrorDocument to configure customized
international server error responses

Index

Introduction●

Creating an ErrorDocument directory●

Naming the individual error document files●

The common header and footer files●

Creating ErrorDocuments in different languages●

The fallback language●

Customizing Proxy Error Messages●

HTML listing of the discussed example●

Introduction

This document describes an easy way to provide your apache WWW server with a set of customized error messages which take advantage of Content
Negotiation and eXtended Server Side Includes (XSSI) to return error messages generated by the server in the client's native language.

By using XSSI, all customized messages can share a homogenous and consistent style and layout, and maintenance work (changing images, changing
links) is kept to a minimum because all layout information can be kept in a single file.
Error documents can be shared across different servers, or even hosts, because all varying information is inserted at the time the error document is returned
on behalf of a failed request.

Content Negotiation then selects the appropriate language version of a particular error message text, honoring the language preferences passed in the
client's request. (Users usually select their favorite languages in the preferences options menu of today's browsers). When an error document in the client's
primary language version is unavailable, the secondary languages are tried or a default (fallback) version is used.

You have full flexibility in designing your error documents to your personal taste (or your company's conventions). For demonstration purposes, we
present a simple generic error document scheme. For this hypothetic server, we assume that all error messages...

possibly are served by different virtual hosts (different host name, different IP address, or different port) on the server machine,●

show a predefined company logo in the right top of the message (selectable by virtual host),●

print the error title first, followed by an explanatory text and (depending on the error context) help on how to resolve the error,●

have some kind of standardized background image,●

display an apache logo and a feedback email address at the bottom of the error message.●

An example of a "document not found" message for a german client might look like this:

International Customized Server Error Messages

http://httpd.apache.org/docs/misc/custom_errordocs.html (1 of 6) [12/05/2001 4:52:31 PM]

All links in the document as well as links to the server's administrator mail address, and even the name and port of the serving virtual host are inserted in
the error document at "run-time", i.e., when the error actually occurs.

Creating an ErrorDocument directory

For this concept to work as easily as possible, we must take advantage of as much server support as we can get:

By defining the MultiViews option, we enable the language selection of the most appropriate language alternative (content negotiation).1.

By setting the LanguagePriority directive we define a set of default fallback languages in the situation where the client's browser did not express
any preference at all.

2.

By enabling Server Side Includes (and disallowing execution of cgi scripts for security reasons), we allow the server to include building blocks of
the error message, and to substitute the value of certain environment variables into the generated document (dynamic HTML) or even to
conditionally include or omit parts of the text.

3.

The AddHandler and AddType directives are useful for automatically XSSI-expanding all files with a .shtml suffix to text/html.4.

By using the Alias directive, we keep the error document directory outside of the document tree because it can be regarded more as a server part
than part of the document tree.

5.

The <Directory>-Block restricts these "special" settings to the error document directory and avoids an impact on any of the settings for the regular
document tree.

6.

For each of the error codes to be handled (see RFC2068 for an exact description of each error code, or look at src/main/http_protocol.c
if you wish to see apache's standard messages), an ErrorDocument in the aliased /errordocs directory is defined. Note that we only define the
basename of the document here because the MultiViews option will select the best candidate based on the language suffixes and the client's
preferences. Any error situation with an error code not handled by a custom document will be dealt with by the server in the standard way (i.e., a
plain error message in english).

7.

Finally, the AllowOverride directive tells apache that it is not necessary to look for a .htaccess file in the /errordocs directory: a minor speed
optimization.

8.

The resulting httpd.conf configuration would then look similar to this: (Note that you can define your own error messages using this method for only part of the document
tree, e.g., a /~user/ subtree. In this case, the configuration could as well be put into the .htaccess file at the root of the subtree, and the <Directory> and </Directory> directives -but not the
contained directives- must be omitted.)

International Customized Server Error Messages

http://httpd.apache.org/docs/misc/custom_errordocs.html (2 of 6) [12/05/2001 4:52:31 PM]

 LanguagePriority en fr de
 Alias /errordocs /usr/local/apache/errordocs
 <Directory /usr/local/apache/errordocs>
 AllowOverride none
 Options MultiViews IncludesNoExec FollowSymLinks
 AddType text/html .shtml
 AddHandler server-parsed .shtml
 </Directory>
 # "400 Bad Request",
 ErrorDocument 400 /errordocs/400
 # "401 Authorization Required",
 ErrorDocument 401 /errordocs/401
 # "403 Forbidden",
 ErrorDocument 403 /errordocs/403
 # "404 Not Found",
 ErrorDocument 404 /errordocs/404
 # "500 Internal Server Error",
 ErrorDocument 500 /errordocs/500

The directory for the error messages (here: /usr/local/apache/errordocs/) must then be created with the appropriate permissions (readable and executable by
the server uid or gid, only writable for the administrator).

Naming the individual error document files

By defining the MultiViews option, the server was told to automatically scan the directory for matching variants (looking at language and content type
suffixes) when a requested document was not found. In the configuration, we defined the names for the error documents to be just their error number
(without any suffix).

The names of the individual error documents are now determined like this (I'm using 403 as an example, think of it as a placeholder for any of the
configured error documents):

No file errordocs/403 should exist. Otherwise, it would be found and served (with the DefaultType, usually text/plain), all negotiation would be
bypassed.

●

For each language for which we have an internationalized version (note that this need not be the same set of languages for each error code - you
can get by with a single language version until you actually have translated versions), a document errordocs/403.shtml.lang is created and filled
with the error text in that language (see below).

●

One fallback document called errordocs/403.shtml is created, usually by creating a symlink to the default language variant (see below).●

The common header and footer files

By putting as much layout information in two special "include files", the error documents can be reduced to a bare minimum.

One of these layout files defines the HTML document header and a configurable list of paths to the icons to be shown in the resulting error document.
These paths are exported as a set of XSSI environment variables and are later evaluated by the "footer" special file. The title of the current error (which is
put into the TITLE tag and an H1 header) is simply passed in from the main error document in a variable called title.
By changing this file, the layout of all generated error messages can be changed in a second. (By exploiting the features of XSSI, you can easily
define different layouts based on the current virtual host, or even based on the client's domain name).

The second layout file describes the footer to be displayed at the bottom of every error message. In this example, it shows an apache logo, the current
server time, the server version string and adds a mail reference to the site's webmaster.

For simplicity, the header file is simply called head.shtml because it contains server-parsed content but no language specific information. The footer
file exists once for each language translation, plus a symlink for the default language.

Example: for English, French and German versions (default english)
foot.shtml.en,
foot.shtml.fr,
foot.shtml.de,
foot.shtml symlink to foot.shtml.en

Both files are included into the error document by using the directives <!--#include virtual="head" --> and <!--#include
virtual="foot" --> respectively: the rest of the magic occurs in mod_negotiation and in mod_include.

See the listings below to see an actual HTML implementation of the discussed example.

International Customized Server Error Messages

http://httpd.apache.org/docs/misc/custom_errordocs.html (3 of 6) [12/05/2001 4:52:31 PM]

Creating ErrorDocuments in different languages

After all this preparation work, little remains to be said about the actual documents. They all share a simple common structure:

<!--#set var="title" value="error description title" -->
<!--#include virtual="head" -->
 explanatory error text
<!--#include virtual="foot" -->

In the listings section, you can see an example of a [400 Bad Request] error document. Documents as simple as that certainly cause no problems to
translate or expand.

The fallback language

Do we need a special handling for languages other than those we have translations for? We did set the LanguagePriority, didn't we?!

Well, the LanguagePriority directive is for the case where the client does not express any language priority at all. But what happens in the situation where
the client wants one of the languages we do not have, and none of those we do have?

Without doing anything, the Apache server will usually return a [406 no acceptable variant] error, listing the choices from which the client may select. But
we're in an error message already, and important error information might get lost when the client had to choose a language representation first.

So, in this situation it appears to be easier to define a fallback language (by copying or linking, e.g., the english version to a language-less version).
Because the negotiation algorithm prefers "more specialized" variants over "more generic" variants, these generic alternatives will only be chosen when the
normal negotiation did not succeed.

A simple shell script to do it (execute within the errordocs/ dir):

 for f in *.shtml.en
 do
 ln -s $f `basename $f .en`
 done

Customizing Proxy Error Messages

As of Apache-1.3, it is possible to use the ErrorDocument mechanism for proxy error messages as well (previous versions always returned fixed
predefined error messages).

Most proxy errors return an error code of [500 Internal Server Error]. To find out whether a particular error document was invoked on behalf of a proxy
error or because of some other server error, and what the reason for the failure was, you can check the contents of the new ERROR_NOTES CGI
environment variable: if invoked for a proxy error, this variable will contain the actual proxy error message text in HTML form.

The following excerpt demonstrates how to exploit the ERROR_NOTES variable within an error document:

 <!--#if expr="$REDIRECT_ERROR_NOTES = ''" -->
 <p>
 The server encountered an unexpected condition
 which prevented it from fulfilling the request.
 </p>
 <p>
 <A HREF="mailto:<!--#echo var="SERVER_ADMIN" -->"
 SUBJECT="Error message [<!--#echo var="REDIRECT_STATUS" -->] <!--#echo var="title"
--> for <!--#echo var="REQUEST_URI" -->">
 Please forward this error screen to <!--#echo var="SERVER_NAME" -->'s
 WebMaster; it includes useful debugging information about
 the Request which caused the error.
 <pre><!--#printenv --></pre>
 </p>
 <!--#else -->
 <!--#echo var="REDIRECT_ERROR_NOTES" -->
 <!--#endif -->

HTML listing of the discussed example

So, to summarize our example, here's the complete listing of the 400.shtml.en document. You will notice that it contains almost nothing but the error text
(with conditional additions). Starting with this example, you will find it easy to add more error documents, or to translate the error documents to different
languages.

International Customized Server Error Messages

http://httpd.apache.org/docs/misc/custom_errordocs.html (4 of 6) [12/05/2001 4:52:31 PM]

<!--#set var="title" value="Bad Request"
--><!--#include virtual="head" --><P>
 Your browser sent a request that this server could not understand:
 <BLOCKQUOTE>
 <!--#echo var="REQUEST_URI" -->
 </BLOCKQUOTE>
 The request could not be understood by the server due to malformed
 syntax. The client should not repeat the request without
 modifications.
 </P>
 <P>
 <!--#if expr="$HTTP_REFERER != ''" -->
 Please inform the owner of
 <A HREF="<!--#echo var="HTTP_REFERER" -->">the referring page about
 the malformed link.
 <!--#else -->
 Please check your request for typing errors and retry.
 <!--#endif -->
 </P>
<!--#include virtual="foot" -->

Here is the complete head.shtml file (the funny line breaks avoid empty lines in the document after XSSI processing). Note the configuration section at top.
That's where you configure the images and logos as well as the apache documentation directory. Look how this file displays two different logos depending
on the content of the virtual host name ($SERVER_NAME), and that an animated apache logo is shown if the browser appears to support it (the latter
requires server configuration lines of the form
BrowserMatch "^Mozilla/[2-4]" anigif
for browser types which support animated GIFs).

<!--#if expr="$SERVER_NAME = /.*\.mycompany\.com/"
--><!--#set var="IMG_CorpLogo"
 value="http://$SERVER_NAME:$SERVER_PORT/errordocs/CorpLogo.gif"
--><!--#set var="ALT_CorpLogo" value="Powered by Linux!"
--><!--#else
--><!--#set var="IMG_CorpLogo"
 value="http://$SERVER_NAME:$SERVER_PORT/errordocs/PrivLogo.gif"
--><!--#set var="ALT_CorpLogo" value="Powered by Linux!"
--><!--#endif
--><!--#set var="IMG_BgImage"
value="http://$SERVER_NAME:$SERVER_PORT/errordocs/BgImage.gif"
--><!--#set var="DOC_Apache" value="http://$SERVER_NAME:$SERVER_PORT/Apache/"
--><!--#if expr="$anigif"
--><!--#set var="IMG_Apache"
value="http://$SERVER_NAME:$SERVER_PORT/icons/apache_anim.gif"
--><!--#else
--><!--#set var="IMG_Apache"
value="http://$SERVER_NAME:$SERVER_PORT/icons/apache_pb.gif"
--><!--#endif
--><!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<HTML>
 <HEAD>
 <TITLE>
 [<!--#echo var="REDIRECT_STATUS" -->] <!--#echo var="title" -->
 </TITLE>
 </HEAD>
 <BODY BGCOLOR="white" BACKGROUND="<!--#echo var="IMG_BgImage" -->">
 <H1 ALIGN="center">
 [<!--#echo var="REDIRECT_STATUS" -->] <!--#echo var="title" -->
 <IMG SRC="<!--#echo var="IMG_CorpLogo" -->"
 ALT="<!--#echo var="ALT_CorpLogo" -->" ALIGN=right>
 </H1>
 <HR><!-- == -->
 <DIV>

and this is the foot.shtml.en file:

 </DIV>
 <HR>
 <DIV ALIGN="right"><SMALL><SUP>Local Server time:
 <!--#echo var="DATE_LOCAL" -->

International Customized Server Error Messages

http://httpd.apache.org/docs/misc/custom_errordocs.html (5 of 6) [12/05/2001 4:52:31 PM]

 </SUP></SMALL></DIV>
 <DIV ALIGN="center">
 <A HREF="<!--#echo var="DOC_Apache" -->">
 <IMG SRC="<!--#echo var="IMG_Apache" -->" BORDER=0 ALIGN="bottom"
 ALT="Powered by <!--#echo var="SERVER_SOFTWARE" -->">

 <SMALL><SUP><!--#set var="var"
 value="Powered by $SERVER_SOFTWARE -- File last modified on $LAST_MODIFIED"
 --><!--#echo var="var" --></SUP></SMALL>
 </DIV>
 <ADDRESS>If the indicated error looks like a misconfiguration, please inform
 <A HREF="mailto:<!--#echo var="SERVER_ADMIN" -->"
 SUBJECT="Feedback about Error message [<!--#echo var="REDIRECT_STATUS"
 -->] <!--#echo var="title" -->, req=<!--#echo var="REQUEST_URI" -->">
 <!--#echo var="SERVER_NAME" -->'s WebMaster.
 </ADDRESS>
 </BODY>
</HTML>

More welcome!

If you have tips to contribute, send mail to martin@apache.org

Apache HTTP Server Version 1.3

International Customized Server Error Messages

http://httpd.apache.org/docs/misc/custom_errordocs.html (6 of 6) [12/05/2001 4:52:31 PM]

mailto:martin@apache.org
http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Descriptors and Apache

A descriptor, also commonly called a file handle is an object that a program uses to read or write an open file, or open network
socket, or a variety of other devices. It is represented by an integer, and you may be familiar with stdin, stdout, and stderr
which are descriptors 0, 1, and 2 respectively. Apache needs a descriptor for each log file, plus one for each network socket that it
listens on, plus a handful of others. Libraries that Apache uses may also require descriptors. Normal programs don't open up many
descriptors at all, and so there are some latent problems that you may experience should you start running Apache with many
descriptors (i.e., with many virtual hosts).

The operating system enforces a limit on the number of descriptors that a program can have open at a time. There are typically three
limits involved here. One is a kernel limitation, depending on your operating system you will either be able to tune the number of
descriptors available to higher numbers (this is frequently called FD_SETSIZE). Or you may be stuck with a (relatively) low
amount. The second limit is called the hard resource limit, and it is sometimes set by root in an obscure operating system file, but
frequently is the same as the kernel limit. The third limit is called the soft resource limit. The soft limit is always less than or equal
to the hard limit. For example, the hard limit may be 1024, but the soft limit only 64. Any user can raise their soft limit up to the
hard limit. Root can raise the hard limit up to the system maximum limit. The soft limit is the actual limit that is used when
enforcing the maximum number of files a process can have open.

To summarize:

 #open files <= soft limit <= hard limit <= kernel limit

You control the hard and soft limits using the limit (csh) or ulimit (sh) directives. See the respective man pages for more
information. For example you can probably use ulimit -n unlimited to raise your soft limit up to the hard limit. You should
include this command in a shell script which starts your webserver.

Unfortunately, it's not always this simple. As mentioned above, you will probably run into some system limitations that will need to
be worked around somehow. Work was done in version 1.2.1 to improve the situation somewhat. Here is a partial list of systems
and workarounds (assuming you are using 1.2.1 or later):

BSDI 2.0

Under BSDI 2.0 you can build Apache to support more descriptors by adding -DFD_SETSIZE=nnn to EXTRA_CFLAGS
(where nnn is the number of descriptors you wish to support, keep it less than the hard limit). But it will run into trouble if
more than approximately 240 Listen directives are used. This may be cured by rebuilding your kernel with a higher
FD_SETSIZE.

FreeBSD 2.2, BSDI 2.1+

Similar to the BSDI 2.0 case, you should define FD_SETSIZE and rebuild. But the extra Listen limitation doesn't exist.

Linux

By default Linux has a kernel maximum of 256 open descriptors per process. There are several patches available for the
2.0.x series which raise this to 1024 and beyond, and you can find them in the "unofficial patches" section of the Linux
Information HQ. None of these patches are perfect, and an entirely different approach is likely to be taken during the 2.1.x
development. Applying these patches will raise the FD_SETSIZE used to compile all programs, and unless you rebuild all
your libraries you should avoid running any other program with a soft descriptor limit above 256. As of this writing the
patches available for increasing the number of descriptors do not take this into account. On a dedicated webserver you
probably won't run into trouble.

Solaris through 2.5.1

Solaris has a kernel hard limit of 1024 (may be lower in earlier versions). But it has a limitation that files using the stdio
library cannot have a descriptor above 255. Apache uses the stdio library for the ErrorLog directive. When you have more
than approximately 110 virtual hosts (with an error log and an access log each) you will need to build Apache with

Descriptors and Apache

http://httpd.apache.org/docs/misc/descriptors.html (1 of 2) [12/05/2001 4:52:32 PM]

http://www.linuxhq.com/
http://www.linuxhq.com/

-DHIGH_SLACK_LINE=256 added to EXTRA_CFLAGS. You will be limited to approximately 240 error logs if you do
this.

AIX

AIX version 3.2?? appears to have a hard limit of 128 descriptors. End of story. Version 4.1.5 has a hard limit of 2000.

SCO OpenServer

Edit the /etc/conf/cf.d/stune file or use /etc/conf/cf.d/configure choice 7 (User and Group
configuration) and modify the NOFILES kernel parameter to a suitably higher value. SCO recommends a number between
60 and 11000, the default is 110. Relink and reboot, and the new number of descriptors will be available.

Compaq Tru64 UNIX/Digital UNIX/OSF

Raise open_max_soft and open_max_hard to 4096 in the proc subsystem. Do a man on sysconfig,
sysconfigdb, and sysconfigtab.

1.

Raise max-vnodes to a large number which is greater than the number of apache processes * 4096 (Setting it to
250,000 should be good for most people). Do a man on sysconfig, sysconfigdb, and sysconfigtab.

2.

If you are using Tru64 5.0, 5.0A, or 5.1, define NO_SLACK to work around a bug in the OS.
CFLAGS="-DNO_SLACK" ./configure

3.

Others

If you have details on another operating system, please submit it through our Bug Report Page.

In addition to the problems described above there are problems with many libraries that Apache uses. The most common example is
the bind DNS resolver library that is used by pretty much every unix, which fails if it ends up with a descriptor above 256. We
suspect there are other libraries that similar limitations. So the code as of 1.2.1 takes a defensive stance and tries to save descriptors
less than 16 for use while processing each request. This is called the low slack line.

Note that this shouldn't waste descriptors. If you really are pushing the limits and Apache can't get a descriptor above 16 when it
wants it, it will settle for one below 16.

In extreme situations you may want to lower the low slack line, but you shouldn't ever need to. For example, lowering it can
increase the limits 240 described above under Solaris and BSDI 2.0. But you'll play a delicate balancing game with the descriptors
needed to serve a request. Should you want to play this game, the compile time parameter is LOW_SLACK_LINE and there's a tiny
bit of documentation in the header file httpd.h.

Finally, if you suspect that all this slack stuff is causing you problems, you can disable it. Add -DNO_SLACK to EXTRA_CFLAGS
and rebuild. But please report it to our Bug Report Page so that we can investigate.

Apache HTTP Server Version 1.3

Descriptors and Apache

http://httpd.apache.org/docs/misc/descriptors.html (2 of 2) [12/05/2001 4:52:32 PM]

http://httpd.apache.org/bug_report.html
http://httpd.apache.org/bug_report.html
http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Connections in the FIN_WAIT_2 state and Apache

What is the FIN_WAIT_2 state?

Starting with the Apache 1.2 betas, people are reporting many more connections in the FIN_WAIT_2 state (as reported by
netstat) than they saw using older versions. When the server closes a TCP connection, it sends a packet with the FIN bit
sent to the client, which then responds with a packet with the ACK bit set. The client then sends a packet with the FIN bit
set to the server, which responds with an ACK and the connection is closed. The state that the connection is in during the
period between when the server gets the ACK from the client and the server gets the FIN from the client is known as
FIN_WAIT_2. See the TCP RFC for the technical details of the state transitions.

The FIN_WAIT_2 state is somewhat unusual in that there is no timeout defined in the standard for it. This means that on
many operating systems, a connection in the FIN_WAIT_2 state will stay around until the system is rebooted. If the system
does not have a timeout and too many FIN_WAIT_2 connections build up, it can fill up the space allocated for storing
information about the connections and crash the kernel. The connections in FIN_WAIT_2 do not tie up an httpd process.

1.

But why does it happen?

There are numerous reasons for it happening, some of them may not yet be fully clear. What is known follows.

Buggy clients and persistent connections

Several clients have a bug which pops up when dealing with persistent connections (aka keepalives). When the connection
is idle and the server closes the connection (based on the KeepAliveTimeout), the client is programmed so that the client
does not send back a FIN and ACK to the server. This means that the connection stays in the FIN_WAIT_2 state until one
of the following happens:

The client opens a new connection to the same or a different site, which causes it to fully close the older connection
on that socket.

❍

The user exits the client, which on some (most?) clients causes the OS to fully shutdown the connection.❍

The FIN_WAIT_2 times out, on servers that have a timeout for this state.❍

If you are lucky, this means that the buggy client will fully close the connection and release the resources on your server.
However, there are some cases where the socket is never fully closed, such as a dialup client disconnecting from their
provider before closing the client. In addition, a client might sit idle for days without making another connection, and thus
may hold its end of the socket open for days even though it has no further use for it. This is a bug in the browser or in its
operating system's TCP implementation.

The clients on which this problem has been verified to exist:

Mozilla/3.01 (X11; I; FreeBSD 2.1.5-RELEASE i386)❍

Mozilla/2.02 (X11; I; FreeBSD 2.1.5-RELEASE i386)❍

Mozilla/3.01Gold (X11; I; SunOS 5.5 sun4m)❍

MSIE 3.01 on the Macintosh❍

MSIE 3.01 on Windows 95❍

This does not appear to be a problem on:

2.

Connections in FIN_WAIT_2 and Apache

http://httpd.apache.org/docs/misc/fin_wait_2.html (1 of 4) [12/05/2001 4:52:34 PM]

ftp://ds.internic.net/rfc/rfc793.txt

Mozilla/3.01 (Win95; I)❍

It is expected that many other clients have the same problem. What a client should do is periodically check its open
socket(s) to see if they have been closed by the server, and close their side of the connection if the server has closed. This
check need only occur once every few seconds, and may even be detected by a OS signal on some systems (e.g., Win95 and
NT clients have this capability, but they seem to be ignoring it).

Apache cannot avoid these FIN_WAIT_2 states unless it disables persistent connections for the buggy clients, just like we
recommend doing for Navigator 2.x clients due to other bugs. However, non-persistent connections increase the total
number of connections needed per client and slow retrieval of an image-laden web page. Since non-persistent connections
have their own resource consumptions and a short waiting period after each closure, a busy server may need persistence in
order to best serve its clients.

As far as we know, the client-caused FIN_WAIT_2 problem is present for all servers that support persistent connections,
including Apache 1.1.x and 1.2.

A necessary bit of code introduced in 1.2

While the above bug is a problem, it is not the whole problem. Some users have observed no FIN_WAIT_2 problems with
Apache 1.1.x, but with 1.2b enough connections build up in the FIN_WAIT_2 state to crash their server. The most likely
source for additional FIN_WAIT_2 states is a function called lingering_close() which was added between 1.1 and
1.2. This function is necessary for the proper handling of persistent connections and any request which includes content in
the message body (e.g., PUTs and POSTs). What it does is read any data sent by the client for a certain time after the server
closes the connection. The exact reasons for doing this are somewhat complicated, but involve what happens if the client is
making a request at the same time the server sends a response and closes the connection. Without lingering, the client might
be forced to reset its TCP input buffer before it has a chance to read the server's response, and thus understand why the
connection has closed. See the appendix for more details.

The code in lingering_close() appears to cause problems for a number of factors, including the change in traffic
patterns that it causes. The code has been thoroughly reviewed and we are not aware of any bugs in it. It is possible that
there is some problem in the BSD TCP stack, aside from the lack of a timeout for the FIN_WAIT_2 state, exposed by the
lingering_close code that causes the observed problems.

What can I do about it? There are several possible workarounds to the problem, some of which work better than others.

Add a timeout for FIN_WAIT_2

The obvious workaround is to simply have a timeout for the FIN_WAIT_2 state. This is not specified by the RFC, and
could be claimed to be a violation of the RFC, but it is widely recognized as being necessary. The following systems are
known to have a timeout:

FreeBSD versions starting at 2.0 or possibly earlier.❍

NetBSD version 1.2(?)❍

OpenBSD all versions(?)❍

BSD/OS 2.1, with the K210-027 patch installed.❍

Solaris as of around version 2.2. The timeout can be tuned by using ndd to modify
tcp_fin_wait_2_flush_interval, but the default should be appropriate for most servers and improper
tuning can have negative impacts.

❍

Linux 2.0.x and earlier(?)❍

HP-UX 10.x defaults to terminating connections in the FIN_WAIT_2 state after the normal keepalive timeouts.
This does not refer to the persistent connection or HTTP keepalive timeouts, but the SO_LINGER socket option
which is enabled by Apache. This parameter can be adjusted by using nettune to modify parameters such as
tcp_keepstart and tcp_keepstop. In later revisions, there is an explicit timer for connections in
FIN_WAIT_2 that can be modified; contact HP support for details.

❍

SGI IRIX can be patched to support a timeout. For IRIX 5.3, 6.2, and 6.3, use patches 1654, 1703 and 1778
respectively. If you have trouble locating these patches, please contact your SGI support channel for help.

❍

NCR's MP RAS Unix 2.xx and 3.xx both have FIN_WAIT_2 timeouts. In 2.xx it is non-tunable at 600 seconds,❍

3.

Connections in FIN_WAIT_2 and Apache

http://httpd.apache.org/docs/misc/fin_wait_2.html (2 of 4) [12/05/2001 4:52:34 PM]

http://www.freebsd.org/
http://www.netbsd.org/
http://www.openbsd.org/
http://www.bsdi.com/
ftp://ftp.bsdi.com/bsdi/patches/patches-2.1/K210-027
http://www.sun.com/
http://www.linux.org/
http://www.hp.com/
http://www.sgi.com/
http://www.ncr.com/

while in 3.xx it defaults to 600 seconds and is calculated based on the tunable "max keep alive probes" (default of
8) multiplied by the "keep alive interval" (default 75 seconds).

Sequent's ptx/TCP/IP for DYNIX/ptx has had a FIN_WAIT_2 timeout since around release 4.1 in mid-1994.❍

The following systems are known to not have a timeout:

SunOS 4.x does not and almost certainly never will have one because it as at the very end of its development cycle
for Sun. If you have kernel source should be easy to patch.

❍

There is a patch available for adding a timeout to the FIN_WAIT_2 state; it was originally intended for BSD/OS, but should
be adaptable to most systems using BSD networking code. You need kernel source code to be able to use it. If you do adapt
it to work for any other systems, please drop me a note at marc@apache.org.

Compile without using lingering_close()

It is possible to compile Apache 1.2 without using the lingering_close() function. This will result in that section of
code being similar to that which was in 1.1. If you do this, be aware that it can cause problems with PUTs, POSTs and
persistent connections, especially if the client uses pipelining. That said, it is no worse than on 1.1, and we understand that
keeping your server running is quite important.

To compile without the lingering_close() function, add -DNO_LINGCLOSE to the end of the EXTRA_CFLAGS
line in your Configuration file, rerun Configure and rebuild the server.

Use SO_LINGER as an alternative to lingering_close()

On most systems, there is an option called SO_LINGER that can be set with setsockopt(2). It does something very
similar to lingering_close(), except that it is broken on many systems so that it causes far more problems than
lingering_close. On some systems, it could possibly work better so it may be worth a try if you have no other
alternatives.

To try it, add -DUSE_SO_LINGER -DNO_LINGCLOSE to the end of the EXTRA_CFLAGS line in your
Configuration file, rerun Configure and rebuild the server.

NOTE: Attempting to use SO_LINGER and lingering_close() at the same time is very likely to do very bad things,
so don't.

Increase the amount of memory used for storing connection state

BSD based networking code:

BSD stores network data, such as connection states, in something called an mbuf. When you get so many
connections that the kernel does not have enough mbufs to put them all in, your kernel will likely crash. You can
reduce the effects of the problem by increasing the number of mbufs that are available; this will not prevent the
problem, it will just make the server go longer before crashing.

The exact way to increase them may depend on your OS; look for some reference to the number of "mbufs" or
"mbuf clusters". On many systems, this can be done by adding the line NMBCLUSTERS="n", where n is the
number of mbuf clusters you want to your kernel config file and rebuilding your kernel.

Disable KeepAlive

If you are unable to do any of the above then you should, as a last resort, disable KeepAlive. Edit your httpd.conf and
change "KeepAlive On" to "KeepAlive Off".

Feedback If you have any information to add to this page, please contact me at marc@apache.org.4.

Appendix

Below is a message from Roy Fielding, one of the authors of HTTP/1.1.

5.

Connections in FIN_WAIT_2 and Apache

http://httpd.apache.org/docs/misc/fin_wait_2.html (3 of 4) [12/05/2001 4:52:34 PM]

http://www.sequent.com/
http://www.sun.com/
http://www.apache.org/dist/httpd/contrib/patches/1.2/fin_wait_2.patch
mailto:marc@apache.org
mailto:marc@apache.org

Why the lingering close functionality is necessary with HTTP

The need for a server to linger on a socket after a close is noted a couple times in the HTTP specs, but not explained. This
explanation is based on discussions between myself, Henrik Frystyk, Robert S. Thau, Dave Raggett, and John C. Mallery in
the hallways of MIT while I was at W3C.

If a server closes the input side of the connection while the client is sending data (or is planning to send data), then the
server's TCP stack will signal an RST (reset) back to the client. Upon receipt of the RST, the client will flush its own
incoming TCP buffer back to the un-ACKed packet indicated by the RST packet argument. If the server has sent a message,
usually an error response, to the client just before the close, and the client receives the RST packet before its application
code has read the error message from its incoming TCP buffer and before the server has received the ACK sent by the client
upon receipt of that buffer, then the RST will flush the error message before the client application has a chance to see it. The
result is that the client is left thinking that the connection failed for no apparent reason.

There are two conditions under which this is likely to occur:

sending POST or PUT data without proper authorization1.

sending multiple requests before each response (pipelining) and one of the middle requests resulting in an error or
other break-the-connection result.

2.

The solution in all cases is to send the response, close only the write half of the connection (what shutdown is supposed to
do), and continue reading on the socket until it is either closed by the client (signifying it has finally read the response) or a
timeout occurs. That is what the kernel is supposed to do if SO_LINGER is set. Unfortunately, SO_LINGER has no effect
on some systems; on some other systems, it does not have its own timeout and thus the TCP memory segments just pile-up
until the next reboot (planned or not).

Please note that simply removing the linger code will not solve the problem -- it only moves it to a different and much
harder one to detect.

Apache HTTP Server Version 1.3

Connections in FIN_WAIT_2 and Apache

http://httpd.apache.org/docs/misc/fin_wait_2.html (4 of 4) [12/05/2001 4:52:34 PM]

http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Known Problems in Clients

Over time the Apache Group has discovered or been notified of problems with various clients which we have had to work around,
or explain. This document describes these problems and the workarounds available. It's not arranged in any particular order. Some
familiarity with the standards is assumed, but not necessary.

For brevity, Navigator will refer to Netscape's Navigator product (which in later versions was renamed "Communicator" and
various other names), and MSIE will refer to Microsoft's Internet Explorer product. All trademarks and copyrights belong to their
respective companies. We welcome input from the various client authors to correct inconsistencies in this paper, or to provide us
with exact version numbers where things are broken/fixed.

For reference, RFC1945 defines HTTP/1.0, and RFC2068 defines HTTP/1.1. Apache as of version 1.2 is an HTTP/1.1 server (with
an optional HTTP/1.0 proxy).

Various of these workarounds are triggered by environment variables. The admin typically controls which are set, and for which
clients, by using mod_browser. Unless otherwise noted all of these workarounds exist in versions 1.2 and later.

Trailing CRLF on POSTs

This is a legacy issue. The CERN webserver required POST data to have an extra CRLF following it. Thus many clients send an
extra CRLF that is not included in the Content-Length of the request. Apache works around this problem by eating any empty
lines which appear before a request.

Broken keepalive

Various clients have had broken implementations of keepalive (persistent connections). In particular the Windows versions of
Navigator 2.0 get very confused when the server times out an idle connection. The workaround is present in the default config files:

BrowserMatch Mozilla/2 nokeepalive

Note that this matches some earlier versions of MSIE, which began the practice of calling themselves Mozilla in their user-agent
strings just like Navigator.

MSIE 4.0b2, which claims to support HTTP/1.1, does not properly support keepalive when it is used on 301 or 302 (redirect)
responses. Unfortunately Apache's nokeepalive code prior to 1.2.2 would not work with HTTP/1.1 clients. You must apply this
patch to version 1.2.1. Then add this to your config:

BrowserMatch "MSIE 4\.0b2;" nokeepalive

Incorrect interpretation of HTTP/1.1 in response

To quote from section 3.1 of RFC1945:

HTTP uses a "<MAJOR>.<MINOR>" numbering scheme to indicate versions of the protocol. The protocol
versioning policy is intended to allow the sender to indicate the format of a message and its capacity for
understanding further HTTP communication, rather than the features obtained via that communication.

Since Apache is an HTTP/1.1 server, it indicates so as part of its response. Many client authors mistakenly treat this part of the
response as an indication of the protocol that the response is in, and then refuse to accept the response.

The first major indication of this problem was with AOL's proxy servers. When Apache 1.2 went into beta it was the first
wide-spread HTTP/1.1 server. After some discussion, AOL fixed their proxies. In anticipation of similar problems, the

Apache HTTP Server Project

http://httpd.apache.org/docs/misc/known_client_problems.html (1 of 4) [12/05/2001 4:52:36 PM]

ftp://ds.internic.net/rfc/rfc1945.txt
ftp://ds.internic.net/rfc/rfc2068.txt
http://httpd.apache.org/docs/mod/mod_browser.html
http://www.apache.org/dist/httpd/patches/apply_to_1.2.1/msie_4_0b2_fixes.patch
http://www.apache.org/dist/httpd/patches/apply_to_1.2.1/msie_4_0b2_fixes.patch

force-response-1.0 environment variable was added to Apache. When present Apache will indicate "HTTP/1.0" in response
to an HTTP/1.0 client, but will not in any other way change the response.

The pre-1.1 Java Development Kit (JDK) that is used in many clients (including Navigator 3.x and MSIE 3.x) exhibits this problem.
As do some of the early pre-releases of the 1.1 JDK. We think it is fixed in the 1.1 JDK release. In any event the workaround:

BrowserMatch Java/1.0 force-response-1.0
BrowserMatch JDK/1.0 force-response-1.0

RealPlayer 4.0 from Progressive Networks also exhibits this problem. However they have fixed it in version 4.01 of the player, but
version 4.01 uses the same User-Agent as version 4.0. The workaround is still:

BrowserMatch "RealPlayer 4.0" force-response-1.0

Requests use HTTP/1.1 but responses must be in HTTP/1.0

MSIE 4.0b2 has this problem. Its Java VM makes requests in HTTP/1.1 format but the responses must be in HTTP/1.0 format (in
particular, it does not understand chunked responses). The workaround is to fool Apache into believing the request came in
HTTP/1.0 format.

BrowserMatch "MSIE 4\.0b2;" downgrade-1.0 force-response-1.0

This workaround is available in 1.2.2, and in a patch against 1.2.1.

Boundary problems with header parsing

All versions of Navigator from 2.0 through 4.0b2 (and possibly later) have a problem if the trailing CRLF of the response header
starts at offset 256, 257 or 258 of the response. A BrowserMatch for this would match on nearly every hit, so the workaround is
enabled automatically on all responses. The workaround implemented detects when this condition would occur in a response and
adds extra padding to the header to push the trailing CRLF past offset 258 of the response.

Multipart responses and Quoted Boundary Strings

On multipart responses some clients will not accept quotes (") around the boundary string. The MIME standard recommends that
such quotes be used. But the clients were probably written based on one of the examples in RFC2068, which does not include
quotes. Apache does not include quotes on its boundary strings to workaround this problem.

Byterange requests

A byterange request is used when the client wishes to retrieve a portion of an object, not necessarily the entire object. There was a
very old draft which included these byteranges in the URL. Old clients such as Navigator 2.0b1 and MSIE 3.0 for the MAC exhibit
this behavior, and it will appear in the servers' access logs as (failed) attempts to retrieve a URL with a trailing ";xxx-yyy". Apache
does not attempt to implement this at all.

A subsequent draft of this standard defines a header Request-Range, and a response type multipart/x-byteranges. The
HTTP/1.1 standard includes this draft with a few fixes, and it defines the header Range and type multipart/byteranges.

Navigator (versions 2 and 3) sends both Range and Request-Range headers (with the same value), but does not accept a
multipart/byteranges response. The response must be multipart/x-byteranges. As a workaround, if Apache
receives a Request-Range header it considers it "higher priority" than a Range header and in response uses
multipart/x-byteranges.

The Adobe Acrobat Reader plugin makes extensive use of byteranges and prior to version 3.01 supports only the
multipart/x-byterange response. Unfortunately there is no clue that it is the plugin making the request. If the plugin is used
with Navigator, the above workaround works fine. But if the plugin is used with MSIE 3 (on Windows) the workaround won't work
because MSIE 3 doesn't give the Range-Request clue that Navigator does. To workaround this, Apache special cases "MSIE 3"
in the User-Agent and serves multipart/x-byteranges. Note that the necessity for this with MSIE 3 is actually due to the
Acrobat plugin, not due to the browser.

Netscape Communicator appears to not issue the non-standard Request-Range header. When an Acrobat plugin prior to version
3.01 is used with it, it will not properly understand byteranges. The user must upgrade their Acrobat reader to 3.01.

Apache HTTP Server Project

http://httpd.apache.org/docs/misc/known_client_problems.html (2 of 4) [12/05/2001 4:52:36 PM]

http://www.apache.org/dist/httpd/patches/apply_to_1.2.1/msie_4_0b2_fixes.patch

Set-Cookie header is unmergeable

The HTTP specifications say that it is legal to merge headers with duplicate names into one (separated by commas). Some browsers
that support Cookies don't like merged headers and prefer that each Set-Cookie header is sent separately. When parsing the
headers returned by a CGI, Apache will explicitly avoid merging any Set-Cookie headers.

Expires headers and GIF89A animations

Navigator versions 2 through 4 will erroneously re-request GIF89A animations on each loop of the animation if the first response
included an Expires header. This happens regardless of how far in the future the expiry time is set. There is no workaround
supplied with Apache, however there are hacks for 1.2 and for 1.3.

POST without Content-Length

In certain situations Navigator 3.01 through 3.03 appear to incorrectly issue a POST without the request body. There is no known
workaround. It has been fixed in Navigator 3.04, Netscapes provides some information. There's also some information about the
actual problem.

JDK 1.2 betas lose parts of responses.

The http client in the JDK1.2beta2 and beta3 will throw away the first part of the response body when both the headers and the first
part of the body are sent in the same network packet AND keep-alive's are being used. If either condition is not met then it works
fine.

See also Bug-ID's 4124329 and 4125538 at the java developer connection.

If you are seeing this bug yourself, you can add the following BrowserMatch directive to work around it:

BrowserMatch "Java1\.2beta[23]" nokeepalive

We don't advocate this though since bending over backwards for beta software is usually not a good idea; ideally it gets fixed, new
betas or a final release comes out, and no one uses the broken old software anymore. In theory.

Content-Type change is not noticed after reload

Navigator (all versions?) will cache the content-type for an object "forever". Using reload or shift-reload will not cause
Navigator to notice a content-type change. The only work-around is for the user to flush their caches (memory and disk). By
way of an example, some folks may be using an old mime.types file which does not map .htm to text/html, in this case
Apache will default to sending text/plain. If the user requests the page and it is served as text/plain. After the admin fixes
the server, the user will have to flush their caches before the object will be shown with the correct text/html type.

MSIE Cookie problem with expiry date in the year 2000

MSIE versions 3.00 and 3.02 (without the Y2K patch) do not handle cookie expiry dates in the year 2000 properly. Years after 2000
and before 2000 work fine. This is fixed in IE4.01 service pack 1, and in the Y2K patch for IE3.02. Users should avoid using expiry
dates in the year 2000.

Lynx incorrectly asking for transparent content negotiation

The Lynx browser versions 2.7 and 2.8 send a "negotiate: trans" header in their requests, which is an indication the browser supports
transparent content negotiation (TCN). However the browser does not support TCN. As of version 1.3.4, Apache supports TCN, and
this causes problems with these versions of Lynx. As a workaround future versions of Apache will ignore this header when sent by
the Lynx client.

Apache HTTP Server Project

http://httpd.apache.org/docs/misc/known_client_problems.html (3 of 4) [12/05/2001 4:52:36 PM]

http://www.arctic.org/~dgaudet/patches/apache-1.2-gif89-expires-hack.patch
http://www.arctic.org/~dgaudet/patches/apache-1.3-gif89-expires-hack.patch
http://help.netscape.com/kb/client/971014-42.html
http://www.arctic.org/~dgaudet/apache/no-content-length/

MSIE 4.0 mishandles Vary response header

MSIE 4.0 does not handle a Vary header properly. The Vary header is generated by mod_rewrite in apache 1.3. The result is an
error from MSIE saying it cannot download the requested file. There are more details in PR#4118.

A workaround is to add the following to your server's configuration files:

 BrowserMatch "MSIE 4\.0" force-no-vary

(This workaround is only available with releases after 1.3.6 of the Apache Web server.)

Apache HTTP Server Version 1.3

Apache HTTP Server Project

http://httpd.apache.org/docs/misc/known_client_problems.html (4 of 4) [12/05/2001 4:52:36 PM]

http://bugs.apache.org/index/full/4118
http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Why We Took PEM Out of Apache

On May 17th, 1995, we were asked by a representative of NCSA to remove any copies of NCSA httpd prior to 1.4.1 from our web
site. They were mandated by the NSA to inform us that redistribution of pre-1.4.1 code violated the same laws that make
distributing Phill Zimmerman's PGP package to other countries illegal. There was no encryption in NCSA's httpd, only hooks to
publicly available libraries of PEM code. By the NSA's rules, even hooks to this type of application is illegal.

Because Apache is based on NCSA code, and we had basically not touched that part of the software, we were informed that Apache
was also illegal to distribute to foreign countries, and advised (not mandated) by NCSA to remove it. So, we removed both the
copies of the NCSA httpd we had, and all versions of Apache previous to 0.6.5.

The Apache members are strong advocates of the right to digital privacy, so the decision to submit to the NSA and remove the code
was not an easy one. Here are some elements in our rationale:

The PEM code in httpd was not widely used. No major site relied upon its use, so its loss is not a blow to encryption and
security on the world wide web. There are other efforts designed to give much more flexible security - SSL and SHTTP - so
this wasn't a function whose absence would really be missed on a functional level.

●

We didn't feel like being just a couple more martyrs in a fight being fought very well by many other people. Rather than
have the machine that supports the project confiscated or relocated to South Africa, etc., we think there are more efficient
methods to address the issue.

●

It kind of sickens us that we had to do it, but so be it.

Patches that re-implement the PEM code may be available at a foreign site soon. If it does show up, we'll point to it - that can't be
illegal!

Finally, here is a compendium of pointers to sites related to encryption and export law. We can't promise this list will be up to date,
so send us mail when you see a problem or want a link added. Thanks.

Yahoo - Science: Mathematics: Security and Encryption●

EFF Crypto/Privacy/Security Archive●

Crypto page at Quadralay●

Cryptography Export Control Archives (Cygnus)●

ICLU - Your Rights in Cyberspace●

Brian, brian@hyperreal.com

Apache HTTP Server Version 1.3

Why We Took PEM Out of Apache

http://httpd.apache.org/docs/misc/nopgp.html [12/05/2001 4:52:37 PM]

http://www.yahoo.com/Computers_and_Internet/Security_and_Encryption/
http://www.eff.org/pub/Privacy/Crypto/
http://www.quadralay.com/www/Crypt/Crypt.html
ftp://ftp.cygnus.com/pub/export/export.html
http://www.law.indiana.edu/law/iclu.html
http://www.behlendorf.com/~brian/
mailto:brian@hyperreal.com
http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Configuring Multiple IP Addresses

This material is originally from John Ioannidis (ji@polaris.ctr.columbia.edu)
I have condensed it some and applied some corrections for SunOS 4.1.x
courtesy of Chuck Smoko (csmoko@relay.nswc.navy.mil).

Bob Baggerman (bob@bizweb.com)
12 Jan 94

=-=
John Ionnidis writes:

This is a topic that comes up once in a while on comp.protocols.tcp-ip
and other newsgroups. The question is, how to get a machine with one
network interface to respond to more than one IP addresses.

I have a solution than might suit you. For my doctoral work (there's
a paper about it in this year's ('91) SIGCOMM, also available for
anonymous FTP from cs.columbia.edu:/pub/ji/sigcomm*.ps.Z), I've
developed what I call the "Virtual Interface" (VIF). To the networking
code, it looks like an interface. It gets ifattach()ed when you open
the /dev/vif* device, and then you can ifconfig it as you like. It
does not have an if_input procedure; it only has an if_output. Packets
that it receives (from higher-level protocols) which have its
IP address, it simply loops back (like any well-behaved if driver).
Packets that it receives that are destined for some other address, it
encapsulates in an encapsulation protocol I call IPIP (IP-within-IP,
protocol number IPPROTO_IPIP == 94), and sends it to another machine
that groks that encapsulation protocol. This feature you won't need,
but here's how to have multiple IP addresses on a machine with a
single real interface:

Let's say your primary interface's IP address is 198.3.2.1, and you
also want it to respond to addresses 198.4.3.2 and 198.5.4.3 (note
that these are three distinct class C addresses in three distinct
class C nets). Here are the ifconfigs:

 ifconfig le0 198.3.2.1 up -trailers # config primary interface

 ifconfig vif0 198.4.3.2 up # config first virtual interface
 route delete net 198.4.3 198.4.3.2 # delete spurious route
 route add host 198.4.3.2 198.4.3.2 0 # add route for this i/f

 ifconfig vif1 198.5.4.3 up # config second virtual interface
 route delete net 198.5.4 198.5.4.3 # delete spurious route
 route add host 198.5.4.3 198.5.4.3 0 # add route for this i/f

The route deletes are needed because the ifconfig creates a default
route to the interface's network, which can cause problems; all that's
needed is the (host) route to the interface's address.

Configuring Multiple IP Addresses

http://httpd.apache.org/docs/misc/vif-info.html (1 of 7) [12/05/2001 4:52:40 PM]

Now, get le0's ethernet address (say, 8:0:20:3:2:1), and add the
following static ARP entries:

 arp -s 198.4.3.2 8:0:20:3:2:1 pub
 arp -s 198.5.4.3 8:0:20:3:2:1 pub

This will cause any ARP requests for the VIF addresses to be replied
with your machine's ethernet address.

Now, make sure your default route is to your segment's gateway,
through the real interface. Finally, make sure your routers and/or
hosts on the same segment as yours know that 198.4.3.2 and 198.5.4.3
are on that cable.

Here's what you've accomplished.

ARP requests for any of your host's addresses will be replied to with
the host's ethernet address (the real one, because that's what it is,
the virtual ones because of the public static arp entries). Packets
reaching your host with any of these addresses will be accepted by the
ip_input routine because they match the address of one of the host's
interfaces. Packets leaving your host can have any of its addresses
(real and virtual).

The code for vif follows. To use it, put the stuff in netinet/if_vif.c
and netinet/if_vif.h, configure your kernel with the number of
virtual interfaces you want using a line like:

pseudo-device vif4 # Virtual IP interface

in your configuration file, and the line

netinet/if_vif.c optional vif device-driver

in the "files" file. Also, add the appropriate entries in conf.c, so
that you can access the if_attach() routine when you open the device:

-------------------------- conf.c--

add this in the appropriate place in the headers of conf.c:

#include "vif.h"
#if NVIF > 0
int vifopen(), vifclose(), vifread(), vifwrite(), vifselect(), vifioctl();
#else
#define vifopen nodev
#define vifclose nodev
#define vifread nodev
#define vifwrite nodev
#define vifselect nodev
#define vifioctl nodev
#endif

then, way down in the definition for cdevsw[]:

 vifopen, vifclose, vifread, vifwrite, /*14*/
 vifioctl, nodev, nodev, 0,
 0, nodev,

Configuring Multiple IP Addresses

http://httpd.apache.org/docs/misc/vif-info.html (2 of 7) [12/05/2001 4:52:40 PM]

Make sure you remember the correct major device number, 14 in this case!

Finally, here's the code. It has the tunneling pieces removed (you
need more code to use that anyway), and it comes from a Mach 2.6
kernel; it should compile on any Berkeley-derived unix with minor
changes (most likely only in the includes).

---------------------netinet/if_vif.h--------------------------------------
typedef struct
{
 struct ifnet vif_if;
 struct ifnet *vif_sif; /* slave interface */
 int vif_flags;
} vif_softc_t;

#define VIFMTU (1024+512)

and

---------------------netinet/if_vif.c--------------------------------------
/*
 * Virtual IP interface module.
 */

#include "param.h"
#include "../sys/systm.h"
#include "../sys/mbuf.h"
#include "../sys/socket.h"
#include "../sys/errno.h"
#include "../sys/ioctl.h"

#include "../net/if.h"
#include "../net/netisr.h"
#include "../net/route.h"

#ifdef INET
#include "../netinet/in.h"
#include "../netinet/in_systm.h"
#include "../netinet/in_var.h"
#include "../netinet/ip.h"
#endif

#include "in_pcb.h"
#include "vif.h"

typedef struct
{
 struct ifnet vif_if;
 struct ifnet *vif_sif; /* slave interface */
 int vif_flags;
} vif_softc_t;

#define VIFMTU (1024+512)

vif_softc_t vif_softc[NVIF];

int vifs_inited = 0;

Configuring Multiple IP Addresses

http://httpd.apache.org/docs/misc/vif-info.html (3 of 7) [12/05/2001 4:52:40 PM]

vifattach()
{
 register int i;
 register struct ifnet *ifp;
 int vifoutput(), vififioctl();

 for (i=0; i<NVIF; i++)
 {
 ifp = &vif_softc[i].vif_if;
 ifp->if_name = "vif";
 ifp->if_unit = i;
 ifp->if_mtu = VIFMTU;
 ifp->if_flags = IFF_LOOPBACK | IFF_NOARP;
 ifp->if_ioctl = vififioctl;
 ifp->if_output = vifoutput;
 if_attach(ifp);
 }
}

vifopen(dev, flag)
int dev, flag;
{
 int unit;

 if (!vifs_inited)
 {
 vifattach();
 vifs_inited = 1;
 printf("vif initialized\n");
 }

 unit = minor(dev);
 if ((unit < 0) || (unit >= NVIF))
 {
 return ENXIO;
 }

 return 0;
}

vifclose(dev, flag)
int dev, flag;
{
 return 0;
}

vifread()
{
 return ENXIO;
}

vifwrite()
{
 return ENXIO;
}

vifselect()
{
 return ENXIO;
}

Configuring Multiple IP Addresses

http://httpd.apache.org/docs/misc/vif-info.html (4 of 7) [12/05/2001 4:52:40 PM]

vifoutput(ifp, m0, dst)
 struct ifnet *ifp;
 register struct mbuf *m0;
 struct sockaddr *dst;
{
 int s;
 register struct ifqueue *ifq;
 struct mbuf *m;
 struct sockaddr_in *din;

 if (dst->sa_family != AF_INET)
 {
 printf("%s%d: can't handle af%d\n",
 ifp->if_name, ifp->if_unit,
 dst->sa_family);
 m_freem(m0);
 return (EAFNOSUPPORT);
 }

 din = (struct sockaddr_in *)dst;

 if (din->sin_addr.s_addr == IA_SIN(ifp->if_addrlist)->sin_addr.s_addr)
 {
 /* printf("%s%d: looping\n", ifp->if_name, ifp->if_unit); */

 /*
 * Place interface pointer before the data
 * for the receiving protocol.
 */
 if (m0->m_off <= MMAXOFF &&
 m0->m_off >= MMINOFF + sizeof(struct ifnet *)) {
 m0->m_off -= sizeof(struct ifnet *);
 m0->m_len += sizeof(struct ifnet *);
 } else {
 MGET(m, M_DONTWAIT, MT_HEADER);
 if (m == (struct mbuf *)0)
 return (ENOBUFS);
 m->m_off = MMINOFF;
 m->m_len = sizeof(struct ifnet *);
 m->m_next = m0;
 m0 = m;
 }
 *(mtod(m0, struct ifnet **)) = ifp;
 s = splimp();
 ifp->if_opackets++;
 ifq = &ipintrq;
 if (IF_QFULL(ifq)) {
 IF_DROP(ifq);
 m_freem(m0);
 splx(s);
 return (ENOBUFS);
 }
 IF_ENQUEUE(ifq, m0);
 schednetisr(NETISR_IP);
 ifp->if_ipackets++;
 splx(s);
 return (0);
 }

 return EHOSTUNREACH;
}

Configuring Multiple IP Addresses

http://httpd.apache.org/docs/misc/vif-info.html (5 of 7) [12/05/2001 4:52:40 PM]

/*
 * Process an ioctl request.
 */
/* ARGSUSED */
vififioctl(ifp, cmd, data)
 register struct ifnet *ifp;
 int cmd;
 caddr_t data;
{
 int error = 0;

 switch (cmd) {

 case SIOCSIFADDR:
 ifp->if_flags |= IFF_UP;
 /*
 * Everything else is done at a higher level.
 */
 break;

 default:
 error = EINVAL;
 }
 return (error);
}

vifioctl(dev, cmd, arg, mode)
dev_t dev;
int cmd;
caddr_t arg;
int mode;
{
 int unit;

 unit = minor(dev);
 if ((unit < 0) || (unit >= NVIF))
 return ENXIO;

 return EINVAL;
}
--

To use it, compile your kernel, and reboot. Then create the vif
device:

mknod /dev/vif c 14 0

(or whatever major number it ended up being), and echo something into
it:

echo > /dev/vif

This will cause the device to be opened, which will if_attach the
interfaces. If you feel like playing with the code, you may want to
kmem_alloc() the vif_softc structure at open time, and use the minor
number of the device to tell it how many interfaces to create.

Now you can go ahead and ifconfig etc.

I'll be happy to answer minor questions, and hear about success and
failure stories, but I cannot help you if you don't already know how

Configuring Multiple IP Addresses

http://httpd.apache.org/docs/misc/vif-info.html (6 of 7) [12/05/2001 4:52:40 PM]

to hack kernels.

Good luck!

/ji

In-Real-Life: John "Heldenprogrammer" Ioannidis
E-Mail-To: ji@cs.columbia.edu
V-Mail-To: +1 212 854 8120
P-Mail-To: 450 Computer Science \n Columbia University \n New York, NY 10027

Note: there is also a commercial-product-turned-freeware called "Col. Patch" which does this as a loadable kernel module for
SunOS 4.1.3_U1.

Apache HTTP Server Version 1.3

Configuring Multiple IP Addresses

http://httpd.apache.org/docs/misc/vif-info.html (7 of 7) [12/05/2001 4:52:40 PM]

http://www.multihost.com/
http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

HTTP/1.1 KeepAlive problems with Netscape 3.0

Date: Mon, 1 Jul 1996 16:03:06 -0700 (PDT)
From: Alexei Kosut <akosut@organic.com>
To: Apache Group
Subject: Re: keepalive and windoze

Good news and good news (of a sort)..

I was able to snag a Windows 95 machine here at Organic, and tried out
some things:

1) On Netscape 3.0b4, I was able to reproduce the bug, each and every
time. It's really simple: go to the Network Setup panel. Set it to
"Connect Every Time" and only let it have 1 connection at once (this may
not be necessary, but it's helpful). Then load an image that's
kept-alive. Then wait until the connection times out (this depends on the
server - 10-30 seconds, except for MIIS, which never times out, near as I
can tell). Then hit reload. It will hang. (actually, once it crashed).

2) This happens with all forms of server. Apache 1.1, Netscape 2.0,
Spyglass 1.2, NCSA 1.5 (although, as stated, I couldn't test MIIS).

3) Netscape 3.0b5 does, indeed, *not* have this bug. At least, I couldn't
get it to perform such. Yipee.

So, we just put up a note on the web page. Make sure we say that all the
servers have the bug, it's a Windows bug, and Netscape Navigator 3.0b5
works around it. That way, no one can yell at us. Yes?

-- Alexei Kosut <akosut@organic.com> The Apache HTTP Server
 http://www.nueva.pvt.k12.ca.us/~akosut/ http://www.apache.org/

Apache HTTP Server Version 1.3

MS Windows Netscape 3.0b4 KeepAlive problem solved

http://httpd.apache.org/docs/misc/windoz_keepalive.html [12/05/2001 4:52:41 PM]

http://httpd.apache.org/docs/misc/

Apache HTTP Server Version 1.3

Reading Client Input in Apache 1.2

Apache 1.1 and earlier let modules handle POST and PUT requests by themselves. The module would, on its own, determine
whether the request had an entity, how many bytes it was, and then called a function (read_client_block) to get the data.

However, HTTP/1.1 requires several things of POST and PUT request handlers that did not fit into this module, and all existing
modules have to be rewritten. The API calls for handling this have been further abstracted, so that future HTTP protocol changes
can be accomplished while remaining backwards-compatible.

The New API Functions

 int ap_setup_client_block (request_rec *, int read_policy);
 int ap_should_client_block (request_rec *);
 long ap_get_client_block (request_rec *, char *buffer, int buffer_size);

Call ap_setup_client_block() near the beginning of the request handler. This will set up all the necessary
properties, and will return either OK, or an error code. If the latter, the module should return that error code. The second
parameter selects the policy to apply if the request message indicates a body, and how a chunked transfer-coding should be
interpreted. Choose one of

 REQUEST_NO_BODY Send 413 error if message has any body
 REQUEST_CHUNKED_ERROR Send 411 error if body without Content-Length
 REQUEST_CHUNKED_DECHUNK If chunked, remove the chunks for me.
 REQUEST_CHUNKED_PASS Pass the chunks to me without removal.

In order to use the last two options, the caller MUST provide a buffer large enough to hold a chunk-size line, including any
extensions.

1.

When you are ready to possibly accept input, call ap_should_client_block(). This will tell the module whether or
not to read input. If it is 0, the module should assume that the input is of a non-entity type (e.g., a GET request). A nonzero
response indicates that the module should proceed (to step 3). This step also sends a 100 Continue response to HTTP/1.1
clients, so should not be called until the module is *definitely* ready to read content. (otherwise, the point of the 100
response is defeated). Never call this function more than once.

2.

Finally, call ap_get_client_block in a loop. Pass it a buffer and its size. It will put data into the buffer (not
necessarily the full buffer, in the case of chunked inputs), and return the length of the input block. When it is done reading,
it will return 0 if EOF, or -1 if there was an error.

3.

As an example, please look at the code in mod_cgi.c. This is properly written to the new API guidelines.

Apache HTTP Server Version 1.3

Reading Client Input in Apache 1.2

http://httpd.apache.org/docs/misc/client_block_api.html [12/05/2001 4:52:42 PM]

http://httpd.apache.org/docs/misc/

	apache.org
	Apache HTTP Server Version 1.3 Documentation
	Upgrading to 1.3 from 1.2
	New features with Apache 1.3
	Compiling and Installing Apache
	Starting Apache
	Stopping and Restarting Apache
	Configuration Files
	How Directory, Location and Files sections work
	Server-Wide Configuration
	Log Files - Apache HTTP Server
	Mapping URLs to Filesystem Locations - Apache HTTP Server
	Apache HTTP Server: Security Tips
	Apache 1.3 Dynamic Shared Object (DSO) support
	Apache Content Negotiation
	Custom error responses
	Setting which addresses and ports Apache uses
	Environment Variables in Apache
	Apache's Handler Use
	Apache suEXEC Support
	Apache Performance Notes
	Apache 1.3 URL Rewriting Guide
	Apache Virtual Host documentation
	Name-based Virtual Hosts
	Apache IP-based Virtual Host Support
	Dynamically configured mass virtual hosting
	VirtualHost Examples
	An In-Depth Discussion of Virtual Host Matching
	Apache Server Virtual Host Support
	Issues Regarding DNS and Apache
	Apache Server Frequently Asked Questions
	Authentication, Authorization, and Access Control
	Apache Tutorial: Dynamic Content with CGI
	Apache Tutorial: Introduction to Server Side Includes
	Apache HOWTO documentation
	Apache Tutorials
	Using Apache with Microsoft Windows
	Compiling Apache for Microsoft Windows
	Running Apache for Windows as a Service
	Using Apache with Cygwin
	The Apache EBCDIC Port
	The Apache TPF Port
	Installing Apache on TPF
	Using Apache with HP MPE/iX
	Using Apache with Novell NetWare
	Compiling Apache under UnixWare
	Running a High-Performance Web Server for BSD
	Performance Tuning Tips for Digital Unix
	Running a High-Performance Web Server on HPUX
	Hints on Running a High-Performance Web Server
	Apache HTTP Server and Supporting Programs
	Manual Page: httpd - Apache HTTP Server
	Manual Page: apxs - Apache HTTP Server
	Manual Page: ab - Apache HTTP Server
	Manual Page: apachectl - Apache HTTP Server
	Manual Page: dbmmanage - Apache HTTP Server
	Manual Page: htdigest - Apache HTTP Server
	Manual Page: htpasswd - Apache HTTP Server
	Manual Page: logresolve - Apache HTTP Server
	Manual Page: rotatelogs - Apache HTTP Server
	Manual Page: suexec - Apache HTTP Server
	Other Programs - Apache HTTP Server
	Apache modules
	Apache modules
	Apache directives
	Definitions of terms used to describe Apache directives
	Definitions of terms used to describe Apache modules
	Apache Core Features
	Apache module mod_access
	Module mod_actions
	Apache module mod_alias
	Apache module mod_asis
	Apache module mod_auth
	Apache module mod_auth_anon.c
	Apache module mod_auth_db
	Apache module mod_auth_dbm
	Apache module mod_auth_digest
	Apache module mod_autoindex
	Module mod_cern_meta
	Apache module mod_cgi
	Apache module mod_digest
	Apache module mod_dir
	Apache module mod_env
	Apache module mod_example
	Apache module mod_expires
	Apache module mod_headers
	Apache module mod_imap
	Apache module mod_include
	Apache module mod_info
	Apache module mod_isapi
	Module mod_log_agent
	Apache module mod_log_config
	Apache module mod_log_referer
	Apache module mod_mime
	Apache module mod_mime_magic
	Apache module mod_mmap_static
	Apache module mod_negotiation
	Apache module mod_proxy
	Apache module mod_rewrite
	Apache module mod_setenvif
	Apache module mod_so
	Apache module mod_speling
	Apache module mod_status
	Apache module mod_unique_id
	Apache module mod_userdir
	Apache module mod_usertrack
	Apache module mod_vhost_alias
	Apache API notes
	Apache Miscellaneous Documentation
	PATH_INFO Changes in the CGI Environment
	Apache Keep-Alive Support
	Apache Multiple Log Files
	Server Pool Management
	Source Re-organisation
	Apache HTTP Server: Notes about Compatibility with NCSA's Server
	International Customized Server Error Messages
	Descriptors and Apache
	Connections in FIN_WAIT_2 and Apache
	Apache HTTP Server Project
	Why We Took PEM Out of Apache
	Configuring Multiple IP Addresses
	MS Windows Netscape 3.0b4 KeepAlive problem solved
	Reading Client Input in Apache 1.2

	GMABEMHPDABBLNNBOJNDAKMFILEFJFLJ:
	form1:
	x:
	f1: httpd.apache.org
	f2: 20
	f3: 2
	f4:

	f5:

