Apache Derby }

Derby Reference Manual

Version 10.3

Derby Document build:
May 2, 2008, 6:09:13 PM (PDT)

Version 10.3 Derby Reference Manual

Contents

1670] o)V A 8 [0 1| ST TP PP PPR PP 9
[T =T 1= N 10
ADOUL IS QUITE. ..t e e e e e anes 14
Purpose of thisS dOCUMENT. ..ot 14
F 2N U0 =] oY1 = TR 14
How this guide iS Organized............covvviiiiiiiiiiiee e 14
SQL 1aNQUAGE FEFEIENCE. ...ciii it et 15
Capitalization and special CharacCters........ccoouueiiiiiiiiiie e 15
Y@]I T 1= o 4 =T PSR 15
Rules for SQLO2 identifiers. ... 16

Y@ TR 2 o = o 1= PSR 16

(o701 18 a1 NN F= 10 1 1= TR 17

(ofo] (=1 F= 1101 NN F=T 0 1 U= T 17
TCTT R =1 o] LT AN F= 2 1= T 18

LYo aT=T g F= AV F= L o1 18
SIMPIE-COIUMN-NAME......oeiiiiii e 18
SYNONYM-NBITIE. ...t e e e e e e e e e e e e e e e e eeeennenenes 18

16 1 o] (ST NV F= T 1 19

AV TSNV NN F= T = TN 19

10 [0 G V=T 1T 19

(o701 0 15) (r= 1101 ot N\ F= 11 0 1T 19

(ol U] Yo AN F= 11 ¢ T TS PSRRI 20
THGOEINAME. ...ttt e e e e e aeees 20
AUtNONZAtIONIAENTITIEI.....eee i 20

] = 10T 0 4 1=T 0] £ 20
Interaction with the dependency SYStEM.........cccoiiiiiiiiiiiiie e 21
ALTER TABLE Statement. ... e 22
CALL (PROCEDURE) StatemMeNt.........cuuviieiiiiiiieeeiiiiee ettt 26
CREATE StAlEMENTS. ... e et e e e e e eeaneas 26
DECLARE GLOBAL TEMPORARY TABLE statement.............ccceeeveevevivvieeneenens 40
DELETE StAtemMeNt. ... e e e e aaaas 43
(D] @) =1 (=] 1 1= 0] 5T 43
GRANT SEALEMENT ...t et e e e e e e e 45

I] = = IS r= 1 (=10 4 [o] SR 47
LOCK TABLE Stat@mMENT........cveeeiiiieeee e e 48
RENAME StatEMENLS.ovniiiiiiiiei e et e e et e et e e e eeaaeeas 49
REVOKE SEAIEMENT ...ttt e e e e e eaans 50

] = Y r= 1 (=] .41] £ RPN 53
SELECT StAtEMEBNT.....ceeieee et e e e e e 55
UPDATE StatemMENT.t e e e e e eans 56
Y@ I o3 =TS =R 58
CONSTRAINT ClAUSE......cceetueeeeeeeeeee ettt e e e e e e e s et e e e e eeenen 58
FOR UPDATE ClAUSE......cutuiieeieeeee et e et e e e e e e e e e e e e s eeranns 64
FROM CIAUSE. ..ottt ettt et e e e e e e e e e e e e e eraanas 64
GROUP BY ClAUSE....uuniiiieeeiee ettt e e e e e e e e e e eaba e eeneees 65
HAVING ClAUSE......cveti ettt e e e e e e e s e e e e e e eaaanaeeeeens 65
ORDER BY ClAUSE......cciieeti ettt e e e e et e e e e et e e e s eeaaans 66
WHERE ClAUSEot 67
WHERE CURRENT OF ClaUSE......ccuvuiiiiiiieeie ettt ee e s 68
SQL EXPIESSIONS .. ttiiiee ittt ettt ettt e et e e e st e e e b e e e s et e e e e e aabreeeeean 68

Version 10.3 Derby Reference Manual

SeIECIEXPIESSION. ...t a e ———————— 70
TADIEEXPIESSION. ...eeiiiiie e e e ittt e e e e et e e e e e e e e e e e e s rereeaeaeeeeaeannnne 72
VALUES EXPIrESSION.uuuiiiiiiiiiieeeeesieiciittieeeeeeaeeessssssaantaareeaeaaaesssasansnnssrnsareeeeens 73
EXPreSSion PreCERUBNCE.uuuiiiiiiieee e e ettt e e e s e e e e e e e e s e nnreaaeees 74
BOOICAN EXPIESSIONS. . .ueiiiiiiiee e e ettt e e e e e e e e e e e e e s e s aaaaaaa s 74
DYNAMIC PAIAMELEIS.uiiiiiiiieieeeee e e e st e e e e e e e s e s s r e e e e e e e e e s esannnabaraeereees 76
N @ Ao oX=T = 1110] 1= SRR 79
INNER JOIN OPEIatiON.......cccciiiiiiiiiiieee e e e e e cecstiiete e e e e e e e e e s e e st re e e e e e aeeeeaesennnnes 79
LEFT OUTER JOIN OPEratiON........ccccuuiiiiiiieieeee e e e s sseciiitereeereeee e e e s e sssnnnssnneeeeeaaeens 80
RIGHT OUTER JOIN OPEratiON.......ccuuviiiiiiiieeeeeesicciiiieteeeeeeee e e e e e ssennvnnneeeeeeaee s 81
Y@ o T L= = SRR 82
(O 1 UT= PSPPSR 82
Yoz 1= T 6T U] oo (U T=T o S PRRPPRR 84
TaDIESUBQUETY.....coii et e e e e e 84
BUIIE-IN FUNCLIONS ... e eraaea s 85
Standard built-in FUNCHONS..........uuiiiiiiiiee e 85
Aggregates (Set fFUNCHIONS)......ciiiiiii i 86
ABS 0r ABSVAL fUNCHON......ceiiiiiie e 87
ACOS FUNCHION. ... e e e e e e e e e s e s s e nnrraaeereaaaeeas 88
NS Y| {1 o 1 o] o TP PEERPRR 88
ATAN TUNCHON ... e e e raaae s 88
AVG TUNCHION.....ciii et e e e e e e s e e e e e e e eae s 89
BIGINT fUNCHON. . .ceiiiiiiee e e e e e e e e e e e e e s e s eenenes 89
CASE ©XPIESSIONS. .. utttiiiiieiieeeee e i e s ittt e e eeeae e e s s s ssa et reeetaaaeeessssansnnbaaaeereaaaaes 90
L7 283 I {1 o 1 o] o S PERPRRR 90
CEIL Or CEILING fUNCHON. .. .ceiiiiiie ettt 93
(O 7Y = 11 (od 1T o TS EEPRR S 94
CoNcateNAtioN OPEIALOL..........cccueiiiiieeee e e e e e e s e e e e e e e e s e s s rereeeeeeesaaanns 95
(1@ 15T 11 o1 110 o TSR 96
(1@ 10 |\ I U 3T 1o) o PP 96
COUNT(®) fUNCHON....ciii e e e e e e e e e e e e e e e s e s nennnes 96
CURRENT DATE fUNCLON. ..ottt ettt 97
CURRENT_DATE fUNCLON....ciiiiiiiiiee ettt e e 97
CURRENT ISOLATION fUNCHON.cttiiiiie it 97
CURRENT SCHEMA fUNCHON.icttiiiieiiiiiie ettt staeee e 97
CURRENT TIME fUNCLON......oiiiiiiiiii et 97
CURRENT_TIME fUNCLON.....coiiiiiiiiie ettt 98
CURRENT TIMESTAMP fUNCHON.......ctiiiieiiiiiiee et 98
CURRENT_TIMESTAMP fUNCHON......coitiiiieiiiiiiee et 98
CURRENT_USER fUNCLON......coiiiiiiiiiic ettt e e 98
[7N N (1] Uod 1T o TR 98
(7 {01 g T o) o PSR PREEPR 99
DEGREES fUNCHON. ...ttt a e e e e s 99
(1@ LU =] I {1 o Tox 1o o PR 99
L 11 o1 11 o TP EEEERRR 100
[IO 1@] = {1 o3 1 o] o S PRPSUURT 100
HOUR fUNCHON.iiii et e e e e e e e e e s e s s raaee e 101
IDENTITY_VAL_LOCAL fUNCHON......oitiiieeeiiiiee et 101
INTEGER fUNCHON......cciiieeeieee e e e e e e e n s 102
LCASE 0r LOWER fUNCHON.......uuiiiiiiiiiee et e e s e e e e e e e e s 103
LENGTH fUNCHON.......ciiiiieee e e e e e e rraae e 103
LN OF LOG fUNCHON....cciiiiieee ittt e e e e e s r e e e e e e e e e e e 104
LOGIL0 fUNCHON. ...ciii et e e e e e e e r e e e e e e e s e s s eanrrneeeees 104
(@ @72 I = (1] Tox 1] o PSSR 104
LTRIM FUNCHON. ... e e e e e e s s reeeeaaaee s 105
Y VT o) o R 105

Version 10.3 Derby Reference Manual

Y LI (0T ox 1 o] o P 106
MINUTE fUNCLION.....coiiiiiiiiiieeeieeeeeeeee a bbb s 106
Y (@0 (1] aTox i [0 o PP PPUPRURROUORRPPPIN 107
MONTH FUNCHION.......cooiiiiiiieeeee et e e e e e e e 107
NULLIF @XPrESSIONS.ciciviiiiiiieeieeeeeessesiitistreeeeeaeeeesasssstabbaaeeaeaeaeaessaansnnssseeees 107
[I 10 0 Tox 1o o TP UUUPOPU PRSP 108
RADIANS fUNCHON....cetiiiititeeee ettt e e e e e e e e eeees 108
RTRIM fUNCHON. 1.1ttt e s e s e e e e e e e e e e eaeeeeeeeeeeessesenes 108
SECOND fUNCLION......ccciiiiiiiieieeeeeeeeeee e e e e e e e e e e e e e e e e e e 108
SESSION_USER fUNCHON......uuiiiiiiiiiieeee et e e e e e e e e e seannes 109
] AV (] T 1o TS UUPP 109
SMALLINT fUNCHON. ..ttt s e e e e e e e e e aeaeaeeeeeeeaees 109
Y@] 38 I {1 o 1o T o P PPRRPRR 110
SUBSTR fUNCHON. .. .uttttiiiiie ettt e e s e s e e e e e e e e eaeaeeeeseeeeaees 110
S0 Y {0 T 1o o PSPPSR 111
TAN fUNCHON. ..cettttititceeee ettt e s et e s e e e e e e eaeaeeeeeeeeeseessseres 112
TIME fUNCHON. ...ttt e e e e e e e e e e e e e e e e 112
TIMESTAMP fUNCLION.......ccoiiiiiiiieeeeeee et 112
IR 1LY/ 0T o3 1 o] o P TR 113
UCASE 0Or UPPER fUNCHON.....coviiiiiiiitciee ettt 114
USER fUNCHON....cetititiititccce ettt s e s e e e e e e e e e aeaeeeeeeeeeanes 114
VARCHAR TUNCHON........ooiiiiiiiieeeeeee ettt e e e e e e e e e e e e e eee s e 114
XMLEXISTS OPEIALON ...ttt ettt e e et e e e e 115
D AN] =i o] o 1] = 1o 116
XMLQUERY OPBIALON . ..ttt ettt e e e e aab e e e eaba s 117
XMLSERIALIZE OPEIAtOr......cccieeeeeeiieieeeeeeeeeeee s s e e e e e e e e e e e aaaeeneeeeeenannnnes 119
N 7N 2 8 (0] e 1o] PR 120
BUIlt-in SYStEM fUNCHIONS....uiiiiiiiec e 120
SYSCS _UTIL.SYSCS CHECK_TABLE system function.................cccccvvvveenne.n. 120
SYSCS _UTIL.SYSCS GET_DATABASE_PROPERTY system function......... 121
SYSCS UTIL.SYSCS GET_RUNTIMESTATISTICS system function............. 121
SYSCS _UTIL.SYSCS GET_USER_ACCESS system function....................... 121
BUIlt-iN SYSTtEM PrOCEAUIES....uuviiiiiie ettt a e e 122
SYSCS _UTIL.SYSCS BACKUP_DATABASE system procedure.................... 122

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT system procedure....123
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE

L1 (=1 0 o (0 Lo =T [PP 123
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
L1 (=1 0 o (0 Lo =T [PP 124
SYSCS_UTIL.SYSCS_EMPTY_STATEMENT_CACHE system procedure..... 125
SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE system procedure........... 125
SYSCS _UTIL.SYSCS COMPRESS_TABLE system procedure...................... 125
SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE system procedure.....127
SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE system

[T foTo7=To L1] (- EERPP 128
SYSCS _UTIL.SYSCS EXPORT_TABLE system procedure.............c.ccoeeeuunns 129
SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE system

[T foTo7=To L1] (- EERPP 130
SYSCS _UTIL.SYSCS EXPORT_QUERY system procedure...............ccceuuvnns 131
SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE system

[T foTo7=To L1] (- EERPP 132
SYSCS _UTIL.SYSCS IMPORT_DATA system procedure.........cccccveeeeeeriiinnns 133
SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE system

[T foTo=To L1] (- PEERERR 135
SYSCS_UTIL.SYSCS IMPORT_TABLE system procedure.............ccccveeeeennnnn. 136

Version 10.3 Derby Reference Manual

SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE system

[T foTo=To L1] (- PR ERRPR 138
SYSCS_UTIL.SYSCS_FREEZE_DATABASE system procedure..................... 139
SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE system procedure................ 139
SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY system procedure...... 140
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY system procedure...... 140
SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS system procedure.......... 141
SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING system procedure............ 141
SYSCS _UTIL.SYSCS SET_USER_ACCESS system procedure.................... 142
SYSCS_DIAG diagnostic tables and functions............cccccivieeeee e, 142
D E= = N Y 012 T PP 145
BUIIE-IN TYPE OVEIVIEW.eiiiiiieiieiee ettt e e s e e e e e e e e e e s e eaneanene s 145
N[1= T Toa Y o1 R PPSRURT 146
Data type assignments and comparison, sorting, and ordering............ccc......... 148
BIGINT data tYPe....ccei ittt et e e e e e e e e r e e e e e e e e e s e e eanneneeees 151
BLOB data tYPe.....ccccciiiiiiiii e e e ettt e e e e e e e e e e e e e e s 152

(O o VY o P = N £ 1= TSRO 152
CHAR FOR BIT DATA data tyPe...eeeeeiiiiiieeeiiiiiie e esitieee e stieee e siteeee e sineeee e 153
(o1 I @S o -1 - W 1 1 TSR 154
DATE data tYPe....ci oottt e e e e e e s s r e e e e e e e e e s e e eannrrnraeeeees 155
DECIMAL data Y Pe...uuuuiiiiiiiiiiiee e e e e ecctiite et e e e e e e s s e e e e e e e e e e s s nnsntenaneeeees 155
DOUBLE data tYPe..cceiieeeiii ittt ettt e e e e e e s e e e e e e e e e e e e anns 156
DOUBLE PRECISION data tyPe.....ceeeiiiiiiieeeiiiiiieeeiiiiieee e s siieee e e sitieee e s sineeee e 156
FLOAT data tY ... iiiiiiiiiiiiie e e ettt e e e e e e e e e e e e e e e e s st raeeeeaaeeas 157
INTEGER data tYPe...ueeiiiiieeeeei ittt e e e e e e e e st ar e e e e e e e e e e 158
LONG VARCHAR data tyPe......cuueeeeeiiiiiee ettt 158
LONG VARCHAR FOR BIT DATA data type......cccovvuiireeiiiiieeeeiiiieeeessiieeeeens 158
NUMERIC data tYPe....ccciii ittt ettt e e e e e e e e s st e e e e s e e e e e e e aneanns 159
L]y o T L= U 1Y o1 TSR 159
SMALLINT data tYPe...eeeeeiiiiieeeiiiiiiee e eiiiieee ettt e ettt e e st e e e s sntaeeee e s snreeeeeeanes 160

QI LS = = U Y oL P PPEERPR: 160
TIMESTAMP data tYPe...eeeieiiiiiiie ittt ettt e e e s snaneee s 161
VARCHAR data tYPe....ccceiiiiiiieieieee ettt e et e e e e e e e e e e e ennnnes 161
VARCHAR FOR BIT DATA data typPe.....c.uueeeeiiiiiiee e 162
DY o P = U 1Y/ 1= TP 162
Y@ I =TT = Y=o BV T o £ SR 164
Derby support for SQL-92 fEAtUIESuuuiiiiiiieee i e e e e e e enannnes 168
Derby SYSIEM tADIES ... 176
SYSALIASES SYStem tabl€....ccciiiiiiiiiiee e 176
SYSCHECKS SYStem tabl€......ccccoiiiiieee e 176
SYSCOLPERMS System tabl€.......cciciiiiiiiiiiiieeeeee e 177
SYSCOLUMNS system table........ccooiiiiiiiiiiice e 178
SYSCONGLOMERATES system table.......cccoooiiii e 179
SYSCONSTRAINTS system table.......cccccviiiiiiieec e 179
SYSDEPENDS SYStem table.......cuuuiiiiiiiiiiiiiiiieee e 180
SYSFILES SYStem table.....uuuiiiiiiiiiiiiic e 181
SYSFOREIGNKEYS system table........ccooiiiiiiiiiiiiiiee e 181
SYSKEYS SYSteM tabl€...uuuieiiiiiiiiiii e 182
SYSROUTINEPERMS system table.........coooiiiiiiiiiiiiiie e 182
SYSSCHEMAS SYStem tabl€.....ccciiiieeiiiiiiieeece e 183
SYSSTATISTICS system table.......c.coooiiiiiiie e 183
SYSSTATEMENTS system table.........coooiiiiiiii e 183
SYSTABLEPERMS System tabl€.......cccoeeeiiiiiiiiiiieeeee e 184
SYSTABLES system table.......ccccuiiiiiiic e 185

Version 10.3 Derby Reference Manual

SYSTRIGGERS System table......cccuviiiiiiiiiic e 186
SYSVIEWS SYStem table......cuuiiiiiiiiiiiii e 187
Derby exception messages and SQL STateS......ccceveeeiiiiiiiiiiiiiiieeeee e e 188
SQL error messages and eXCEPLiONS........coociiiiiiiiiieeee e 188
1D L O g (=T =T oL o] = PRSPPI 228
Core JDBC java.sql classes, interfaces, and methods..........cccccccevveeeiiiiinnns 228
AV BeYe [D AVZ=T T a1 (=T - o PRSP 228
java.sql.Driver.getPropertylnfo method..........cccccevveeeiiiiiiiiee e 229
java.sql.DriverManager.getConnection method........c.ccccooiiiiiiiiiiieiene e, 229
Derby database connection URL SYNaX.........cuuveeiieeeeeeiiiiiiiiiiiiieeeee e e e e e eee s 230
Syntax of database connection URLSs for applications with embedded databases
... 230
Additional SQL SYNTAX........ccccuiiiiiiieiee e e e e e secre e e e e e e e e s s e e e e e e e e e s e e snnnnene 231
Attributes of the Derby database connection URLccccccevveveeeiiiiiiiiniinne, 231
java.sql.Connection INtErfaCe.......cccci i 231
java.sgl.Connection.setTransactionlsolation method.............ccccccceeiiiiiiiiinnnnen. 232
java.sgl.Connection.setReadOnly method............ccovveiiieeeei e 232
java.sgl.Connection.isReadOnly method...........c.cccccoeviiiiiiiiieiiiece e, 232
Connection functionality not SUPPOIted...........ceeevviieeeeiiiiiieee e 232
java.sql.DatabaseMetaData interfacCe.........ccccoccciiiiiiiiiiei e 232
DatabaseMetaData reSUIt SELS........c.uuiiiiiiiiiiie i 232
java.sql.DatabaseMetaData.getProcedureColumns method...........ccccceeeeeennnn. 233
Parameters to getProcedureColumNS..........ueevveeieeeiiiiiiiiiieeee e 233
Columns in the ResultSet returned by getProcedureColumns................c......... 233
java.sgl.DatabaseMetaData.getBestRowldentifier method...............cccccvvvveeeen. 234
java.sql.Statement INterfaCE. ... i 234
RESUILSEt ODJECES ..ovviiiiiiiiee e 235
java.sql.CallableStatement interface..........cccoovvieviiiie e 235
CallableStatements and OUT Parametersccccceevvveeiesiiiieeeeiniiieee s siieeeens 235
CallableStatements and INOUT Parametersccccceeevivieeeeniiiiieeeesniieeeesnnes 235
java.sql.SQLEXCEPLION ClaSS....ccccuiiiiiiiieei e e e 237
java.sql.PreparedStatement interface..........ccocociiiiiiiiiiie e 237
Prepared statements and streaming COIUMNSccccvveeeeeieeeeee e, 237
java.sql.ResUltSet INtErfacCe.......cccciiiiiiiiie e 238
ResultSets and streaming COIUMNScccvviiiiiieeie e 238
java.sql.ResultSetMetaData interface..........cccoovveeeiieeeeiii i 239
java.Sql.SQLWAINING ClaSS.....uuiiiiiieeeii it e e 239
java.SOL.SQLXML INtEIfaCE......ccci it 239
Mapping of java.sql.Types t0 SQL tYPeS....ccciveiiiieeeeeiiiiiiiriieie e 240
Mapping of java.sgl.Blob and java.sql.Clob interfaces..............cccccvvvvveeeeneennnn 241
IDBC 2.0 fRALUMNES...ciiitiiie ettt ettt e e et e e et e e e e b e e e e nneees 243
java.sqgl.CallableStatement interface: supported JDBC 2.0 methods................ 243
java.sgl.Connection interface: supported JDBC 2.0 methods.............cccvvveeeee. 243
java.sql.DatabaseMetaData interface: supported JDBC 2.0 methods............... 243
java.sql.PreparedStatement interface: supported JDBC 2.0 methods.............. 243
java.sql.ResultSet interface: supported JDBC 2.0 methods........cccccceveeeeeiiinns 244
java.sgl.ResultSetMetaData interface: supported JDBC 2.0 methods.............. 245
java.sqgl.Statement interface: supported JDBC 2.0 methods..........ccccccvvveeeeennn. 245
java.sql.BatchUpdateEXCeption ClasS......cccccceeviiiiiiiiiiiiiicece e 246
JDBC Package for Connected Device Configuration/Foundation Profile
OIS 31 SRR 246
JDBC 3.0 FEALUIES .ooiiieiie ettt e et e e et e e e et e e e e enees 247
java.sgl.Connection interface: supported JDBC 3.0 methods.............cccvvveneee. 247
java.sql.DatabaseMetaData interface: supported JDBC 3.0 methods............... 248
java.sql.ParameterMetaData interface: supported JDBC 3.0 methods............. 248

Vv

Version 10.3 Derby Reference Manual

java.sql.PreparedStatement interface: supported JDBC 3.0 methods.............. 248
java.sgl.Savepoint INtEIMACE.uuviiiiii e 249
java.sqgl.Statement interface: supported JDBC 3.0 methods..........cccccvvveeeeennn. 250
JDBC 4.0-0N1Y fEALUIES .eevviiiieeee et e e e e e e e e e e 252
Refined subclasses of SQLEXCEPLION.uuuviiiieeeereiiiiiiiiiieee e e e e e e ee e 253
java.sgl.Connection interface: JDBC 4.0 features............cccccvvveveeiieeeeeeiieccinns 253
java.sgl.DatabaseMetaData interface: JDBC 4.0 features..............coeccvvvvvnnenen. 253
java.sql.Statement interface: JDBC 4.0 features........ccovcvvveeeeeeeiiiiiiciinineeeeeeenn, 253
javax.sgl.DataSource interface: JDBC 4.0 features......cccccccveeeeeeviiicivnnnenneennnn. 254
JDBC €SCAPE SYNTAX iiiiiiiiiieiiiiiiiin ettt e e e e e 254
JDBC escape keyword for call statements.............ccccvvveeeiiieeei e 254
JDBC ESCAPE SYNTAX. .. ciiiiiitiieieeiiiiii e e ettt e ettt e e e e aab e e s e e taar e e e s e eaba e e aaes 255
JDBC escape syntax for LIKE ClaUSES..........cvevieeeeiiiiiiiiiiiiiecee e 255
JDBC escape syntax for fn KeyWOrd............ooocciiiiiiiiiee et 255
JDBC escape syntax for OUter JOINS..........ccccuviviiiieieee e e e 259
JDBC escape syntax for time formats.............ccccccviiiiiieiee e 260
JDBC escape syntax for date formats.........cccccveeeeeeiiiiiiiiiiiieee e 260
JDBC escape syntax for timestamp formats.........cccccceeeeviiiiiiiiieeieeeee e, 260
Setting attributes for the database connection URLcoocciiiiiiieece e, 261
bootPassword=Key attribULe...........cccciiiiiiiii e 261
collation=collation AttriDULE.........cooiiiiiiiie e 261
Create=true attribDULE.......cooi i e 262
createFrom=path attribULe........cccvviiiiiiee e 263
databaseName=nameofDatabase attribute...........cccccocreriiiiiiiiiiiie e 263
dataEncryption=true attribute...........cccoviririiii e 263
encryptionKey=Kkey attribUte...........ccccoiiiiiiiii e 264
encryptionProvider=providerName attribute............c..cooccciiiiieiiiiee e, 264
encryptionAlgorithm=algorithm attribute.............ccoooi e, 265
logDevice=logDirectoryPath attribute..........cccccvveeiiiiiii e, 266
newENncryptionKey=key attribute........cccccvvviieeiiiiiiieeee e 266
newBootPassword=newPassword attribute.........cccccccvviiiiiiii i, 266
password=userPassword attribUte........cccccceeiiiiiiiiiiiiicc e 267
restoreFrom=path attribUte...........ccoiiiiiiiii e 267
rollForwardRecoveryFrom=path attribute.............cccooiiiiiiiiieii e, 267
securityMechanism=value attribute.........ccccccceeiiiiiiiiiiiice e 268
ShUutdOWN=ErUE attriDULE....coi i 268
territory=ll_CC attribDULE......ccuuiiieeeiiie e 269
user=userName attribDULE.........ccuiiiiiii e 270
SSI=SSIMOAE AtIITDULE. .. .ueiiiiiiiiie e 270
Creating a connection without specifying attributes............ccccooeviiiiiiienenneennn, 270
J2EE Compliance: Java Transaction API and javax.sql Interfaces........cccccccvvienennnns 271
THE JTA AP ettt ettt e e s sttt e e e s enbbae e e e annneeeas 272
Notes on Product BENAVION...........cuuviiiiiiiiiii e 272
javax.sql: IDBC INtEITACES.......ccoc it a e e e 272
DT o) N . PP 274
Stand-alone tools and ULIITIES........cuviiiiiiiiiie e 274
JDBC implementation ClaSSEeS.......uuuiiiiiiieie it e e e 274
8|S o 1)Y= RSP 274
Data SOUICE ClASSES.....ciiuuiiieeiiiiiie ettt e e ettt e e et e e e e sbtee e e s st e e e e e snbeeeeeanees 274
Miscellaneous utilities and iNterfaces.......cccccviiiiiiiiii i 275
S TUT o] oTol g =T B =] 4 A1 (0] A 1= PO PRTP 276
(1T o)A L0 Y1 = 4T o = PSEPURRRR 277
Limitations for database manager ValUES.............ooccvviviiiiiieie e 277

Vi

Version 10.3 Derby Reference Manual

DATE, TIME, and TIMESTAMP liMitationS.......cccccceeiiieeiiieesieesiee e 277
Limitations on identifier length ... 278
NUMEIC HMITALIONS . eeiiiiiie e e e e s e e e e e e e e e e e s enannes 278
SHNG lIMITATIONS ... e e eaaaee s 279
DY I 1T 4 a1 = 1 o B PPRRRPRRR 279
QI = T =T 0 = T PP PPPREPRRR 281

Vii

Derby Reference Manual
Apache Software FoundationDerby Reference ManualApache Derby

Derby Reference Manual

Copyright

Apache Derby %

Copyright 2004-2008 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Related information

License

http://www.apache.org/licenses/LICENSE-2.0

Derby Reference Manual
License

The Apache License, Version 2.0

Apache License
Version 2.0, January 2004
http://ww. apache. org/licenses/

TERMS AND CONDI TI ONS FOR USE, REPRODUCTI ON, AND DI STRI BUTI ON
1. Definitions.

"Li cense" shall nmean the terns and conditions for use
reproduction, and distribution as defined by Sections 1 through
9 of this docunent.

"Li censor" shall mean the copyright owner or entity authorized
by the copyright owner that is granting the License

"Legal Entity" shall nean the union of the acting entity and al
other entities that control, are controlled by, or are under
common control with that entity. For the purposes of this
definition, "control" neans (i) the power, direct or indirect,
to cause the direction or managenent of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%
or nmore of the outstanding shares, or (iii) beneficial ownership
of such entity.

"You" (or "Your") shall nmean an individual or Legal Entity
exerci sing perm ssions granted by this License.

"Source" formshall nean the preferred formfor naking
nodi fi cations, including but not linted to software source code
docunent ati on source, and configuration files.

"Cbject" formshall nean any formresulting from nechani ca
transformation or translation of a Source form including but
not limted to conpiled object code, generated docunentation,
and conversions to other nedia types.

"Work" shall nean the work of authorship, whether in Source or
Ooj ect form nade avail abl e under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendi x bel ow).

"Derivative Wrks" shall mean any work, whether in Source or
oject form that is based on (or derived fronm) the Wrk and
for which the editorial revisions, annotations, el aborations,
or other nodifications represent, as a whole, an original work
of authorship. For the purposes of this License, Derivative
Works shall not include works that remain separable from or
nerely link (or bind by nane) to the interfaces of, the Wrk
and Derivative Wrks thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any nodifications or
additions to that Work or Derivative Wrks thereof, that is
intentionally submtted to Licensor for inclusion in the Wrk
by the copyright owner or by an individual or Legal Entity
authorized to subnmit on behalf of the copyright owner. For the
purposes of this definition,

"submtted" means any form of electronic, verbal, or witten
comuni cation sent to the Licensor or its representatives,
including but not limted to comrunication on electronic mailing
lists, source code control systenms, and issue tracking systens

10

Derby Reference Manual

that are nmanaged by, or on behalf of, the Licensor for the
purpose of discussing and i nproving the Work, but excl uding
communi cation that is conspicuously nmarked or otherw se
designated in witing by the copyright owner as "Not a
Contri bution.™"

"Contributor" shall nean Licensor and any individual or Legal
Entity on behal f of whom a Contribution has been recei ved by
Li censor and subsequently incorporated within the Wrk.

Grant of Copyright License. Subject to the terns and conditions
of this License, each Contributor hereby grants to You a

per petual, worldw de, non-exclusive, no-charge, royalty-free,
irrevocabl e copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform sublicense, and
distribute the Work and such Derivative Wrks in Source or

Obj ect form

Grant of Patent License. Subject to the ternms and conditions of
this License, each Contributor hereby grants to You a perpetual,
wor | dwi de, non-excl usi ve, no-charge, royalty-free, irrevocable
(except as stated in this section) patent |icense to make, have
made, use, offer to sell, sell, inport, and otherw se transfer
the Wrk, where such license applies only to those patent clains
l'i censabl e by such Contributor that are necessarily infringed by
their Contribution(s) alone or by conbination of their
Contribution(s) with the Wrk to which such Contribution(s) was
submitted. If You institute patent litigation against any entity
(including a cross-claimor counterclaimin a lawsuit) alleging
that the Work or a Contribution incorporated within the Wrk
constitutes direct or contributory patent infringenent, then any
patent |icenses granted to You under this License for that Wrk
shall terminate as of the date such litigation is filed.

Redi stri bution. You may reproduce and distribute copies of the
Work or Derivative Wrks thereof in any nedium wth or wthout
nmodi fications, and in Source or (bject form provided that You
neet the follow ng conditions:

(a) You must give any other recipients of the Work or
Derivative Wrks a copy of this License; and

(b) You nust cause any nodified files to carry promi nent notices
stating that You changed the files; and

(c) You nust retain, in the Source formof any Derivative Wrks
that You distribute, all copyright, patent, trademark, and
attribution notices fromthe Source formof the Wrk,
excl udi ng those notices that do not pertain to any part of
the Derivative Wrks; and

(d) If the Work includes a "NOTICE" text file as part of its
di stribution, then any Derivative Wrks that You distribute
nmust include a readable copy of the attribution notices
contai ned within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Wrks, in
at | east one of the follow ng places: within a NOTICE text
file distributed as part of the Derivative Wrks; within the
Source form or docunentation, if provided along with the
Derivative Wrrks; or, within a display generated by the
Derivative Wrks, if and wherever such third-party notices
normal | y appear. The contents of the NOTICE file are for
i nformati onal purposes only and do not nodify the License.
You may add Your own attribution notices within Derivative
Works that You distribute, alongside or as an addendumto
the NOTICE text fromthe Work, provided that such additional
attribution notices cannot be construed as nodifying the
Li cense.

You may add Your own copyright statenent to Your nodifications

11

Derby Reference Manual

and nay provide additional or different |license terns and
conditions for use, reproduction, or distribution of Your

nodi fications, or for any such Derivative Wrks as a whol e,
provi ded Your use, reproduction, and distribution of the Work
ot herwi se conplies with the conditions stated in this License.

Submi ssi on of Contributions. Unless You explicitly state

ot herwi se, any Contribution intentionally subnmitted for
inclusion in the Wrk by You to the Licensor shall be under the
ternms and conditions of this License, w thout any additional
terns or conditions. Notwithstanding the above, nothing herein
shal | supersede or nodify the terns of any separate |icense
agreenent you may have executed with Licensor regardi ng such
Contri buti ons.

Trademarks. This License does not grant perm ssion to use the
trade names, trademarks, service marks, or product nanes of the
Li censor, except as required for reasonable and custonary use
in describing the origin of the Wrk and reproducing the content
of the NOTICE file.

Di scl ai ner of Warranty. Unless required by applicable | aw or
agreed to in witing, Licensor provides the Wrk (and each
Contri butor provides its Contributions) on an "AS | S* BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or
inmplied, including, without limtation, any warranties or
conditions of TITLE, NON- I NFRI NGEMENT, MERCHANTABI LITY, or

FI TNESS FOR A PARTI CULAR PURPCSE. You are solely responsible for
determ ni ng the appropriateness of using or redistributing the
Work and assune any risks associated with Your exercise of
permi ssi ons under this License

Limtation of Liability. In no event and under no |egal theory,
whet her in tort (including negligence), contract, or otherw se,
unl ess required by applicable | aw (such as deliberate and
grossly negligent acts) or agreed to in witing, shall any
Contributor be liable to You for danmages, including any direct,
indirect, special, incidental, or consequential danages of any
character arising as a result of this License or out of the use
or inability to use the Work (including but not limted to
danmages for |oss of goodw ||, work stoppage, conputer failure or
mal function, or any and all other conmercial danmages or | osses),
even i f such Contributor has been advi sed of the possibility of
such damages.

Accepting Warranty or Additional Liability. Wile redistributing
the Work or Derivative Wrks thereof, You may choose to offer

and charge a fee for, acceptance of support, warranty, indemity,
or other liability obligations and/or rights consistent with this
Li cense. However, in accepting such obligations, You may act only
on Your own behal f and on Your sole responsibility, not on behal f
of any other Contributor, and only if You agree to i ndemify,

def end, and hol d each Contributor harm ess for any liability
incurred by, or clains asserted agai nst, such Contributor by
reason of your accepting any such warranty or additiona
liability.

END OF TERVS AND CONDI Tl ONS

APPENDI X: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the foll ow ng
boil erpl ate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
coment syntax for the file format. W al so recommend that a
file or class nanme and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives

12

Derby Reference Manual
Copyright [yyyy] [name of copyright owner]

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ |l i censes/ LI CENSE-2. 0

Unl ess required by applicable |aw or agreed to in witing, software
di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or
inmplied. See the License for the specific | anguage governing

perm ssions and |limtations under the License.

13

Derby Reference Manual

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby.

Purpose of this document

This book, the Derby Reference Manual, provides reference information about Derby.
It covers Derby's SQL language, the Derby implementation of JDBC, Derby system
catalogs, Derby error messages, Derby properties, and SQL keywords.

Audience

This book is a reference for Derby users, typically application developers. Derby users
who are not familiar with the SQL standard or the Java programming language will
benefit from consulting books on those topics.

Derby users who want a how-to approach to working with Derby or an introduction to
Derby concepts should read the Derby Developer's Guide.

How this guide is organized

This guide includes the following sections:
* SQL language reference

Reference information about Derby's SQL language, including manual pages for
statements, functions, and other syntax elements.
e SQL reserved words

SQL keywords beyond the standard SQL-92 keywords.
» Derby support for SQL-92 features

A list of SQL-92 features that Derby does and does not support.
« Derby system tables

Reference information about the Derby system catalogs.
» Derby exception messages and SQL states

Information about Derby exception messages.
« JDBC reference

Information about Derby's implementation of the JDBC interface including support
for JDBC 2.0 features.
 Setting attributes for the database connection URL

Information about the supported attributes to Derby's JDBC database connection
URL.
« J2EE Compliance: Java Transaction APl and javax.sql Interfaces

Information about the supported attributes to Derby's support for the Java
Transaction API.
» Derby API

Notes about proprietary APIs for Derby.

14

Derby Reference Manual

SQL language reference

Derby implements an SQL-92 core subset, as well as some SQL-99 features.

This section provides an overview of the current SQL language by describing the
statements, built-in functions, data types, expressions, and special characters it contains.

Capitalization and special characters

Using the classes and methods of JDBC, you submit SQL statements to Derby as
strings. The character set permitted for strings containing SQL statements is Unicode.
Within these strings, the following rules apply:

» Double quotation marks delimit special identifiers referred to in SQL-92 as delimited

identifiers.

Single quotation marks delimit character strings.

Within a character string, to represent a single quotation mark or apostrophe, use
two single quotation marks. (In other words, a single quotation mark is the escape
character for a single quotation mark.)

A double quotation mark does not need an escape character. To represent a double
guotation mark, simply use a double quotation mark. However, note that in a Java
program, a double quotation mark requires the backslash escape character.

Example:

-- a single quotation mark is the escape character
-- for a single quotation nark

VALUES ' Joe''s unbrella’
-- inij, you don't need to escape the double quotation narks
VALUES 'He said, "hello!"'

n = stnt.execut eUpdat e(
"UPDATE aTabl e setStringcol = 'He said, \"hello!\""");

SQL keywords are case-insensitive. For example, you can type the keyword
SELECT as SELECT, Select, select, or SELECT.

SQL-92-style identifiers are case-insensitive (see SQL92ldentifier), unless they are
delimited.

Java-style identifiers are always case-sensitive.

* is a wildcard within a SelectExpression. See The * wildcard. It can also be the
multiplication operator. In all other cases, it is a syntactical metasymbol that flags
items you can repeat O or more times.

% and _ are character wildcards when used within character strings following a
LIKE operator (except when escaped with an escape character). See Boolean
expressions.

Two dashes (--) and a newline character delimit a comment, as per the SQL-92
standard. The two dashes start the comment and the newline character ends the
comment.

SQL identifiers

An identifier is the representation within the language of items created by the user, as
opposed to language keywords or commands. Some identifiers stand for dictionary
objects, which are the objects you create- such as tables, views, indexes, columns, and
constraints- that are stored in a database. They are called dictionary objects because

15

Derby Reference Manual

Derby stores information about them in the system tables, sometimes known as a data
dictionary. SQL also defines ways to alias these objects within certain statements.

Each kind of identifier must conform to a different set of rules. Identifiers representing
dictionary objects must conform to SQL-92 identifier rules and are thus called
SQL92Identifiers.

Rules for SQL92 identifiers

Ordinary identifiers are identifiers not surrounded by double quotation marks. Delimited
identifiers are identifiers surrounded by double quotation marks.

An ordinary identifier must begin with a letter and contain only letters, underscore
characters (), and digits. The permitted letters and digits include all Unicode letters and
digits, but Derby does not attempt to ensure that the characters in identifiers are valid in
the database's locale.

A delimited identifier can contain any characters within the double quotation marks.
The enclosing double quotation marks are not part of the identifier; they serve only to
mark its beginning and end. Spaces at the end of a delimited identifier are insignificant
(truncated). Derby translates two consecutive double quotation marks within a delimited
identifier as one double quotation mark-that is, the "translated" double quotation mark
becomes a character in the delimited identifier.

Periods within delimited identifiers are not separators but are part of the identifier (the
name of the dictionary object being represented).

So, in the following example:

"A B"

is a dictionary object, while
"A"."B"

is a dictionary object qualified by another dictionary object (such as a column named "B"
within the table "A").

SQL92ldentifier

An SQL92Identifier is a dictionary object identifier that conforms to the rules of SQL-92.
SQL-92 states that identifiers for dictionary objects are limited to 128 characters and are
case-insensitive (unless delimited by double quotes), because they are automatically
translated into uppercase by the system. You cannot use reserved words as identifiers
for dictionary objects unless they are delimited. If you attempt to use a name longer than
128 characters, SQLException X0X11 is raised.

Derby defines keywords beyond those specified by the SQL-92 standard (see SQL
reserved words).

Example

-- the view nanme is stored in the

-- system cat al ogs as AN DENTI FI ER

CREATE VI EW Anl denti fier (RECEIVED) AS VALUES 1

-- the view nane is stored in the system

-- catalogs with case intact

CREATE VI EW " ACaseSensitiveldentifier" (RECEIVED) AS VALUES 1

This section describes the rules for using SQL92ldentifiers to represent the following
dictionary objects.

16

Derby Reference Manual
Qualifying dictionary objects

Since some dictionary objects can be contained within other objects, you can qualify
those dictionary object names. Each component is separated from the next by a period.
An SQL92Identifier is "dot-separated.” You qualify a dictionary object name in order to
avoid ambiguity.

column-Name

In many places in the SQL syntax, you can represent the name of a column by qualifying
it with a table-Name or correlation-Name.

In some situations, you cannot qualify a column-Name with a table-Name or a
correlation-Name, but must use a Simple-column-Name instead. Those situations are:

 creating a table (CREATE TABLE statement)
« specifying updatable columns in a cursor
« in a column's correlation name in a SELECT expression (see SelectExpression)
 in a column's correlation name in a TableExpression (see TableExpression)
You cannot use correlation-Names for updatable columns; using correlation-Names in
this way will cause an SQL exception. For example:

SELECT cl11 AS col 1, cl1l2 AS col 2, cl13 FROMt1l FOR UPDATE of cl1,cl3

In this example, the correlation-Name col 1 FOR c11 is not permitted because c11 is
listed in the FOR UPDATE list of columns. You can use the correlation-Name FOR c12
because it is not in the FOR UPDATE list.

Syntax

[{ table-Nane | correlation-Nanme } .] SQ.92l dentifier

Example

-- C.Country is a colum-Nane qualified with a
-- correl ati on- Nane.

SELECT C. Country

FROM APP. Countries C

correlation-Name

A correlation-Name is given to a table expression in a FROM clause as a new name or
alias for that table. You do not qualify a correlation-Name with a schema-Name.

You cannot use correlation-Names for updatable columns; using correlation-Names in
this way will cause an SQL exception. For example:

SELECT cl11 AS col 1, cl2 AS col 2, c13 FROMt1l FOR UPDATE of cl1,cl3

In this example, the correlation-Name col 1 FOR c11 is not permitted because c11 is
listed in the FOR UPDATE list of columns. You can use the correlation-Name FOR c12
because it is not in the FOR UPDATE list.

Syntax
SQL92l dentifier
Example

-- Cis a correl ati on- Nane
SELECT C. NAME
FROM SAMP. STAFF C

17

Derby Reference Manual

new-table-Name

A new-table-Name represents a renamed table. You cannot qualify a new-table-Name
with a schema-Name.

Syntax

SQL92I denti fi er

Example

-- FlightBooks is a newtabl e-Name that does not include a schema- Nanme
RENAMVE TABLE FLI GHTAVAI LABI LI TY TO FLI GHTAVAI LABLE

schemaName

A schemaName represents a schema. Schemas contain other dictionary objects, such
as tables and indexes. Schemas provide a way to name a subset of tables and other
dictionary objects within a database.

You can explicitly create or drop a schema. The default user schema is the APP schema
(if no user name is specified at connection time). You cannot create objects in schemas
starting with SYS.

Thus, you can qualify references to tables with the schema name. When a schemaName
is not specified, the default schema name is implicitly inserted. System tables are placed
in the SYS schema. You must qualify all references to system tables with the SYS
schema identifier. For more information about system tables, see Derby system tables.

A schema is hierarchically the highest level of dictionary object, so you cannot qualify a
schemaName.

Syntax
SQL92l dentifier

Example

-- SAWP. EMPLOYEE is a tabl e-Nanme qualified by a schemaNane
SELECT COUNT(*) FROM SAMP. EMPLOYEE

-- You must qualify system catal og names with their schema, SYS
SELECT COUNT(*) FROM SYS. SysCol urms

Simple-column-Name

A Simple-column-Name is used to represent a column when it cannot be qualified by a
table-Name or correlation-Name. This is the case when the qualification is fixed, as itis in
a column definition within a CREATE TABLE statement.

Syntax

SQL92I denti fier

Example

-- country is a Sinple-col um-Nanme
CREATE TABLE CONTI NENT (COUNTRY VARCHAR(26) NOT NULL PRI MARY KEY,
COUNTRY_| SO CODE CHAR(2), REG ON VARCHAR(26))

synonym-Name

18

Derby Reference Manual

table-Name

view-Name

index-Name

A synonym-Name represents a synonym for a table or a view. You can qualify a
synonym-Name with a schema-Name.

Syntax

[schenaNane.] SQ.92ldentifier

A table-Name represents a table. You can qualify a table-Name with a schemaName.

Syntax

[schemaNane.] SQL92l dentifier

Example

-- SAMP. PROJECT is a table-Nane that includes a schemaNane
SELECT COUNT(*) FROM SAMP. PRQJIECT

A view-Name represents a table or a view. You can qualify a view-Name with a
schema-Name.

Syntax
[schenmaNane.] SQ.92ldentifier

Example

-- This is a View qualified by a schema- Nane
SELECT COUNT(*) FROM SAMP. EMP_RESUME

An index-Name represents an index. Indexes live in schemas, so you can qualify their
names with schema-Names. Indexes on system tables are in the SYS schema.

Syntax
[schemaNane .] SQ.92ldentifier

Example

DROP | NDEX APP. ORI G NDEX;
-- Oiglndex is an index-Nane wi thout a schema- Nane
CREATE | NDEX ORI G NDEX ON FLI GHTS (ORI G_Al RPCRT)

constraint-Name

You cannot qualify constraint-names.
Syntax

SQL92l denti fier

Example

-- country_fk2 is a constraint nane
CREATE TABLE DETAI LED MAPS (COUNTRY_| SO CODE CHAR(2)
CONSTRAI NT country_f k2 REFERENCES COUNTRI ES)

19

Derby Reference Manual

cursor-Name

A cursor-Name refers to a cursor. No SQL language command exists to assign a name
to a cursor. Instead, you use the JDBC API to assign hames to cursors or to retrieve
system-generated names. For more information, see the Derby Developer's Guide. If you
assign a name to a cursor, you can refer to that name from within SQL statements.

You cannot qualify a cursor-Name.

Syntax

SQL92I denti fi er

Example

st nt . execut eUpdat e(" UPDATE SAMP. STAFF SET COW = " +
"COW + 20 " + "WHERE CURRENT OF " + Result Set. get CursorNane());

TriggerName
A TriggerName refers to a trigger created by a user.

Syntax

[schemaNane .] SQ.92ldentifier

Example

DROP TRI GGER TRI GL

Authorizationldentifier

User names within the Derby system are known as authorization identifiers. The
authorization identifier represents the name of the user, if one has been provided in the
connection request. The default schema for a user is equal to its authorization identifier.
User names can be case-sensitive within the authentication system, but they are always
case-insensitive within Derby's authorization system unless they are delimited. For more
information, see the Derby Developer's Guide.

Syntax

SQL92I denti fier

Example

CALL SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by. dat abase. ful | AccessUsers', ' Amber, FRED)

Statements

This section provides manual pages for both high-level language constructs and parts
thereof. For example, the CREATE INDEX statement is a high-level statement that you
can execute directly via the JDBC interface. This section also includes clauses, which

are not high-level statements and which you cannot execute directly but only as part

of a high-level statement. The ORDER BY and WHERE clauses are examples of this
kind of clause. Finally, this section also includes some syntactically complex portions of
statements called expressions, for example SelectExpression and TableSubquery. These
clauses and expressions receive their own manual pages for ease of reference.

20

Derby Reference Manual

Unless it is explicitly stated otherwise, you can execute or prepare and then execute
all the high-level statements, which are all marked with the word statement, via the
interfaces provided by JDBC. This manual indicates whether an expression can be
executed as a high-level statement.

The sections provide general information about statement use, and descriptions of the
specific statements.

Interaction with the dependency system

Derby internally tracks the dependencies of prepared statements, which are SQL
statements that are precompiled before being executed. Typically they are prepared
(precompiled) once and executed multiple times.

Prepared statements depend on the dictionary objects and statements they reference.
(Dictionary objects include tables, columns, constraints, indexes, views, and triggers.)
Removing or modifying the dictionary objects or statements on which they depend
invalidates them internally, which means that Derby will automatically try to recompile
the statement when you execute it. If the statement fails to recompile, the execution
request fails. However, if you take some action to restore the broken dependency (such
as restoring the missing table), you can execute the same prepared statement, because
Derby will recompile it automatically at the next execute request.

Statements depend on one another-an UPDATE WHERE CURRENT statement depends
on the statement it references. Removing the statement on which it depends invalidates
the UPDATE WHERE CURRENT statement.

In addition, prepared statements prevent execution of certain DDL statements if there are
open results sets on them.

Manual pages for each statement detail what actions would invalidate that statement, if
prepared.

Here is an example using the Derby tool ij:

i j > CREATE TABLE nytabl e (mycol [|NT);

0 rows inserted/ updated/del eted

ij> INSERT | NTO nytable VALUES (1), (2), (3);

3 rows inserted/ updated/ del et ed

-- this exanple uses the ij conmmand prepare,

-- which prepares a statenent

ij> prepare pl AS 'INSERT | NTO MyTabl e VALUES (4)"';

-- pl depends on nytabl e;

ij> execute pl;

1 row i nserted/ updat ed/ del et ed

-- Derby executes it wthout reconpiling

ij> CREATE INDEX i1 ON nytabl e(nycol);

0 rows inserted/ updated/del et ed

-- pl is tenporarily invalidated because of new i ndex
ij> execute pl;

1 row i nserted/ updat ed/ del et ed

-- Derby automatically reconpiles pl and executes it
i j> DROP TABLE nyt abl e;

0 rows inserted/ updated/del eted

-- Derby pernmts you to drop table

-- because result set of pl is closed

-- however, the statenment pl is tenporarily invalidated
i j > CREATE TABLE nytabl e (mycol |NT);

0 rows inserted/ updated/del et ed

ij> I NSERT | NTO nytable VALUES (1), (2), (3);

3 rows inserted/updated/del eted

ij> execute pl;

1 row i nserted/ updat ed/ del et ed

-- Because pl is invalid, Derby tries to reconpile it
-- before executing.

21

Derby Reference Manual

-- It is successful and executes.

i j> DROP TABLE nyt abl e;

0 rows inserted/ updated/del et ed

-- statement pl is now invalid,

-- and this tinme the attenpt to reconpile it

-- upon execution will fail

ij> execute pl;

ERROR 42X05: Tabl e/ Vi ew ' \W\TABLE' does not exi st.

ALTER TABLE statement

The ALTER TABLE statement allows you to:
» add a column to a table
 add a constraint to a table
 drop a column from a table
 drop an existing constraint from a table
« increase the width of a VARCHAR, CHAR VARYING, and CHARACTER VARYING
column
« override row-level locking for the table (or drop the override)
« change the increment value and start value of the identity column
« change the nullability constraint for a column
« change the default value for a column

Syntax
ALTER TABLE t abl e- Nane

ADD COLUMN col umm-definition |
ADD CONSTRAI NT cl ause |
DROP [COLUW] col um-nanme [CASCADE | RESTRICT]
DROP { PRI MARY KEY | FOREI GN KEY constrai nt-nane | UN QUE
constrai nt-nane | CHECK constraint-name | CONSTRAI NT constraint-nanme }
ALTER [COLUW] colum-alteration |
LOCKSI ZE { ROW | TABLE }

}

column-definition

Si npl e- col umm- NaneDat aType
[Colum-1evel -constraint]*
[[WTH] DEFAULT {Constant Expression | NULL }]

column-alteration

col umm- Nane SET DATA TYPE VARCHAR(i nteger) |
col um-nanme SET | NCREMENT BY i nt eger-const ant |
col utm-nane RESTART W TH i nt eger - const ant |
colum-nanme [NOT] NULL

I
colum-nane [WTH] DEFAULT defaul t-val ue

In the column-alteration, SET INCREMENT BY integer-constant, specifies the interval
between consecutive values of the identity column. The next value to be generated for
the identity column will be determined from the last assigned value with the increment
applied. The column must already be defined with the IDENTITY attribute.

RESTART WITH integer-constant specifies the next value to be generated for the
identity column. RESTART WITH is useful for a table that has an identity column that
was defined as GENERATED BY DEFAULT and that has a unique key defined on that
identity column. Because GENERATED BY DEFAULT allows both manual inserts and
system generated values, it is possible that manually inserted values can conflict with
system generated values. To work around such conflicts, use the RESTART WITH
syntax to specify the next value that will be generated for the identity column. Consider

22

Derby Reference Manual

the following example, which involves a combination of automatically generated data and
manually inserted data:

CREATE TABLE tauto(i | NT GENERATED BY DEFAULT AS | DENTITY, k | NT)
CREATE UNI QUE | NDEX tautolnd ON tauto(i)
I NSERT | NTO tauto(k) values 1,2

The system will automatically generate values for the identity column. But now you need
to manually insert some data into the identity column:

I NSERT | NTO tauto VALUES (3, 3)
I NSERT | NTO tauto VALUES (4, 4)
I NSERT | NTO tauto VALUES (5, 5)

The identity column has used values 1 through 5 at this point. If you now want the
system to generate a value, the system will generate a 3, which will result in a unique
key exception because the value 3 has already been manually inserted. To compensate
for the manual inserts, issue an ALTER TABLE statement for the identity column with
RESTART WITH 6:

ALTER TABLE tauto ALTER COLUMN i RESTART W TH 6

ALTER TABLE does not affect any view that references the table being altered. This
includes views that have an "*" in their SELECT list. You must drop and re-create those
views if you wish them to return the new columns.

Adding columns

The syntax for the column-definition for a new column is the same as for a column in a
CREATE TABLE statement. This means that a column constraint can be placed on the
new column within the ALTER TABLE ADD COLUMN statement. However, a column
with a NOT NULL constraint can be added to an existing table if you give a default value;
otherwise, an exception is thrown when the ALTER TABLE statement is executed.

Just as in CREATE TABLE, if the column definition includes a unique or primary key
constraint, the column cannot contain null values, so the NOT NULL attribute must also
be specified (SQLSTATE 42831).

Note: If a table has an UPDATE trigger without an explicit column list, adding a column
to that table in effect adds that column to the implicit update column list upon which the
trigger is defined, and all references to transition variables are invalidated so that they
pick up the new column.

Adding constraints

ALTER TABLE ADD CONSTRAINT adds a table-level constraint to an existing table.
Any supported table-level constraint type can be added via ALTER TABLE. The following
limitations exist on adding a constraint to an existing table:

* When adding a foreign key or check constraint to an existing table, Derby checks
the table to make sure existing rows satisfy the constraint. If any row is invalid,
Derby throws a statement exception and the constraint is not added.

 All columns included in a primary key must contain non null data and be unique.

ALTER TABLE ADD UNIQUE or PRIMARY KEY provide a shorthand method of
defining a primary key composed of a single column. If PRIMARY KEY is specified
in the definition of column C, the effect is the same as if the PRIMARY KEY(C)
clause were specified as a separate clause. The column cannot contain null values,
so the NOT NULL attribute must also be specified.

For information on the syntax of constraints, see CONSTRAINT clause. Use the
syntax for table-level constraint when adding a constraint with the ADD TABLE ADD
CONSTRAINT syntax.

23

Derby Reference Manual
Dropping columns

ALTER TABLE DROP COLUMN allows you to drop a column from a table.
The keyword COLUMN is optional.

The keywords CASCADE and RESTRICT are also optional. If you specify neither
CASCADE nor RESTRICT, the default is CASCADE.

If you specify RESTRICT, then the column drop will be rejected if it would cause a
dependent schema object to become invalid.

If you specify CASCADE, then the column drop should additionally drop other schema
objects which have become invalid.

The schema objects which can cause a DROP COLUMN RESTRICT to be rejected
include: views, triggers, primary key constraints, foreign key constraints, unique key
constraints, check constraints, and column privileges. If one of these types of objects
depends on the column being dropped, DROP COLUMN RESTRICT will reject the
statement.

You may not drop the last (only) column in a table.
DROP COLUMN is not allowed if sqlAuthorization is true (see DERBY-1909).

CASCADE/RESTRICT doesn't consider whether the column being dropped is used in
any indexes. When a column is dropped, it is removed from any indexes which contain it.
If that column was the only column in the index, the entire index is dropped.

Dropping constraints

ALTER TABLE DROP CONSTRAINT drops a constraint on an existing table. To drop
an unnamed constraint, you must specify the generated constraint name stored in
SYS.SYSCONSTRAINTS as a delimited identifier.

Dropping a primary key, unique, or foreign key constraint drops the physical index that
enforces the constraint (also known as a backing index).

Modifying columns
The column-alteration allows you to alter the named column in the following ways:
« Increasing the length of an existing VARCHAR column. CHARACTER VARYING or
CHAR VARYING can be used as synonyms for the VARCHAR keyword.

To increase the width of a column of these types, specify the data type and new
size after the column name.

You are not allowed to decrease the width or to change the data type. You are not
allowed to increase the width of a column that is part of a primary or unique key
referenced by a foreign key constraint or that is part of a foreign key constraint.

« Specifying the interval between consecutive values of the identity column.

To set an interval between consecutive values of the identity column, specify
the integer-constant. You must previously define the column with the IDENTITY
attribute (SQLSTATE 42837). If there are existing rows in the table, the values in
the column for which the SET INCREMENT default was added do not change.

« Modifying the nullability constraint of a column.

You can add the NOT NULL constraint to an existing column. To do so there must
not be existing NULL values for the column in the table.

You can remove the NOT NULL constraint from an existing column. To do so the
column must not be used in a PRIMARY KEY or UNIQUE constraint.
« Changing the default value for a column.

Setting defaults

24

Derby Reference Manual

You can specify a default value for a new column. A default value is the value that is
inserted into a column if no other value is specified. If not explicitly specified, the default
value of a column is NULL. If you add a default to a new column, existing rows in the
table gain the default value in the new column.

For more information about defaults, see CREATE TABLE statement.
Changing the lock granularity for the table

The LOCKSIZE clause allows you to override row-level locking for the specific table,
if your system uses the default setting of row-level locking. (If your system is set for
table-level locking, you cannot change the locking granularity to row-level locking,
although Derby allows you to use the LOCKSIZE clause in such a situation without
throwing an exception.) To override row-level locking for the specific table, set locking
for the table to TABLE. If you created the table with table-level locking granularity, you
can change locking back to ROW with the LOCKSIZE clause in the ALTER TABLE
STATEMENT. For information about why this is sometimes useful, see Tuning Derby.

Examples

-- Add a new colum with a colum-I|evel constraint

-- to an existing table

-- An exception will be thrown if the table

-- contains any rows

-- since the newcol will be initialized to NULL

-- in all existing rows in the table

ALTER TABLE CI TI ES ADD COLUMN REG ON VARCHAR(26)
CONSTRAI NT NEW_CONSTRAI NT CHECK (REG ON |'S NOT NULL);

-- Add a new uni que constraint to an existing table

-- An exception will be thrown if duplicate keys are found
ALTER TABLE SAMP. DEPARTMENT

ADD CONSTRAI NT NEW_UNI QUE UNI QUE (DEPTNO) ;

-- add a new foreign key constraint to the

-- Cities table. Each rowin Cties is checked

-- to nake sure it satisfied the constraints.

-- if any rows don't satisfy the constraint, the

-- constraint is not added

ALTER TABLE CI TI ES ADD CONSTRAI NT COUNTRY_FK

Forei gn Key (COUNTRY) REFERENCES COUNTRI ES (COUNTRY);

-- Add a primary key constraint to a table

-- First, create a new table

CREATE TABLE ACTIVITIES (CITY_I D I NT NOT NULL,

SEASON CHAR(2), ACTIVITY VARCHAR(32) NOT NULL);

-- You will not be able to add this constraint if the

-- colums you are including in the primary key have

-- null data or duplicate val ues.

ALTER TABLE Activities ADD PRI MARY KEY (city_id, activity);

-- Drop the city_id colum if there are no dependent objects:
ALTER TABLE Cities DROP COLUW city_i d RESTRI CT;

-- Drop the city_id columm, also dropping all dependent objects:
ALTER TABLE Cities DROP COLUW city_id CASCADE;

-- Drop a primary key constraint fromthe CITIES table

ALTER TABLE Cities DROP CONSTRAINT Cities_PK;

-- Drop a foreign key constraint fromthe CITIES table

ALTER TABLE Citi es DROP CONSTRAI NT COUNTRI ES_FK;

-- add a DEPTNO colum with a default value of 1

ALTER TABLE SAMP. EMP_ACT ADD COLUWN DEPTNO | NT DEFAULT 1;

-- increase the width of a VARCHAR col umm

ALTER TABLE SAMP. EMP_PHOTO ALTER PHOTO FORMAT SET DATA TYPE VARCHAR(30);
-- change the lock granularity of a table

ALTER TABLE SAMP. SALES LOCKSI ZE TABLE;

25

Derby Reference Manual

-- Renmpbve the NOT NULL constraint fromthe MANAGER col umm
ALTER TABLE Enpl oyees ALTER COLUWN Manager NULL;

-- Add the NOT NULL constraint to the SSN col um

ALTER TABLE Enpl oyees ALTER COLUWN ssn NOT NULL;

-- Change the default value for the SALARY col um

ALTER TABLE Enpl oyees ALTER COLUWN Sal ary DEFAULT 1000. 0
Results

An ALTER TABLE statement causes all statements that are dependent on the table
being altered to be recompiled before their next execution. ALTER TABLE is not allowed
if there are any open cursors that reference the table being altered.

CALL (PROCEDURE) statement

The CALL (PROCEDURE) statement is used to call procedures. A call to a procedure
does not return any value.

Syntax

CALL procedure-Nane ([expression [, expression]*])

Example

CREATE PROCEDURE SALES. TOTAL_REVENUE(I N S_MONTH | NTEGER,
IN S_YEAR | NTEGER, OUT TOTAL DECI MAL(10, 2))
PARAMETER STYLE JAVA READS SQ. DATA LANGUAGE JAVA EXTERNAL NAME
' com acne. sal es. cal cul at eRevenueByMont h' ;

CALL SALES. TOTAL_REVENUE(?, ?, ?);

CREATE statements

Use the Create statements with functions, indexes, procedures, schemas, synonyms,
tables, triggers, and views.

CREATE FUNCTION statement

The CREATE FUNCTION statement allows you to create Java functions, which you can
then use in an expression.

The function owner and the database owner automatically gain the EXECUTE privilege
on the function, and are able to grant this privilege to other users. The EXECUTE
privileges cannot be revoked from the function and database owners.

Syntax

CREATE FUNCTI ON function-nane ([Functi onParaneter
[, FunctionParanmeter]] *) RETURNS DataType [FunctionEl enent] *

function-Name
[schemaNane.] SQL92ldentifier

If schema-Name is not provided, the current schema is the default schema. If a qualified
procedure name is specified, the schema name cannot begin with SYS.

FunctionParameter

[paraneter-Nane] DataType

PararameterName must be unique within a function.

26

Derby Reference Manual
The syntax of DataType is described in Data types.

Note: Data-types such as BLOB, CLOB, LONG VARCHAR, LONG VARCHAR FOR BIT
DATA, and XML are not allowed as parameters in a CREATE FUNCTION statement.

FunctionElement

| LANGUAGE { JAVA }

| EXTERNAL NAME string

| PARAMETER STYLE JAVA

| { NO SQL | CONTAINS SQL | READS SQL DATA }

| { RETURNS NULL ON NULL INPUT | CALLED ON NULL | NPUT }

}
LANGUAGE

JAVA.- the database manager will call the function as a public static method in a Java
class.

EXTERNAL NAME string
String describes the Java method to be called when the function is executed, and takes
the following form:

cl ass_nane. net hod_nane
The External Name cannot have any extraneous spaces.
PARAMETER STYLE

JAVA - The function will use a parameter-passing convention that conforms to the Java
language and SQL Routines specification. INOUT and OUT parameters will be passed
as single entry arrays to facilitate returning values. Result sets are returned through
additional parameters to the Java method of type java.sql.ResultSet[] that are passed
single entry arrays.

Derby does not support long column types (for example Long Varchar, BLOB, and so
on). An error will occur if you try to use one of these long column types.

NO SQL, CONTAINS SQL, READS SQL DATA
Indicates whether the function issues any SQL statements and, if so, what type.

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data can be
executed by the function. Statements that are not supported in any function return a
different error.

NO SQL
Indicates that the function cannot execute any SQL statements

READS SQL DATA
Indicates that some SQL statements that do not modify SQL data can be included
in the function. Statements that are not supported in any stored function return a
different error. This is the default value.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT

Specifies whether the function is called if any of the input arguments is null. The result is

the null value.

RETURNS NULL ON NULL INPUT
Specifies that the function is not invoked if any of the input arguments is null. The
result is the null value.

CALLED ON NULL INPUT
Specifies that the function is invoked if any or all input arguments are null. This
specification means that the function must be coded to test for null argument values.
The function can return a null or non-null value. This is the default setting.

27

Derby Reference Manual

The function elements may appear in any order, but each type of element can only
appear once. A function definition must contain these elements:

« LANGUAGE

« PARAMETER STYLE

« EXTERNAL NAME

Example

CREATE FUNCTI ON TO_DEGREES(RADI ANS DOUBLE) RETURNS DOUBLE
PARAMETER STYLE JAVA NO SQL LANGUAGE JAVA
EXTERNAL NAME ' j ava. |l ang. Mat h. t oDegr ees'

CREATE INDEX statement

A CREATE INDEX statement creates an index on a table. Indexes can be on one or
more columns in the table.

Syntax

CREATE [UNI QUE] | NDEX i ndex- Name
ON tabl e-Nane (Sinple-colum-Nanme [ASC | DESC]
[, Sinple-colum-Nanme [ASC | DESC]] *)

The maximum number of columns for an index key in Derby is 16.
An index name cannot exceed 128 characters.

A column must not be named more than once in a single CREATE INDEX statement.
Different indexes can name the same column, however.

Derby can use indexes to improve the performance of data manipulation statements (see
Tuning Derby). In addition, UNIQUE indexes provide a form of data integrity checking.

Index nhames are unique within a schema. (Some database systems allow different tables
in a single schema to have indexes of the same name, but Derby does not.) Both index
and table are assumed to be in the same schema if a schema name is specified for one
of the names, but not the other. If schema names are specified for both index and table,
an exception will be thrown if the schema names are not the same. If no schema name is
specified for either table or index, the current schema is used.

By default, Derby uses the ascending order of each column to create the index.
Specifying ASC after the column name does not alter the default behavior. The DESC
keyword after the column name causes Derby to use descending order for the column
to create the index. Using the descending order for a column can help improve the
performance of queries that require the results in mixed sort order or descending order
and for queries that select the minimum or maximum value of an indexed column.

If a qualified index name is specified, the schema name cannot begin with SYS.
Indexes and constraints

Unique, primary key, and foreign key constraints generate indexes that enforce or "back"
the constraint (and are thus sometimes called backing indexes). If a column or set

of columns has a UNIQUE or PRIMARY KEY constraint on it, you can not create an
index on those columns. Derby has already created it for you with a system-generated
name. System-generated names for indexes that back up constraints are easy to find

by querying the system tables if you name your constraint. Adding a PRIMARY KEY or
UNIQUE constraint when an existing UNIQUE index exists on the same set of columns
will result in two physical indexes on the table for the same set of columns. One index is
the original UNIQUE index and one is the backing index for the new constraint.

To find out the name of the index that backs a constraint called FLIGHTS_PK:

SELECT CONGLOVERATENAME FROM SYS. SYSCONGLOMERATES,

28

Derby Reference Manual

SYS. SYSCONSTRAI NTS WHERE
SYS. SYSCONGLOVERATES. TABLEI D = SYSCONSTRAI NTS. TABLEI D
AND CONSTRAI NTNAME = ' FLI GHTS_PK'

CREATE | NDEX Origlndex ON Flights(orig_airport);
-- money is usually ordered fromgreatest to |east,
-- so create the index using the descendi ng order
CREATE | NDEX PAY_DESC ON SAMP. EMPLOYEE (SALARY);
-- use a l|larger page size for the index
cal |
SYSCS_UTI L. SYSCS_SET_DATABASE _PROPERTY(' der by. st or age. pageSi ze', "' 8192');
CREATE | NDEX | XSALE ON SAMP. SALES (SALES);
cal |
SYSCS_UTI L. SYSCS_SET_DATABASE PROPERTY(' der by. st or age. pageSi ze' , NULL) ;

Page size and key size

Note: The size of the key columns in an index must be equal to or smaller than half the
page size. If the length of the key columns in an existing row in a table is larger than
half the page size of the index, creating an index on those key columns for the table

will fail. This error only occurs when creating an index if an existing row in the table fails
the criteria. After an index is created, inserts may fail if the size of their associated key
exceeds the criteria.

Statement dependency system

Prepared statements that involve SELECT, INSERT, UPDATE, UPDATE WHERE
CURRENT, DELETE, and DELETE WHERE CURRENT on the table referenced by the
CREATE INDEX statement are invalidated when the index is created. Open cursors on
the table are not affected.

CREATE PROCEDURE statement

The CREATE PROCEDURE statement allows you to create Java stored procedures,
which you can then call using the CALL PROCEDURE statement.

The procedure owner and the database owner automatically gain the EXECUTE privilege
on the procedure, and are able to grant this privilege to other users. The EXECUTE
privileges cannot be revoked from the procedure and database owners.

Syntax

CREATE PROCEDURE procedure-Nanme ([ProcedureParaneter
[, ProcedureParaneter]] *)
[ProcedureEl enent] *

procedure-Name

[schenmaNane.] SQ.92ldentifier

If schema-Name is not provided, the current schema is the default schema. If a qualified
procedure name is specified, the schema name cannot begin with SYS.

ProcedureParameter

[{ IN] QUT | INOQUT }] [paraneter-Nane] DataType

The default value for a parameter is IN. ParameterName must be unique within a
procedure.

The syntax of DataType is described in Data types.

Note: Data-types such as BLOB, CLOB, LONG VARCHAR, LONG VARCHAR FOR BIT
DATA, and XML are not allowed as parameters in a CREATE PROCEDURE statement.

ProcedureElement

{

29

Derby Reference Manual

| [DYNAM C] RESULT SETS | NTEGER

| LANGUAGE { JAVA }

| EXTERNAL NAME string

| PARAMETER STYLE JAVA

| { NO SQL | MODIFIES SQL DATA | CONTAINS SQL | READS SQL DATA }

DYNAMIC RESULT SETS integer

Indicates the estimated upper bound of returned result sets for the procedure. Default is
no (zero) dynamic result sets.

LANGUAGE

JAVA- the database manager will call the procedure as a public static method in a Java
class.

EXTERNAL NAME string
String describes the Java method to be called when the procedure is executed, and takes
the following form:

cl ass_name. met hod_nane
The External Name cannot have any extraneous spaces.
PARAMETER STYLE

JAVA - The procedure will use a parameter-passing convention that conforms to the
Java language and SQL Routines specification. INOUT and OUT parameters will be
passed as single entry arrays to facilitate returning values. Result sets are returned
through additional parameters to the Java method of type java.sql.ResultSet [] that are
passed single entry arrays.

Derby does not support long column types (for example Long Varchar, BLOB, and so
on). An error will occur if you try to use one of these long column types.

NO SQL, CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA
Indicates whether the stored procedure issues any SQL statements and, if so, what type.

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data can be
executed by the stored procedure. Statements that are not supported in any stored
procedure return a different error. MODIFIES SQL DATA is the default value.

NO SQL
Indicates that the stored procedure cannot execute any SQL statements

READS SQL DATA
Indicates that some SQL statements that do not modify SQL data can be included
in the stored procedure. Statements that are not supported in any stored procedure
return a different error.

MODIFIES SQL DATA
Indicates that the stored procedure can execute any SQL statement except
statements that are not supported in stored procedures.

The procedure elements may appear in any order, but each type of element can only
appear once. A procedure definition must contain these elements:

* LANGUAGE

« PARAMETER STYLE

+ EXTERNAL NAME

Example

CREATE PROCEDURE SALES. TOTAL_REVENUE(I N S_MONTH | NTEGER
IN S_YEAR | NTEGER, OUT TOTAL DECI MAL(10, 2))
PARAVETER STYLE JAVA READS SQL DATA LANGUAGE JAVA EXTERNAL NANE

30

Derby Reference Manual
' com acne. sal es. cal cul at eRevenueByMont h'

CREATE SCHEMA statement

A schema is a way to logically group objects in a single collection and provide a unique
namespace for objects.

Syntax

CREATE SCHEMA { [schenmaNanme AUTHORI ZATI ON user-name] | [schemaNane] |
[AUTHORI ZATI ON user-nane | }

The CREATE SCHEMA statement is used to create a schema. A schema name cannot
exceed 128 characters. Schema names must be unique within the database.

CREATE SCHEMA examples
To create a schema for airline-related tables and give the authorization ID ani t a access
to all of the objects that use the schema, use the following syntax:

CREATE SCHEMA FLI GHTS AUTHORI ZATION anita

To create a schema employee-related tables, use the following syntax:

CREATE SCHEMVA EMP

To create a schema that uses the same name as the authorization ID t akum , use the
following syntax:

CREATE SCHEMA AUTHORI ZATI ON t akumi

To create a table called avai | abi |l ity inthe EMP and FLI GHTS schemas, use the
following syntax:

CREATE TABLE FLI GHTS. AVAI LABI LI TY
(FLI GHT_I D CHAR(6) NOT NULL, SEGVENT_NUMBER | NT NOT NULL,
FLI GAT_DATE DATE NOT NULL, ECONOMY_SEATS TAKEN | NT,
BUSI NESS_SEATS_TAKEN | NT, FI RSTCLASS_SEATS TAKEN | NT,
CONSTRAI NT FLT_AVAI L_PK
PRI MARY KEY (FLI GHT_I D, SEGMVENT_NUMBER, FLI GHT_DATE))

CREATE TABLE EMP. AVAI LABI LI TY
(HOTEL_I D I NT NOT NULL, BOOKI NG DATE DATE NOT NULL, ROOVS_TAKEN I NT,
CONSTRAI NT HOTELAVAI L_PK PRI MARY KEY (HOTEL_I| D, BOOKI NG _DATE))

CREATE SYNONYM statement

Use the CREATE SYNONYM statement to provide an alternate name for a table or

a view that is present in the same schema or another schema. You can also create
synonyms for other synonyms, resulting in nested synonyms. A synonym can be used
instead of the original qualified table or view name in SELECT, INSERT, UPDATE,
DELETE or LOCK TABLE statements. You can create a synonym for a table or a view
that doesn't exist, but the target table or view must be present before the synonym can
be used.

Synonyms share the same namespace as tables or views. You cannot create a synonym
with the same name as a table that already exists in the same schema. Similarly, you
cannot create a table or view with a name that matches a synonym already present.

A synonym can be defined for a table/view that does not exist when you create

the synonym. If the table or view doesn't exist, you will receive a warning message
(SQLSTATE 01522). The referenced object must be present when you use a synonym in
a DML statement.

31

Derby Reference Manual

You can create a nested synonym (a synonym for another synonym), but any attempt
to create a synonym that results in a circular reference will return an error message
(SQLSTATE 42916).

Synonyms cannot be defined in system schemas. All schemas starting with 'SYS' are
considered system schemas and are reserved by Derby.

A synonym cannot be defined on a temporary table. Attempting to define a synonym on a
temporary table will return an error message (SQLSTATE XCL51).

Syntax

CREATE SYNONYM synonym Nane FOR { view Nane | tabl e-Nane }

The synonym-Name in the statement represents the synonym name you are giving the
target table or view, while the view-Name or table-Name represents the original name of
the target table or view.

Example
CREATE SYNONYM SAMP.T1 FOR SAMP. TABLEWITHLONGNAME
CREATE TABLE statement

A CREATE TABLE statement creates a table. Tables contain columns and constraints,
rules to which data must conform. Table-level constraints specify a column or columns.
Columns have a data type and can specify column constraints (column-level constraints).

The table owner and the database owner automatically gain the following privileges on
the table and are able to grant these privileges to other users:
¢ INSERT
e SELECT
REFERENCES
 TRIGGER
« UPDATE
These privileges cannot be revoked from the table and database owners.

For information about constraints, see CONSTRAINT clause.

You can specify a default value for a column. A default value is the value to be inserted
into a column if no other value is specified. If not explicitly specified, the default value of a
column is NULL. See Column default.

You can specify storage properties such as page size for a table by calling the
SYSCS_UTI L. SYSCS_SET_DATABASE_PROPERTY system procedure.

If a qualified table name is specified, the schema name cannot begin with SYS.
Syntax

There are two different variants of the CREATE TABLE statement, depending on whether
you are specifying the column definitions and constraints, or whether you are modeling
the columns after the results of a query expression:

CREATE TABLE t abl e- Nane

{
({colum-definition | Table-Ilevel constraint}
[, {colum-definition | Table-level constraint}] *)
I
[(colum-nane [, colum-name | *)]
AS query-expression
W TH NO DATA
}
Example

CREATE TABLE HOTELAVAI LABI LI TY

32

Derby Reference Manual

(HOTEL_I D I NT NOT NULL, BOOKI NG DATE DATE NOT NULL,
ROOMS_TAKEN | NT DEFAULT O, PRI MARY KEY (HOTEL_I D, BOOKI NG DATE));
-- the table-level primary key definition allows you to
-- include two colums in the primary key definition
PRI MARY KEY (hotel _id, booki ng_date))
-- assign an identity colum attribute to an | NTEGER
-- colum, and also define a primary key constraint
-- on the col um
CREATE TABLE PECPLE
(PERSON_I D I NT NOT NULL GENERATED ALWAYS AS | DENTI TY
CONSTRAI NT PECPLE_PK PRI MARY KEY, PERSON VARCHAR(26));
-- assign an identity colum attribute to a SMALLI NT
-- colum with an initial value of 5 and an increnent val ue
-- of 5.
CREATE TABLE GROUPS
(GROUP_I D SVALLI NT NOT NULL GENERATED ALWAYS AS | DENTI TY
(START WTH 5, | NCREMENT BY 5), ADDRESS VARCHAR(100), PHONE
VARCHAR(15)) ;

Note: For more examples of CREATE TABLE statements using the various constraints,
see CONSTRAINT clause.

CREATE TABLE ... AS ...

With the alternate form of the CREATE TABLE statement, the column names and/or the
column data types can be specified by providing a query. The columns in the query result
are used as a model for creating the columns in the new table.

If no column names are specified for the new table, then all the columns in the result of
the query expression are used to create same-named columns in the new table, of the
corresponding data type(s). If one or more column names are specified for the new table,
then the same number of columns must be present in the result of the query expression;
the data types of those columns are used for the corresponding columns of the new
table.

The WITH NO DATA clause specifies that the data rows which result from evaluating

the query expression are not used; only the names and data types of the columns in the
query result are used. The WITH NO DATA clause must be specified; in a future release,
Derby may be modified to allow the WITH DATA clause to be provided, which would
indicate that the results of the query expression should be inserted into the newly-created
table. In the current release, however, only the WITH NO DATA form of the statement is
accepted.

Example

-- create a new table using all the colums and data types

-- froman existing table:

CREATE TABLE T3 AS SELECT * FROM T1 W TH NO DATA;

-- create a new table, providing new nanmes for the colums, but
-- using the data types fromthe colums of an existing table:
CREATE TABLE T3 (A, B,C D, E) AS SELECT * FROM T1 W TH NO DATA;
-- create a new table, providing new nanes for the col ums,

-- using the data types fromthe indicated colums of an existing table:
CREATE TABLE T3 (A, B,C AS SELECT V,DP,1 FROM T1 W TH NO DATA;
-- This exanple shows that the colums in the result of the

-- query expression may be unnanmed expressions, but their data
-- types can still be used to provide the data types for the
-- correspondi ng named colums in the new y-created table:
CREATE TABLE T3 (X, Y) AS SELECT 2*|,2.0*F FROM T1 W TH NO DATA;

column-definition:

Si npl e- col um- NaneDat aType
[Colum-1Ievel -constraint]*
[[WTH] DEFAULT { Constant Expression | NULL }
| gener at ed- col um- spec]

33

Derby Reference Manual
[Colum-1Ievel -constraint]*

The syntax of Data-Type is described in Data types.

The syntaxes of Column-level-constraint and Table-level constraint are described in
CONSTRAINT clause.

Column default

For the definition of a default value, a ConstantExpression is an expression that does not
refer to any table. It can include constants, date-time special registers, current schemas,
users, and null.

generated-column-spec:

[CGENERATED { ALWAYS | BY DEFAULT } AS | DENTITY
[(START W TH I nt eger Const ant
[,INCREMENT BY IntegerConstant])]]]

Identity column attributes

For SMALLINT, INT, and BIGINT columns with identity attributes, Derby automatically
assigns increasing integer values to the column. Identity column attributes behave like
other defaults in that when an insert statement does not specify a value for the column,
Derby automatically provides the value. However, the value is not a constant; Derby
automatically increments the default value at insertion time.

The IDENTITY keyword can only be specified if the data type associated with the column
is one of the following exact integer types.

e SMALLINT

« INT

* BIGINT

There are two kinds of identity columns in Derby: those which are GENERATED

ALWAYS and those which are GENERATED BY DEFAULT.

GENERATED ALWAYS
An identity column that is GENERATED ALWAYS will increment the default value
on every insertion and will store the incremented value into the column. Unlike other
defaults, you cannot insert a value directly into or update an identity column that
is GENERATED ALWAYS. Instead, either specify the DEFAULT keyword when
inserting into the identity column, or leave the identity column out of the insertion
column list altogether. For example:

create table greetings

(i int generated always as identity, ch char(50));
insert into greetings values (DEFAULT, 'hello');
insert into greetings(ch) values ('bonjour');

Automatically generated values in a GENERATED ALWAYS identity column are
unique. Creating an identity column does not create an index on the column.
GENERATED BY DEFAULT

An identity column that is GENERATED BY DEFAULT will only increment and use
the default value on insertions when no explicit value is given. Unlike GENERATED
ALWAYS columns, you can specify a particular value in an insertion statement to be
used instead of the generated default value.

To use the generated default, either specify the DEFAULT keyword when inserting
into the identity column, or just leave the identity column out of the insertion column
list. To specify a value, included it in the insertion statement. For example:

create table greetings
(i int generated by default as identity, ch char(50));
-- specify value "1":

34

Derby Reference Manual

insert into greetings values (1, '"hi');

-- use generated default

insert into greetings values (DEFAULT, 'salut');

-- use generated default

insert into greetings(ch) values ('bonjour');

Note that unlike a GENERATED ALWAYS column, a GENERATED BY DEFAULT
column does not guarantee uniqueness. Thus, in the above example, the hi and
sal ut rows will both have an identity value of "1", because the generated column
starts at "1" and the user-specified value was also "1". To prevent duplication,
especially when loading or importing data, create the table using the START WITH
value which corresponds to the first identity value that the system should assign.
To check for this condition and disallow it, you can use a primary key or unique
constraint on the GENERATED BY DEFAULT identity column.

By default, the initial value of an identity column is 1, and the amount of the increment is
1. You can specify non-default values for both the initial value and the interval amount
when you define the column with the key words START WITH and INCREMENT BY. And
if you specify a negative number for the increment value, Derbydecrements the value
with each insert. If this value is positive, Derby increments the value with each insert. A
value of O raises a statement exception.

The maximum and minimum values allowed in identity columns are determined by
the data type of the column. Attempting to insert a value outside the range of values
supported by the data type raises an exception.

Table 1. Maximum and Minimum Values for Columns with Generated Column
Specs

Data type Maximum Value Minimum Value
SMALLINT | 32767 -32768
(java.lang.Short. MAX_VALUE) (java.lang.Short.MIN_VALUE)
INT 2147483647 -2147483648
(java.lang.Integer.MAX_VALUE) (java.lang.Integer.MIN_VALUE)
BIGINT 9223372036854775807 -9223372036854775808
(java.lang.Long.MAX_VALUE) (java.lang.Long.MIN_VALUE)

Automatically generated values in an identity column are unique. Use a primary key or
unigue constraint on a column to guarantee uniqueness. Creating an identity column
does not create an index on the column.

The | DENTI TY_VAL_LQOCAL function is a non-deterministic function that returns the most
recently assigned value for an identity column. See IDENTITY_VAL_ LOCAL function for
more information.

Note: Specify the schema, table, and column name using the same case as those
names are stored in the system tables--that is, all upper case unless you used delimited
identifiers when creating those database objects.

Derby keeps track of the last increment value for a column in a cache. It also stores

the value of what the next increment value will be for the column on disk in the
AUTOINCREMENTVALUE column of the SYS.SYSCOLUMNS system table. Rolling
back a transaction does not undo this value, and thus rolled-back transactions can leave
"gaps" in the values automatically inserted into an identity column. Derby behaves this
way to avoid locking a row in SYS.SYSCOLUMNS for the duration of a transaction and
keeping concurrency high.

When an insert happens within a triggered-SQL-statement, the value inserted by the
triggered-SQL-statement into the identity column is available from Connectioninfo only

35

Derby Reference Manual

within the trigger code. The trigger code is also able to see the value inserted by the
statement that caused the trigger to fire. However, the statement that caused the trigger
to fire is not able to see the value inserted by the triggered-SQL-statement into the
identity column. Likewise, triggers can be nested (or recursive). An SQL statement can
cause trigger T1 to fire. T1 in turn executes an SQL statement that causes trigger T2 to
fire. If both T1 and T2 insert rows into a table that cause Derby to insert into an identity
column, trigger T1 cannot see the value caused by T2's insert, but T2 can see the value
caused by T1's insert. Each nesting level can see increment values generated by itself
and previous nesting levels, all the way to the top-level SQL statement that initiated the
recursive triggers. You can only have 16 levels of trigger recursion.

Example

create table greetings
(i int generated by default as identity (START WTH 2, | NCREMENT BY 1),
ch char (50));

-- specify value "1":

insert into greetings values (1, '"hi');

-- use generated default

insert into greetings values (DEFAULT, 'salut');

-- use generated default

insert into greetings(ch) values ('bonjour');

CREATE TRIGGER statement

A trigger defines a set of actions that are executed when a database event occurs on a
specified table. A database event is a delete, insert, or update operation. For example, if
you define a trigger for a delete on a particular table, the trigger's action occurs whenever
someone deletes a row or rows from the table.

Along with constraints, triggers can help enforce data integrity rules with actions such as
cascading deletes or updates. Triggers can also perform a variety of functions such as
issuing alerts, updating other tables, sending e-mail, and other useful actions.

You can define any number of triggers for a single table, including multiple triggers on the
same table for the same event.

You can create a trigger in any schema where you are the schema owner. To create a
trigger on a table that you do not own, you must be granted the TRIGGER privilege on
that table. The database owner can also create triggers on any table in any schema.

The trigger does not need to reside in the same schema as the table on which the trigger
is defined.

If a qualified trigger name is specified, the schema name cannot begin with SYS.

Syntax

CREATE TRI GGER Tri gger Nane

{ AFTER | NO CASCADE BEFORE }

{ INSERT | DELETE | UPDATE [OF col um-Nane [, col um-Nane]*] }
ON t abl e- Nanme

[Referencingd ause]

[FOR EACH { ROW| STATEMENT }] [MODE DB2SQL]

Tri gger ed- SQL- st at enent

Before or after: when triggers fire
Triggers are defined as either Before or After triggers.

» Before triggers fire before the statement's changes are applied and before any
constraints have been applied. Before triggers can be either row or statement
triggers (see Statement versus row triggers).

« After triggers fire after all constraints have been satisfied and after the changes
have been applied to the target table. After triggers can be either row or statement
triggers (see Statement versus row triggers).

36

Derby Reference Manual

Insert, delete, or update: what causes the trigger to fire
A trigger is fired by one of the following database events, depending on how you define it
(see Syntax above):

* INSERT

« UPDATE

« DELETE

You can define any number of triggers for a given event on a given table. For update, you
can specify columns.

Referencing old and new values: the referencing clause

Many triggered-SQL-statements need to refer to data that is currently being changed by
the database event that caused them to fire. The triggered-SQL-statement might need to
refer to the new (post-change or "after") values.

Derby provides you with a number of ways to refer to data that is currently being changed
by the database event that caused the trigger to fire. Changed data can be referred

to in the triggered-SQL-statement using transition variables or transition tables. The
referencing clause allows you to provide a correlation name or alias for these transition
variables by specifying OLD/NEW AS correlation-Name .

For example, if you add the following clause to the trigger definition:

REFERENCI NG OLD AS DELETEDROW

you can then refer to this correlation name in the triggered-SQL-statement:

DELETE FROM Hot el Avai | ability WHERE hotel id = DELETEDROW hotel _id

The OLD and NEW transition variables map to a java.sgl.ResultSet with a single row.
Note: Only row triggers (see Statement versus row triggers) can use the transition
variables. INSERT row triggers cannot reference an OLD row. DELETE row triggers
cannot reference a NEW row.

For statement triggers, transition tables serve as a table identifier for the
triggered-SQL-statement or the trigger qualification. The referencing clause allows
you to provide a correlation name or alias for these transition tables by specifying
OLD_TABLE/NEW_TABLE AS correlation-Name

For example:

REFERENCI NG OLD_TABLE AS Del et edHot el s

allows you to use that new identifier (DeletedHotels) in the triggered-SQL-statement:

DELETE FROM Hot el Avai |l ability WHERE hotel _id IN
(SELECT hot el _i d FROM Del et edHot el s)

The old and new transition tables map to a java.sql.ResultSet with cardinality equivalent
to the number of rows affected by the triggering event.

Note: Only statement triggers (see Statement versus row triggers) can use the transition
tables. INSERT statement triggers cannot reference an OLD table. DELETE statement
triggers cannot reference a NEW table.

The referencing clause can designate only one new correlation or identifier and only one
old correlation or identifier. Row triggers cannot designate an identifier for a transition
table and statement triggers cannot designate a correlation for transition variables.

Statement versus row triggers

You have the option to specify whether a trigger is a statement trigger or a row trigger. If
it is not specified in the CREATE TRIGGER statement via FOR EACH clause, then the
trigger is a statement trigger by default.

37

Derby Reference Manual
 statement triggers

A statement trigger fires once per triggering event and regardless of whether any
rows are modified by the insert, update, or delete event.
* row triggers

A row trigger fires once for each row affected by the triggering event. If no rows are
affected, the trigger does not fire.
Note: An update that sets a column value to the value that it originally contained (for
example, UPDATE T SET C = C) causes a row trigger to fire, even though the value of
the column is the same as it was prior to the triggering event.

Triggered-SQL-statement
The action defined by the trigger is called the triggered-SQL-statement (in Syntax above,
see the last line). It has the following limitations:
« It must not contain any dynamic parameters (?).
« It must not create, alter, or drop the table upon which the trigger is defined.
« It must not add an index to or remove an index from the table on which the trigger is
defined.
« It must not add a trigger to or drop a trigger from the table upon which the trigger is
defined.
« It must not commit or roll back the current transaction or change the isolation level.
« Before triggers cannot have INSERT, UPDATE or DELETE statements as their
action.
 Before triggers cannot call procedures that modify SQL data as their action.

The triggered-SQL-statement can reference database objects other than the table upon
which the trigger is declared. If any of these database objects is dropped, the trigger is
invalidated. If the trigger cannot be successfully recompiled upon the next execution, the
invocation throws an exception and the statement that caused it to fire will be rolled back.

For more information on triggered-SQL-statements, see the Derby Developer's Guide.

Order of execution
When a database event occurs that fires a trigger, Derby performs actions in this order:
« |t fires No Cascade Before triggers.
« It performs constraint checking (primary key, unique key, foreign key, check).
« It performs the insert, update, or delete.
« |t fires After triggers.

When multiple triggers are defined for the same database event for the same table for
the same trigger time (before or after), triggers are fired in the order in which they were
created.

-- Statements and triggers:

CREATE TRI GGER t1 NO CASCADE BEFORE UPDATE ON x
FOR EACH ROW MODE DB2SQL
val ues app.notifyEmail ('Jerry', 'Table x is about to be updated');

CREATE TRI GGER FLI GHTSDELETE
AFTER DELETE ON FLI GHTS
REFERENCI NG OLD_TABLE AS DELETEDFLI GHTS
FOR EACH STATEMENT
DELETE FROM FLI GHATAVAI LABI LI TY WVHERE FLIGHT_ID I N
(SELECT FLI GHT_I D FROM DELETEDFLI GHTS) ;

CREATE TRI GCER FLI GHTSDELETES3
AFTER DELETE ON FLI GHTS
REFERENCI NG OLD AS QLD
FOR EACH ROW
DELETE FROM FLI GHTAVAI LABI LI TY WHERE FLI GHT_I D = CLD. FLI GHT_I D;

38

Derby Reference Manual
Note: You can find more examples in the Derby Developer's Guide.

Trigger recursion
The maximum trigger recursion depth is 16.

Related information

Special system functions that return information about the current time or current user are

evaluated when the trigger fires, not when it is created. Such functions include:
 CURRENT_DATE function

CURRENT_TIME function

CURRENT_TIMESTAMP function

CURRENT_USER function

SESSION_USER function

* USER function

ReferencingClause:

REFERENCI NG

{
{ OLD| NEW} [AS] correlation-Name [{ O.D | NEW} [AS]
correl ati on- Name]
{ OLD_TABLE | NEWTABLE } [AS] ldentifier [{ OLD TABLE | NEWTABLE }
[AS] ldentifier]
}

CREATE VIEW statement

Views are virtual tables formed by a query. A view is a dictionary object that you can use
until you drop it. Views are not updatable.

If a qualified view name is specified, the schema name cannot begin with SYS.

The view owner automatically gains the SELECT privilege on the view. The SELECT
privilege cannot be revoked from the view owner. The database owner automatically
gains the SELECT privilege on the view and is able to grant this privilege to other users.
The SELECT privilege cannot be revoked from the database owner.

The view owner can only grant the SELECT privilege to other users if the view owner
also owns the underlying objects.

If the underlying objects that the view references are not owned by the view owner, the
view owner must be granted the appropriate privileges. For example, if the authorization
ID user 2 attempts to create a view called user 2. v2 that references table user 1.t 1
and function user 1. f _abs(), then user 2 must have the SELECT privilege on table
user 1.t 1 and the EXECUTE privilege on function user 1. f _abs().

The privilege to grant the SELECT privilege cannot be revoked. If a required privilege
on one of the underlying objects that the view references is revoked, then the view is
dropped.

Syntax

CREATE VI EW vi ew Nane
[(Sinple-colum-Nane [, Sinple-colum-Nane] *)]
AS Query

A view definition can contain an optional view column list to explicitly name the columns
in the view. If there is no column list, the view inherits the column names from the
underlying query. All columns in a view must be uniquely named.

CREATE VI EW SAVP. V1 (COL_SUM COL_DI FF)
AS SELECT COMM + BONUS, COVM - BONUS
FROM SAVP. EMPLOYEE;

39

Derby Reference Manual

CREATE VI EW SAMP. VEMP_RES (RESUVMVE)
AS VALUES 'Delores M Quintana', 'Heather A N cholls', 'Bruce Adanson';

CREATE VI EW SAMP. PROJ_COVBO

(PRQINO, PRENDATE, PRSTAFF, MAJPRQJ)

AS SELECT PROINO, PRENDATE, PRSTAFF, MAJPRQJ
FROM SAMP. PRJECT UNI ON ALL

SELECT PROINO, EMSTDATE, EMPTI ME, EMPNO

FROM SAMP. EMP_ACT

WHERE EMPNO |'S NOT NULL;

Statement dependency system

View definitions are dependent on the tables and views referenced within the view
definition. DML (data manipulation language) statements that contain view references
depend on those views, as well as the objects in the view definitions that the views are
dependent on. Statements that reference the view depend on indexes the view uses;
which index a view uses can change from statement to statement based on how the
guery is optimized. For example, given:

CREATE TABLE T1 (Cl DOUBLE PRECI Sl ON);

CREATE FUNCTI ON SI N (DATA DOUBLE)
RETURNS DOUBLE EXTERNAL NAME 'j ava. |l ang. Mat h. sin’
LANGUACE JAVA PARAMETER STYLE JAVA,

CREATE VIEW V1 (Cl) AS SELECT SIN(Cl) FROM T1;
the following SELECT:

SELECT * FROM V1

is dependent on view V1, table T1, and external scalar function SIN.

DECLARE GLOBAL TEMPORARY TABLE statement

The DECLARE GLOBAL TEMPORARY TABLE statement defines a temporary table for
the current connection.

These tables do not reside in the system catalogs and are not persistent. Temporary
tables exist only during the connection that declared them and cannot be referenced
outside of that connection. When the connection closes, the rows of the table are deleted,
and the in-memory description of the temporary table is dropped.

Temporary tables are useful when:
« The table structure is not known before using an application.
« Other users do not need the same table structure.
« Data in the temporary table is needed while using the application.
* The table can be declared and dropped without holding the locks on the system
catalog.

Syntax

DECLARE GLOBAL TEMPCORARY TABLE t abl e- Nanme

{ colum-definition [, colum-definition] * }
[ON COW T {DELETE | PRESERVE} ROWS]
NOT LOGGED [ON ROLLBACK DELETE ROWS]

table-Name

Names the temporary table. If a schema-Name other than SESSION is specified, an
error will occur (SQLSTATE 428EK). If the schema-Name is not specified, SESSION
is assigned. Multiple connections can define declared global temporary tables with the
same name because each connection has its own unique table descriptor for it.

40

Derby Reference Manual

Using SESSION as the schema name of a physical table will not cause an error, but is
discouraged. The SESSION schema name should be reserved for the temporary table
schema.

column-definition

See column-definition for CREATE TABLE for more information on
col um-definition. DECLARE GLOBAL TEMPORARY TABLE does not allow
gener at ed- col um- spec in the col um-definition.

Data type
Supported data types are:
e BIGINT
« CHAR
« DATE
» DECIMAL
 DOUBLE
» DOUBLE PRECISION
e FLOAT
* INTEGER
 NUMERIC
 REAL
e SMALLINT
* TIME
e TIMESTAMP
* VARCHAR

ON COMMIT

Specifies the action taken on the global temporary table when a COMMIT operation is
performed.

DELETE ROWS

All rows of the table will be deleted if no hold-able cursor is open on the table. This is
the default value for ON COMMIT. If you specify ON ROLLBACK DELETE ROWS, this
will delete all the rows in the table only if the temporary table was used. ON COMMIT
DELETE ROWS will delete the rows in the table even if the table was not used (if the
table does not have hold-able cursors open on it).

PRESERVE ROWS
The rows of the table will be preserved.
NOT LOGGED

Specifies the action taken on the global temporary table when a rollback operation

is performed. When a ROLLBACK (or ROLLBACK TO SAVEPOINT) operation is
performed, if the table was created in the unit of work (or savepoint), the table will be
dropped. If the table was dropped in the unit of work (or savepoint), the table will be
restored with no rows.

ON ROLLBACK DELETE ROWS

This is the default value for NOT LOGGED. NOT LOGGED [ON ROLLBACK DELETE
ROWS]] specifies the action that is to be taken on the global temporary table when a
ROLLBACK or (ROLLBACK TO SAVEPOINT) operation is performed. If the table data
has been changed, all the rows will be deleted.

Examples

set schema nyapp;

41

Derby Reference Manual
create table t1(cl1l int, cl2 date);

decl are gl obal tenporary table SESSION.t1(cll int) not | ogged;
-- The SESSI ON qualification is redundant here because tenporary
-- tables can only exist in the SESSION schena.

decl are gl obal tenporary table t2(c21 int) not | ogged;

-- The tenporary table is not qualified here with SESSI ON because
t enpor ary

-- tables can only exist in the SESSI ON schena.

insert into SESSION.t1 values (1);
-- SESSION qualification is nmandatory here if you want to use
-- the tenporary table, because the current schema is "nyapp."

select * fromtl;
-- This select statenent is referencing the "nyapp.t1" physical
-- table since the table was not qualified by SESSI ON.

Note: Temporary tables can be declared only in the SESSION schema. You should
never declare a physical schema with the SESSION name.
The following is a list of DB2 UDB DECLARE GLOBAL TEMPORARY TABLE functions
that are not supported by Derby:
* IDENTITY column-options
« IDENTITY attribute in copy-options
AS (fullselect) DEFINITION ONLY
NOT LOGGED ON ROLLBACK PRESERVE ROWS
IN tablespace-name
PARTITIONING KEY
* WITH REPLACE

Restrictions on Declared Global Temporary Tables

Derby does not support the following features on temporary tables. Some of these
features are specific to temporary tables and some are specific to Derby.

Temporary tables cannot be specified in the following statements:
* ALTER TABLE
* CREATE INDEX
* CREATE SYNONYM
* CREATE TRIGGER
+ CREATE VIEW
* GRANT
* LOCK TABLE
« RENAME
* REVOKE

You cannot use the following features with temporary tables:

e Synonyms, triggers and views on SESSION schema tables (including physical
tables and temporary tables)

« Caching statements that reference SESSION schema tables and views

* Temporary tables cannot be specified in referential constraints and primary keys

« Temporary tables cannot be referenced in a triggered-SQL-statement

» Check constraints on columns

» Generated-column-spec

 Importing into temporary tables

If a statement that performs an insert, update, or delete to the temporary table
encounters an error, all the rows of the temporary table are deleted.

The following data types cannot be used with Declared Global Temporary Tables:

42

Derby Reference Manual

- BLOB

 CHAR FOR BIT DATA

« CLOB

* LONG VARCHAR

* LONG VARCHAR FOR BIT DATA
* VARCHAR FOR BIT DATA

« XML

DELETE statement
Syntax

DELETE FROM t abl e- Nane
[WHERE cl ause] |
DELETE FROM t abl e- Name WHERE CURRENT OF

}

The first syntactical form, called a searched delete, removes all rows identified by the
table name and WHERE clause.

The second syntactical form, called a positioned delete, deletes the current row of an
open, updatable cursor. For more information about updatable cursors, see SELECT
statement.

Examples

DELETE FROM SAMP. | N_TRAY

st nt . execut eUpdat e(" DELETE FROM SAWVP. | N_TRAY WHERE CURRENT OF " +
resul t Set. get Cursor Nane()) ;

Statement dependency system

A searched delete statement depends on the table being updated, all of its
conglomerates (units of storage such as heaps or indexes), and any other table named
in the WHERE clause. A CREATE or DROP INDEX statement for the target table of a
prepared searched delete statement invalidates the prepared searched delete statement.

The positioned delete statement depends on the cursor and any tables the cursor
references. You can compile a positioned delete even if the cursor has not been opened
yet. However, removing the open cursor with the JDBC close method invalidates the
positioned delete.

A CREATE or DROP INDEX statement for the target table of a prepared positioned
delete invalidates the prepared positioned delete statement.

DROP statements

Use Drop statements with functions, indexes, procedures, schemas, synonyms, tables,
triggers, and views.

DROP FUNCTION statement
Syntax

DROP FUNCTI ON functi on- nanme

Identifies the particular function to be dropped, and is valid only if there is exactly one
function instance with the function-name in the schema. The identified function can have
any number of parameters defined for it. If no function with the indicated name in the
named or implied schema, an error (SQLSTATE 42704) will occur. An error will also

43

Derby Reference Manual

occur if there is more than one specific instance of the function in the named or implied
schema.

DROP INDEX statement
DROP INDEX removes the specified index.
Syntax

DROP | NDEX i ndex- Nane

DROP | NDEX Ori gl ndex
DROP | NDEX Dest | ndex
Statement dependency system

If there is an open cursor on the table from which the index is dropped, the DROP INDEX
statement generates an error and does not drop the index. Otherwise, statements that
depend on the index's table are invalidated.

DROP PROCEDURE statement
Syntax

DROP PROCEDURE pr ocedur e- Nane

Identifies the particular procedure to be dropped, and is valid only if there is exactly one
procedure instance with the procedure-name in the schema. The identified procedure can
have any number of parameters defined for it. If no procedure with the indicated name in
the named or implied schema, an error (SQLSTATE 42704) will occur. An error will also
occur if there is more than one specific instance of the procedure in the named or implied
schema.

DROP SCHEMA statement

The DROP SCHEMA statement drops a schema. The target schema must be empty for
the drop to succeed.

Neither the APP schema (the default user schema) nor the SYS schema can be dropped.

Syntax

DROP SCHEMA schenaNane RESTRI CT

The RESTRICT keyword enforces the rule that no objects can be defined in the specified
schema for the schema to be deleted from the database. The RESTRICT keyword is
required

-- Drop the SAMP schema

-- The SAMP schema may only be deleted fromthe database
-- if no objects are defined in the SAMP schema.

DROP SCHEMA SAMP RESTRI CT

DROP SYNONYM statement

Drops the specified synonym from a table or view.

Syntax

DROP SYNONYM synonym Nanme

DROP TABLE statement

DROP TABLE removes the specified table.
Syntax

44

Derby Reference Manual
DROP TABLE t abl e- Nanme

Statement dependency system

Triggers, constraints (primary, unique, check and references from the table being
dropped) and indexes on the table are silently dropped. The existence of an open cursor
that references table being dropped cause the DROP TABLE statement to generate an
error, and the table is not dropped.

Dropping a table invalidates statements that depend on the table. (Invalidating a
statement causes it to be recompiled upon the next execution. See Interaction with the
dependency system.)

DROP TRIGGER statement
DROP TRIGGER removes the specified trigger.
Syntax

DROP TRI GGER Tri gger Name

DROP TRI GGER TRI GL
Statement dependency system

When a table is dropped, all triggers on that table are automatically dropped. (You don't
have to drop a table's triggers before dropping the table.)

DROP VIEW statement
Drops the specified view.

Syntax
DROP VI EW vi ew Nane

DROP VI EW Anl denti fi er
Statement dependency system

Any statements referencing the view are invalidated on a DROP VIEW statement. DROP
VIEW is disallowed if there are any views or open cursors dependent on the view. The
view must be dropped before any objects that it is dependent on can be dropped.

GRANT statement

Use the GRANT statement to give permissions to a specific user or all users to perform
actions on database objects.

The following types of permissions can be granted:
« Delete data from a specific table.
« Insert data into a specific table.
« Create a foreign key reference to the named table or to a subset of columns from a
table.
» Select data from a table, view, or a subset of columns in a table.
« Create a trigger on a table.
« Update data in a table or in a subset of columns in a table.
* Run a specified function or procedure.

Before you issue a GRANT statement, check that the
der by. dat abase. sql Aut hori zati on property is setto t r ue. The
der by. dat abase. sql Aut hori zat i on property enables the SQL Authorization mode.

45

Derby Reference Manual

You can grant privileges to database objects that you are authorized to grant. See the
CREATE statement for the database object that you want to grant privileges on for more
information.

The syntax that you use for the GRANT statement depends on whether you are granting
privileges to a table or to a routine.

Syntax for tables

GRANT privilege-type ON [TABLE] { table-Nane | view Nanme } TO grantees

Syntax for routines

GRANT EXECUTE ON { FUNCTI ON | PROCEDURE } routine-designator TO grantees
privilege-type

{

ALL PRI VI LEGES |

DELETE |

| NSERT |

REFERENCES [col um list] |
SELECT [colum list] |

TRI GGER |
UPDATE [colum list}
}
Use the DELETE privilege type to grant permission to delete rows from the specified
table.

Use the INSERT privilege type to grant permission to insert rows into the specified table.

Use the REFERENCES privilege type to grant permission to create a foreign key
reference to the specified table. If a column list is specified with the REFERENCES
privilege, the permission is valid on only the foreign key reference to the specified
columns.

Use the SELECT privilege type to grant permission to perform SELECT statements on

a table or view. If a column list is specified with the SELECT privilege, the permission is
valid on only those columns. If no column list is specified, then the privilege is valid on all
of the columns in the table.

Use the TRIGGER privilege type to grant permission to create a trigger on the specified
table.

Use the UPDATE privilege type to grant permission to use the UPDATE statement on the
specified table. If a column list is specified, the permission applies only to the specified
columns. To update a row using a statement that includes a WHERE clause, you must
have SELECT permission on the columns in the row that you want to update.

grantees

{ authorization ID| PUBLIC} [,{ authorization ID| PUBLIC}] *

You can grant privileges for specific users or for all users. Use the keyword PUBLIC

to specify all users. When PUBLIC is specified, the privileges affect all current and

future users. The privileges granted to PUBLIC and to individual users are independent
privileges. For example, a SELECT privilege on table t is granted to both PUBLIC and to
the authorization ID har ry. The SELECT privilege is later revoked from the authorization
ID har ry, but Harry can access the table t through the PUBLIC privilege.

routine-designator

{

46

Derby Reference Manual
functi on-name | procedure-nane

}

Examples
To grant the SELECT privilege on table t to the authorization IDs mar i a and harry, use
the following syntax:

GRANT SELECT ON TABLE t TO nari a, harry

To grant the UPDATE and TRIGGER privileges on table t to the authorization IDs ani t a
and zhi , use the following syntax:

GRANT UPDATE, TRIGGER ON TABLE t TO anita, zhi
To grant the SELECT privilege on table s.v to all users, use the following syntax:

GRANT SELECT ON TABLE s.v to PUBLIC

To grant the EXECUTE privilege on procedure p to the authorization ID geor ge, use the
following syntax:

GRANT EXECUTE ON PROCEDURE p TO george

INSERT statement

An INSERT statement creates a row or rows and stores them in the named table. The
number of values assigned in an INSERT statement must be the same as the number of
specified or implied columns.

Syntax
I NSERT | NTO t abl e- Nane
[(Sinple-colum-Name [, Sinple-colum-Nanme]*)]
Query

Query can be:
« a SelectExpression
e a VALUES list
» a multiple-row VALUES expression

Single-row and multiple-row lists can include the keyword DEFAULT. Specifying
DEFAULT for a column inserts the column's default value into the column. Another
way to insert the default value into the column is to omit the column from the column
list and only insert values into other columns in the table. For more information see
VALUES Expression.

« UNION expressions

For more information about Query, see Query.

I NSERT | NTO COUNTRI ES
VALUES (' Taiwan', 'TW, 'Asia')

-- Insert a new department into the DEPARTMENT tabl e,
-- but do not assign a nanager to the new departnent
I NSERT | NTO DEPARTMVENT (DEPTNO, DEPTNAME, ADNMRDEPT)
VALUES (' E31', 'ARCH TECTURE , 'EO1')

-- Insert two new departnments using one statenent

-- into the DEPARTMENT table as in the previous exanple,
-- but do not assign a manager to the new departnent.
I NSERT | NTO DEPARTMVENT (DEPTNO, DEPTNAME, ADNMRDEPT)
VALUES ('B11', 'PURCHASING, 'BO01'),

(' E41', ' DATABASE ADM NI STRATI ON', 'EO1')

-- Create a tenporary table MA_EMP_ACT with the

-- same colums as the EMP_ACT table.

a7

Derby Reference Manual

-- Load MA EMP_ACT with the rows fromthe EMP_ACT
-- table with a project nunber (PRQINO

-- starting with the letters 'M'.

CREATE TABLE MA EMP_ACT

(
EMPNO CHAR(6) NOT NULL,
PROJINO CHAR(6) NOT NULL,
ACTNO SMALLI NT NOT NULL,
EMPTI ME DEC(5, 2),
EMSTDATE DATE,
EVMENDATE DATE

)i

I NSERT | NTO MA_EMP_ACT
SELECT * FROM EMP_ACT
WHERE SUBSTR(PRQINO, 1, 2) = 'MA';
-- Insert the DEFAULT val ue for the LOCATION col um
| NSERT | NTO DEPARTINENT
VALUES (' E31', 'ARCH TECTURE , '00390', 'EO1', DEFAULT)

Statement dependency system

The INSERT statement depends on the table being inserted into, all of the conglomerates
(units of storage such as heaps or indexes) for that table, and any other table named in
the statement. Any statement that creates or drops an index or a constraint for the target
table of a prepared INSERT statement invalidates the prepared INSERT statement.

LOCK TABLE statement

The LOCK TABLE statement allows you to explicitly acquire a shared or exclusive table
lock on the specified table. The table lock lasts until the end of the current transaction.

To lock a table, you must either be the database owner or the table owner.

Explicitly locking a table is useful to:
» Avoid the overhead of multiple row locks on a table (in other words, user-initiated
lock escalation)
» Avoid deadlocks

You cannot lock system tables with this statement.

Syntax

LOCK TABLE tabl e-Nanme IN { SHARE | EXCLUSI VE } MODE

After a table is locked in either mode, a transaction does not acquire any subsequent
row-level locks on a table. For example, if a transaction locks the entire Fl i ght s table in
share mode in order to read data, a particular statement might need to lock a particular
row in exclusive mode in order to update the row. However, the previous table-level lock
on the Fl i ght s table forces the exclusive lock to be table-level as well.

If the specified lock cannot be acquired because another connection already holds a lock
on the table, a statement-level exception is raised (SQLState X0X02) after the deadlock
timeout period.

Examples
To lock the entire Fl i ght s table in share mode to avoid a large number of row locks,
use the following statement:

LOCK TABLE Flights I N SHARE MODE;
SELECT *

FROM Fl i ght s

WHERE orig_airport > 'QOO ;

48

Derby Reference Manual

You have a transaction with multiple UPDATE statements. Since each of the individual
statements acquires only a few row-level locks, the transaction will not automatically
upgrade the locks to a table-level lock. However, collectively the UPDATE statements
acquire and release a large number of locks, which might result in deadlocks. For this
type of transaction, you can acquire an exclusive table-level lock at the beginning of the
transaction. For example:

LOCK TABLE Fli ght Avail ability I N EXCLUSI VE MODE;

UPDATE Fl i ght Avai l ability

SET econony_seats_taken = (econony_seats_taken + 2)

WHERE flight_id = 'AA1265' AND flight_date = DATE(' 2004-03-31");

UPDATE Fl i ght Avai l ability

SET econony_seats_taken = (econony_seats_taken + 2)

WHERE flight_id = 'AA1265" AND flight_date = DATE(' 2004- 04-11");
UPDATE Fl i ght Avai l ability

SET econony_seats_taken = (econony_seats_taken + 2)

WHERE flight_id = 'AA1265' AND flight_date = DATE(' 2004- 04-12");
UPDATE Fl i ght Avai l ability

SET econony_seats_taken = (econony_seats_taken + 2)

WHERE flight_id = 'AA1265' AND flight_date = DATE(' 2004- 04-15");

If a transaction needs to look at a table before updating the table, acquire an exclusive
lock before selecting to avoid deadlocks. For example:

LOCK TABLE Maps | N EXCLUSI VE MODE;
SELECT MAX(map_id) + 1 FROM Maps;
-- INSERT I NTO Maps .

RENAME statements
Use the Rename statements with indexes, columns, and tables.
RENAME COLUMN statement
Use the RENAME COLUMN statement to rename a column in a table.

The RENAME COLUMN statement allows you to rename an existing column in an
existing table in any schema (except the schema SYS).

To rename a column, you must either be the database owner or the table owner.

Other types of table alterations are possible; see ALTER TABLE statement for more
information.

Syntax

RENAME COLUMWN t abl e- Name. si npl e- Col umm- Nanme TO si npl e- Col umrm- Nane

Examples
To rename the manager column in table employee to supervisor, use the following
syntax:

RENAME COLUMN EMPLOYEE. MANAGER TO SUPERVI SOR

You can combine ALTER TABLE and RENAME COLUMN to modify a column's data
type. To change column c1 of table t to the new data type NEWTYPE:

ALTER TABLE t ADD COLUMN c1_newtype NEWYPE
UPDATE t SET cl_newtype = cl

ALTER TABLE t DROP CCOLUWN c1

RENAME COLUWN t.cl _newtype TO cl

49

Derby Reference Manual

Usage notes

Note: If there is a view, trigger, check constraint, or foreign key constraint that
references the column, attempts to rename it will generate an error.

Note: The RENAME COLUMN statement is not allowed if there are any open cursors
that reference the column that is being altered.

Note: If there is an index defined on the column, the column can still be renamed; the

index is automatically updated to refer to the column by its new name
RENAME INDEX statement

This statement allows you to rename an index in the current schema. Users cannot
rename indexes in the SYS schema.

Syntax
RENAME | NDEX i ndex- Nane TO new- i ndex- Name

RENAME | NDEX DESTI NDEX TO ARRI VALI NDEX
Statement dependency system

RENAME INDEX is not allowed if there are any open cursors that reference the index
being renamed.

RENAME TABLE statement

RENAME TABLE allows you to rename an existing table in any schema (except the
schema SYS).

To rename a table, you must either be the database owner or the table owner.

Syntax

RENAME TABLE t abl e- Name TO new Tabl e- Nane

If there is a view or foreign key that references the table, attempts to rename it will
generate an error. In addition, if there are any check constraints or triggers on the table,
attempts to rename it will also generate an error.

RENAMVE TABLE SAMP. EMP_ACT TO EMPLOYEE ACT

Also see ALTER TABLE statement for more information.
Statement dependency system

If there is an index defined on the table, the table can be renamed.

The RENAME TABLE statement is not allowed if there are any open cursors that
reference the table that is being altered.

REVOKE statement

Use the REVOKE statement to remove permissions from a specific user or from all users
to perform actions on database objects.

The following types of permissions can be revoked:
» Delete data from a specific table.
« Insert data into a specific table.
« Create a foreign key reference to the named table or to a subset of columns from a
table.
» Select data from a table, view, or a subset of columns in a table.
« Create a trigger on a table.
« Update data in a table or in a subset of columns in a table.
* Run a specified routine (function or procedure).

50

Derby Reference Manual

Before you issue a REVOKE statement, check that the
der by. dat abase. sql Aut hori zat i on property is setto t r ue. The
der by. dat abase. sql Aut hori zat i on property enables the SQL Authorization mode.

You can revoke privileges from an object if you are the owner of the object or the
database owner.

The syntax that you use for the REVOKE statement depends on whether you are
revoking privileges to a table or to a routine.

Syntax for tables

REVOKE privilege-type ON[TABLE] { table-Nane | view Nane } FROM
grant ees

Revoking a privilege without specifying a column list revokes the privilege for all of the
columns in the table.

Syntax for routines

REVOKE EXECUTE ON { FUNCTI ON | PROCEDURE } routine-designator FROM
grant ees RESTRI CT

You must use the RESTRICT clause on REVOKE statements for routines. The
RESTRICT clause specifies that the EXECUTE privilege cannot be revoked if the
specified routine is used in a view, trigger, or constraint, and the privilege is being
revoked from the owner of the view, trigger, or constraint.

privilege-type

{
ALL PRI VI LEGES |
DELETE |
| NSERT |
REFERENCES [col um list] |
SELECT [colum list] |
TRI GGER |
UPDATE [colum |ist}

}

Use the ALL PRIVILEGES privilege type to revoke all of the permissions from the user for
the specified table.

Use the DELETE privilege type to revoke permission to delete rows from the specified
table.

Use the INSERT privilege type to revoke permission to insert rows into the specified
table.

Use the REFERENCES privilege type to revoke permission to create a foreign key
reference to the specified table. If a column list is specified with the REFERENCES
privilege, the permission is revoked on only the foreign key reference to the specified
columns.

Use the SELECT privilege type to revoke permission to perform SELECT statements on
a table or view. If a column list is specified with the SELECT privilege, the permission is
revoked on only those columns. If no column list is specified, then the privilege is valid on
all of the columns in the table.

Use the TRIGGER privilege type to revoke permission to create a trigger on the specified
table.

51

Derby Reference Manual

Use the UPDATE privilege type to revoke permission to use the UPDATE statement on
the specified table. If a column list is specified, the permission is revoked only on the
specified columns.

grantees

{ authorization ID| PUBLIC} [,{ authorization ID| PUBLIC}] *

You can revoke the privileges from specific users or from all users. Use the keyword
PUBLIC to specify all users. The privileges revoked from PUBLIC and from individual
users are independent privileges. For example, a SELECT privilege on table t is granted
to both PUBLIC and to the authorization ID har ry. The SELECT privilege is later
revoked from the authorization ID har r y, but the authorization ID har ry can access the
table t through the PUBLIC privilege.

Restriction: You cannot revoke the privileges of the owner of an object.

routine-designator

qual ified-name [signature]

}
Cascading object dependencies

For views, triggers, and constraints, if the privilege on which the object depends on is
revoked, the object is automatically dropped. Derby does not try to determine if you
have other privileges that can replace the privileges that are being revoked. For more
information, see "SQL standard authorization" in the Derby Developer's Guide.

Limitations
The following limitations apply to the REVOKE statement:

Table-level privileges
All of the table-level privilege types for a specified grantee and table ID are stored
in one row in the SYSTABLEPERMS system table. For example, when user 2 is
granted the SELECT and DELETE privileges on table user 1. t 1, a row is added to
the SYSTABLEPERMS table. The GRANTEE field contains user 2 and the TABLEID
contains user 1.t 1. The SELECTPRIV and DELETEPRIV fields are setto Y. The
remaining privilege type fields are set to N.

When a grantee creates an object that relies on one of the privilege types, the
Derby engine tracks the dependency of the object on the specific row in the
SYSTABLEPERMS table. For example, user 2 creates the view v1 by using the
statement SELECT * FROM user 1.t 1, the dependency manager tracks the
dependency of view v1 on the row in SYSTABLEPERMS for GRANTEE(user 2),
TABLEID(user 1. t 1). The dependency manager knows only that the view is
dependent on a privilege type in that specific row, but does not track exactly which
privilege type the view is dependent on.

When a REVOKE statement for a table-level privilege is issued for a grantee and
table ID, all of the objects that are dependent on the grantee and table ID are
dropped. For example, if user 1 revokes the DELETE privilege on table t 1 from
user 2, the row in SYSTABLEPERMS for GRANTEE(user 2), TABLEID(user 1.t 1)
is modified by the REVOKE statement. The dependency manager sends a revoke
invalidation message to the view user 2. v1 and the view is dropped even though
the view is not dependent on the DELETE privilege for GRANTEE(user 2),
TABLEID(user 1.t 1).

Column-level privileges

52

Derby Reference Manual
Only one type of privilege for a specified grantee and table ID are stored in one
row in the SYSCOLPERMS system table. For example, when user 2 is granted the
SELECT privilege on table user 1. t 1 for columns c12 and c13, a row is added to
the SYSCOLPERMS. The GRANTEE field contains user 2, the TABLEID contains
user 1.t 1, the TYPE field contains S, and the COLUMNS field contains c12, c13.

When a grantee creates an object that relies on the privilege type and the subset
of columns in a table ID, the Derby engine tracks the dependency of the object on
the specific row in the SYSCOLPERMS table. For example, user 2 creates the
view v1 by using the statement SELECT c11 FROM user 1.t 1, the dependency
manager tracks the dependency of view v1 on the row in SYSCOLPERMS for
GRANTEE(user 2), TABLEID(user 1. t 1), TYPE(S). The dependency manager
knows that the view is dependent on the SELECT privilege type, but does not track
exactly which columns the view is dependent on.

When a REVOKE statement for a column-level privilege is issued for a grantee,
table ID, and type, all of the objects that are dependent on the grantee, table ID,
and type are dropped. For example, if user 1 revokes the SELECT privilege on
column c12 ontable user 1. t 1 from user 2, the row in SYSCOLPERMS for
GRANTEE(user 2), TABLEID(user 1. t 1), TYPE(S) is modified by the REVOKE
statement. The dependency manager sends a revoke invalidation message to the
view user 2. v1 and the view is dropped even though the view is not dependent on
the column c12 for GRANTEE(user 2), TABLEID(user 1. t 1), TYPE(S).

Revoke examples
To revoke the SELECT privilege on table t from the authorization IDs mari a and harry,
use the following syntax:

REVOKE SELECT ON TABLE t FROM nari a, harry

To revoke the UPDATE and TRIGGER privileges on table t from the authorization IDs
ani t a and zhi , use the following syntax:

REVOKE UPDATE, TRI GGER ON TABLE t FROM ani t a, zhi

To revoke the SELECT privilege on table s. v from all users, use the following syntax:

REVOKE SELECT ON TABLE s.v FROM PUBLIC

To revoke the UPDATE privilege on columns c1 and c2 of table s. v from all users, use
the following syntax:

REVOKE UPDATE (cl1,c2) ON TABLE s.v FROM PUBLIC

To revoke the EXECUTE privilege on procedure p from the authorization ID geor ge, use
the following syntax:

REVOKE EXECUTE ON PROCEDURE p FROM geor ge RESTRI CT

SET statements
Use the Set statements with schemas and to set the current isolation level.
SET ISOLATION statement

The SET ISOLATION statement allows a user to change the isolation level for the user's
connection. Valid levels are SERIALIZABLE, REPEATABLE READ, READ COMMITTED,
and READ UNCOMMITTED.

Issuing this statement always commits the current transaction. The JDBC
java.sgl.Connection.setTransactionlsolation method behaves almost identically to this

53

Derby Reference Manual

command, with one exception: if you are using the embedded driver, and if the call to
java.sgl.Connection.setTransactionlsolation does not actually change the isolation level
(that is, if it sets the isolation level to its current value), the current transaction is not
committed.

For information about isolation levels, see "Locking, concurrency,
and isolation" in the Derby Developer's Guide. For information about
the JDBC java.sql.Connection.setTransactionlsolation method, see
java.sgl.Connection.setTransactionlsolation method.

Syntax

SET [CURRENT | ISOLATION [=]

UR | DIRTY READ | READ UNCOWM TTED

CS | READ COW TTED | CURSCR STABI LI TY
RS |

RR | REPEATABLE READ | SERI ALl ZABLE
RESET

}

set isolation serializable;
SET SCHEMA statement

The SET SCHEMA statement sets the default schema for a connection's session to the
designated schema. The default schema is used as the target schema for all statements
issued from the connection that do not explicitly specify a schema name.

The target schema must exist for the SET SCHEMA statement to succeed. If the schema
doesn't exist an error is returned. See CREATE SCHEMA statement.

The SET SCHEMA statement is not transactional: If the SET SCHEMA statement is part
of a transaction that is rolled back, the schema change remains in effect.

Syntax

SET [CURRENT] SCHEMA [=]
{ schemaNane|
USER | ? | '<string-constant> } | SET CURRENT SQLID [=]

schemaNane| USER | ? | '<string-constant>' }

schemaName is an identifier with a maximum length of 128. It is case insensitive unless
enclosed in double quotes. (For example, SYS is equivalent to sYs, SYs, sys, etcetera.)

USER is the current user. If no current user is defined, the current schema defaults the
APP schema. (If a user name was specified upon connection, the user's name is the
default schema for the connection, if a schema with that name exists.)

? is a dynamic parameter specification that can be used in prepared statements. The
SET SCHEMA statement can be prepared once and then executed with different schema
values. The schema values are treated as string constants so they are case sensitive.
For example, to designate the APP schema, use the string "APP" rather than "app".

-- the following are all equivalent and will work
-- assum ng a schema cal |l ed HOTEL

SET SCHEMVA HOTEL

SET SCHEMA hot el

SET CURRENT SCHEMA hot el

SET CURRENT SQLI D hot el

SET SCHEMA = hot el

SET CURRENT SCHEMA = hot el

SET CURRENT SQLI D = hot el

SET SCHEMA "HOTEL" -- quoted identifier

54

Derby Reference Manual

SET SCHEMA ' HOTEL' -- quoted string--This exanpl e produces an error
because

--lower case hotel won't be found

SET SCHEMA = ' hotel '

--This exanpl e produces an error because SQ.ID is not

--al l oned without CURRENT

SET SQ.I D hot el

-- This sets the schema to the current user id

SET CURRENT SCHEMA USER

/1 Here's an exanple of using set schema in an Java program
Pr epar edSt at ement ps = conn. Prepar eSt at enent ("set schena ?");
ps.setString(1,"HOTEL");

ps. execut eUpdat e() ;

... do sonme work

ps.setString(1,"APP");

ps. execut eUpdat e() ;

ps.setString(l,"app"); //error - string is case sensitive
/1 no app will be found
ps.setNull (1, Types.VARCHAR); //error - null is not allowed

SELECT statement
Syntax

Query

[ORDER BY cl ause]

[FOR UPDATE cl ause]
W TH {RR| RS| CS| UR}

A SELECT statement consists of a query with an optional ORDER BY clause and an
optional FOR UPDATE clause. The SELECT statement is so named because the typical
first word of the query construct is SELECT. (Query includes the VALUES expression
and UNION, INTERSECT, and EXCEPT expressions as well as SELECT expressions).

The ORDER BY clause guarantees the ordering of the ResultSet. The FOR UPDATE
clause makes the result set's cursor updatable. The SELECT statement supports the
FOR FETCH ONLY clause. The FOR FETCH ONLY clause is synonymous with the FOR
READ ONLY clause.

You can set the isolation level in a SELECT statement using the WITH {RR|RS|CS|UR}
syntax.

Example

-- lists the names of the expression
- - SAL+BONUS+COW as TOTAL_PAY and
-- orders by the new name TOTAL_PAY
SELECT FI RSTNVE, SALARY+BONUS+COWVM AS TOTAL_PAY
FROM EMPLOYEE
ORDER BY TOTAL_PAY
-- creating an updatable cursor with a FOR UPDATE cl ause
-- to update the start date (PRSTDATE) and the end date (PRENDATE)
-- colums in the PROJECT table
SELECT PROINO, PRSTDATE, PRENDATE
FROM PRQJECT
FOR UPDATE OF PRSTDATE, PRENDATE
-- set the isolation level to RR for this statenent only
SELECT *
FROM Fl i ght's
WHERE flight_i d BETWEEN ' AA1111' AND ' AA1112'
W TH RR

A SELECT statement returns a ResultSet. A cursor is a pointer to a specific row in
ResultSet. In Java applications, all ResultSets have an underlying associated SQL
cursor, often referred to as the result set's cursor. The cursor can be updatable,

55

Derby Reference Manual

that is, you can update or delete rows as you step through the ResultSet if the
SELECT statement that generated it and its underlying query meet cursor updatability
requirements, as detailed below. The FOR UPDATE clause can be used to ensure a
compilation check that the SELECT statement meets the requiremments of a updatable
cursors, or to limit the columns that can be updated.

Note: The ORDER BY clause allows you to order the results of the SELECT. Without
the ORDER BY clause, the results are returned in random order.

Requirements for updatable cursors and updatable ResultSets
Only simple, single-table SELECT cursors can be updatable. The SELECT statement
for updatable ResultSets has the same syntax as the SELECT statement for updatable
cursors. To generate updatable cursors:
» The SELECT statement must not include an ORDER BY clause.
« The underlying Query must be a SelectExpression.
» The SelectExpression in the underlying Query must not include:
e DISTINCT
* Aggregates
* GROUP BY clause
* HAVING clause
* ORDER BY clause
* The FROM clause in the underlying Query must not have:
» more than one table in its FROM clause
 anything other than one table name
¢ SelectExpressions
« subqueries

Note: Cursors are read-only by default. To produce an updatable cursor besides
meeting the requirements listed above, the concurrency mode for the ResultSet must be
Resul t Set . CONCUR_UPDATABLE or the SELECT statement must have FOR UPDATE
in the FOR clause (see FOR UPDATE clause).

There is no SQL language statement to assign a hame to a cursor. Instead, one can use
the JDBC API to assign names to cursors or retrieve system-generated names. For more
information, see Naming or accessing the name of a cursor in the Derby Developer's
Guide.

Statement dependency system

The SELECT depends on all the tables and views named in the query and the
conglomerates (units of storage such as heaps and indexes) chosen for access paths
on those tables. CREATE INDEX does not invalidate a prepared SELECT statement.
A DROP INDEX statement invalidates a prepared SELECT statement if the index is
an access path in the statement. If the SELECT includes views, it also depends on the
dictionary objects on which the view itself depends (see CREATE VIEW statement).

Any prepared UPDATE WHERE CURRENT or DELETE WHERE CURRENT statement
against a cursor of a SELECT depends on the SELECT. Removing a SELECT through
a java.sqgl.Statement.close request invalidates the UPDATE WHERE CURRENT or
DELETE WHERE CURRENT.

The SELECT depends on all aliases used in the query. Dropping an alias invalidates a
prepared SELECT statement if the statement uses the alias.

UPDATE statement
Syntax

UPDATE t abl e- Nane
SET col um- Nane = Val ue

56

Derby Reference Manual

[, colum-Nane = Value}]*
[WHERE cl ause] |
UPDATE t abl e- Nane
SET col um- Nane
[, col um- Nane
VWHERE CURRENT OF

Val ue
Val ue]*

}
where Value is defined as follows:

Expression | DEFAULT

The first syntactical form, called a searched update, updates the value of one or more
columns for all rows of the table for which the WHERE clause evaluates to TRUE.

The second syntactical form, called a positioned update, updates one or more columns
on the current row of an open, updatable cursor. If columns were specified in the FOR
UPDATE clause of the SELECT statement used to generate the cursor, only those
columns can be updated. If no columns were specified or the select statement did not
include a FOR UPDATE clause, all columns may be updated.

Specifying DEFAULT for the update value sets the value of the column to the default
defined for that table.

Example

-- Al the enpl oyees except the manager of
-- departnent (WORKDEPT) 'E21' have been tenporarily reassigned.
-- Indicate this by changing their job (JOB) to NULL and their pay
-- (SALARY, BONUS, COMM values to zero in the EMPLOYEE tabl e.
UPDATE EMPLOYEE

SET JOB=NULL, SALARY=0, BONUS=0, COWM-0

VWHERE WORKDEPT = ' E21' AND JOB <> ' MANAGER

-- PROMOTE the job (JOB) of enployees w thout a specific job title to
MANAGER

UPDATE EMPLOYEE

SET JOB = ' MANAGER

WHERE JOB | S NULL;
/'l Increase the project staffing (PRSTAFF) by 1.5 for all projects

st nt . execut eUpdat e(" UPDATE PROJECT SET PRSTAFF = "

"PRSTAFF + 1.5" +

"WHERE CURRENT OF" + Resul t Set. get CursorNane());

-- Change the job (JOB) of enployee nunber (EMPNO) '000290' in the
EMPLOYEE t abl e
-- to its DEFAULT val ue which is NULL
UPDATE EMPLOYEE
SET JOB = DEFAULT
WHERE EMPNO = ' 000290’

Statement dependency system

A searched update statement depends on the table being updated, all of its
conglomerates (units of storage such as heaps or indexes), all of its constraints, and
any other table named in the WHERE clause or SET expressions. A CREATE or DROP
INDEX statement or an ALTER TABLE statement for the target table of a prepared
searched update statement invalidates the prepared searched update statement.

The positioned update statement depends on the cursor and any tables the cursor
references. You can compile a positioned update even if the cursor has not been opened
yet. However, removing the open cursor with the JDBC close method invalidates the
positioned update.

57

Derby Reference Manual

A CREATE or DROP INDEX statement or an ALTER TABLE statement for the target
table of a prepared positioned update invalidates the prepared positioned update
statement.

Dropping an alias invalidates a prepared update statement if the latter statement uses the
alias.

Dropping or adding triggers on the target table of the update invalidates the update
statement.

SQL clauses

CONSTRAINT clause

A CONSTRAINT clause is an optional part of a CREATE TABLE statement or ALTER
TABLE statement. A constraint is a rule