Apache Derby }

Derby Developer's Guide

Version 10.3

Derby Document build:
May 2, 2008, 6:05:37 PM (PDT)

Version 10.3 Derby Developer's Guide

Contents

L0)Y/ 1 T | 1 1 SRR 5
o= 1= T PR 6
N Lo U A TS0 U T =SOSR 10
PUrpose Of this QUITE. ... 10

N E o 1= o o =T PP 10

How this guide iS Organized............covvviiiiiiiiiiiee e 10
(6T] =T =2 ST PRI 11
Preparing to UPGrade..... .ottt 11
Upgrading @ database.........ueeeiiiiieeiiiiiiieee e 11

Soft upgrade MItatioNS. e e e e e e 12
JDBC applications and Derby DaSiCS......ccuuuiiiiiiiiiiiiiiie e 13
Application developmMeENt OVEIVIEW..........ciiiiiiiiiieiiiie e 13
Derby embedded DaSICS......cuiiiiiiii e 13

DErbY JDBC AlIVET....cciiiiiiiiie ettt s e 13

Derby JDBC database connection URL..........cccoccuviiiiiiiiiiieiniiiiie e 14

DEIDY SYSEIM...ciiiiiiiiiiei it 14

A Derby dat@base.ccooiiuiiiiiiiiiiiie e 18
Connecting t0 dat@basesS.ccoiiiuiiiiiiiiii e 21

Working with the database connection URL attributes............cccoooiiiiiniennns 24

F N =T AT B = 11 1 o o T PP PPPPTOTRPRPN 28
The installation dir€CTOTY......iii i 28

Batch files and Shell SCrPLS.......coii i 28

DErbY BN JVIMS ..ottt 28
Derby libraries and Classpath.........c.ccoooiiiiiiiiii e 29
UNIX-SPECITIC 1SS UBS . .eiiiiiiieeei i ittt ettt e e e e e e e s e s et ae e e e e aeeeeeeeannnnne 29
Configuring file deSCHPLOrS.uuueeiiiiie e 29

o]] €7 PSS 29

Derby embedded DaSICS. ..ot 30
Embedded Derby JDBC AriVErcooiiiiiiieiiiiiiie ettt 30
Embedded Derby JDBC database connection URL.......cccccccevveeiiiiiiiiiiiiieenneenn. 30
Getting a Nested CONNECTION.......oiuuiiiiii e 30
Starting Derby as an embedded database........cccccceevvvviiiiiiiiiiiei 31
Deploying Derby appliCatiONS......ccooiiiiiiiiiiie e 32
DEPIOYMENT ISSUES...ciiiiiiiiiie ettt e et e e e st e e e e s sbbeeeee e e 32
Embedded deployment application OVEIVIEW...........c.covuuueieiiiiiiiieiiiiiiee e 32

Deploying Derby in an embedded environment...........cccoocvviieiiiiieeenniiieee e 33

Creating Derby databases for read-only USE€.........ccccciiiiiiiiiiiie e, 34
Creating and preparing the database for read-only use.........cccccccceeeeiiiiiiiinnnns 34

Deploying the database on the read-only media..........cccoeeieeiciiiiiiiiiiiiee s 34
Transferring read-only databases to archive (jar or zip) files.........ccccooviieennnnn 34

Accessing a read-only database in a zip/jar file........cccoooieeiiii . 35

Accessing databases within a jar file using the classpath...............cccccoceine 36
Databases on read-only media and DatabaseMetaData............ccccccceveeeeiiiinnnnns 36

Loading classes from a database...........cccov i 37

Class 10adiNg OVEIVIEW...........oiiiiiiiiiiaiiiiee ettt 37

Dynamic changes to jar files or to the database jar classpath.............cccccoeoneee. 39

Derby server-side ProgrammMiNg.......c.eeeeeoiiieeeee ittt e et s s e e e s asbee e e e e nanees 40
Programming database-side JDBC proCeduUres........ccccuvviiiiieieeeeeeiiiiiiiiieeeeeeenns 40

Version 10.3 Derby Developer's Guide

Database-side JDBC procedures and nested connections.............cccccvvveeeeeeeennn. 40
Database-side JDBC procedures using non-nested connections....................... 41
Database-side JDBC procedures and SQLEXCEPLIONS.........cccevvvvveeeeeeiiiiinnnnnnen, 41
User-defined SQLEXCEPLONS.uuuiiiiiiiiieeeiie it e e e e e e e e e e sssrairerre e e e e e e e e e e 42
Programming trigger aCtiONS........ccooiiiiiiiiiiiie e e s 42
TrIQQEr ACtION OVEIVIEW......cciiiiiiiiiiiieee e e e e e s e e e e e e e e e s s areeeeeaeeeeeeanns 42
Performing referential aCtionS.............oooviiiiiiiiiiiiicee e 43
Accessing before and after rOWS...........eevvvveeiiii i 43
Examples Of trigger aCtiONS..........ueiiiiiieeiiiiiiiciiee e e e e 43
Triggers and EXCEPLIONS.uuuuiiiieieeeeie e it e e e e e e e s e s e e e e e e e e e e e s e e aanreraaeeeees 43
Controlling Derby application Behavior.........cccoocuiiiiiii e 45
The JDBC Connection and Transaction Model...........occveveeiiiiiieiiiiiiiiee i 45
100] 0] o T=T o1 o] o = T PR PR 45
QLIS T 1o o T PRSP RR 46
Result set and CUrsor MeChaNiSMS........oii i 48
Simple non-updatable result SetS............ooociiiiiiiiic e 48
Updatable reSUIL SELS.....uuuiiiiiiiee e 49
Result sets and auto-COMMIL..........ooiiiiiiiii e 53
SCrollable reSUIL SEES.........oiiiiiiiiiee e 53
HoIdable reSUIt SES.........eiiiiiiiii e e 54
Locking, concurrency, and isolation.........cccccevveveeeeii i 56
Isolation levels and CONCUITENCY...........cooccuuiiiiieiiie e 56
Configuring iSolation 1EVEIS...........ccocciiiiiiiee e 59
(oYt Qe | =T a1 =T 11 2R 59
Types and scope of locks in Derby SYStEeMS.........ccccuvviiiiiiieeeee e 59

(D= T=To | Lo Lot 2C S PSSR 62
Working with multiple connections to a single database................cccccvvvveeeeen.n. 67
Deployment options and threading and connection modes..........ccccccvveeeeeiiinnnns 67
Multi-user database ACCESS.........uuiiiiiiiiiiie it 68
Multiple connections from a single application............ccccccoeeeiiiiiiiiieieeeee e, 68
Working with multiple threads sharing a single connection.........ccccccccoeeevvinn, 68
Pitfalls of sharing a connection among threads...............cccoccveiiii i, 68
Multi-thread programming tiPS........uuueeeiiiieeeii e e e e e e 69
Example of threads sharing a statement.............ccccovieeiiee e, 70
Working with database threads in an embedded environment...........cccccceeeeennn. 70
Working with Derby SQLExceptions in an application...........ccccccvveveeeeennniiinnns 70
Information provided in SQL EXCEPLIONS......cccvvveeiiiiiiiiiiiieece e 70
Using Derby as a J2EE reSOUIrCe Manager.........ccccuurireiiieeeeeeeeiissciinrneereeeaeaeeessessnssnsnens 72
Classes that pertain t0 reSOUrCEe MaNAQEIS.....ccccuvuriirieieeeeeeiiiiirirreereeeeeeeeeesennnnns 72
Getting @ Dat@SOUICE.......occ it e et e e e e e e e s e e e e e e e e e e s e e anraeaeees 73
Shutting down or creating a database..........ccccovviiieeiei e 73
DEIDY AN SECUTITY ..ueiiiiiiiiiiie ittt e e et e e e s sttt e e e s abbe e e e e s anbbeeeeeannbeeeeesanes 75
Configuring security for your enVironmMent.........ocuvevieiiiiiiee i 76
Configuring security in a client/server environment...........cccooevvvveeiiiiieeesinnneenn. 77
Configuring security in an embedded environment............cocvveeeiiiiiieeeeniiieeeeens 77
Working with user authentiCation...........ccccveeiiiiii i 77
Enabling user authentiCation............cc.ueiiiiiiiiiie i 79
DEfINING USEIS..cii ittt e e et e e s et e e e e e neeeas 79
EXternal dir€CtOry SEIVICE.......oiuiiiiiiiiiiie et 80
BUIIt-IN DEIDY USEIS....iiiiiiiiiiiie ittt et e e s et e e e s et e e e e ennees 84
List of user authentication PropPerties........ccuuvvveviiiieie i 85
Programming applications for Derby user authentication..............ccccoeecvveeeeennnnen. 86
Users and authorization identifiers.........cccoiiiio i 86
Authorization identifiers, user authentication, and user authorization................. 87

Version 10.3 Derby Developer's Guide

DAtabas OWNETccoiiiiiiiie ittt e et e e et e e e s abbeeea e 88

User Names and SCREMES.......c.uuuiiiiiiiiiiie ettt 88
Exceptions when using authorization identifiers...........ccccccceeeeiicicciiieeeeeee, 88

USEr QUENOTIZALIONS. .. .uiiiiiiiiiiie et e e s e e e s nneeeeas 88
Setting the SQL standard authorization mode..........cccccceeeeeiiiiiiciiiiiiiececeeeeeee, 90
Read-only and full access PermiSSiONS..........ccvuvvieieieieeeiie e e e e e 93
Encrypting databases 0N diSK.......cccuuueiiiiiiiiiiiiice e 94
Requirements for Derby encryption...........ccvveeieeieeeii i 94

WOrking With €NCrYPLION........ccoeiiii e 94

Y Lo [T=To I = U 1= PUPEPUPR 99

Notes on the Derby security fEatUres.......ccccciieeiiiiiiiiiee e 99

User authentication and authorization examples........ccoccccveeeiiiiiicciiieeeeee e, 100

User authentication example in a client/server environment..............ccccvvveeeeee. 100

User authentication example in a single-user, embedded environment............ 101

Running Derby under a SEecUrity Manager..........cccccuviiriiiieeeeeeeieeccirnreeeeeeee e 103
Granting permissions t0 DerbY..........ccccuiiiiiiiiii e 103

Examples of Java 2 security policy files for embedded Derby.......................... 105
Developing tools and using Derby with an IDE...........cccuviiiiiiiiiiie e 106
Offering connection choices t0 the USer.......cccueiiiiiiiiiiii e 106

The DriverPropertylnfo ArTay.......ccuuuueieeeieeee e e e e e e 106

Using Derby With IDES.......ccccuiiiiiiiiiiee et e e e e e e 107

IDES and mMUItIPIE JVIMS........cooi et e e e 107

LT I {1 1= SRR 109
Retrieving the database connection URL.......cccccccoeoviiiiiiiiiiiiieie e 109
Supplying a parameter ONlY ONCE........ooi ittt 109
Defining an identity COIUMN........uiiiiiiiiie e 109

Using third-party t00IS. ... 109
Tricks Of the VALUES ClaUSE......coiiiiiiiiiiiiiiiiie e 110
MUIIPIE FOWS. ...ttt e e e e s e e e e e e e e e e e s s e a b e e eeaeaeeeeeeanns 110

Mapping column values to return ValUEs...........cuvveevveeeeeiiiiiiiiiieeeee e e e 110

Creating €MPLY QUEIIES.uuiiiiiieieeeeee e e ettt e e e e e e e e e s e s s e e e e e e e e e s sasnnnranaeees 110

(o Tox= 1141 o Yo [BI=T4 o) 2P PRPR ORI 111
SQL parser support for UNiCOAE........cccuiiiiiiiiiiiic et 111
Character-based collation in Derby........ccccooiiiiiiiiiiii e, 111

Other COMPONENTS. . uuiiiiiiiieee e e e e e e s e s r e e aaaaeeeeaeanns 113
MESSAQES [IDIArIES. ... 113
(DT o) VA= Ta Yo] =4 T F= o £ SUURR 115
XML data types and OPEratorS......ccccuiiiiiiiiiiiiiiieee e e e e s e et e e e e e e e e e e s e e enar e eee s 116

LI 10 L= 4=V PRSP PP 117

Derby Developer's Guide
Apache Software FoundationDerby Developer's GuideApache Derby

Derby Developer's Guide

Copyright

Apache Derby %

Copyright 2004-2008 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Related information

License

http://www.apache.org/licenses/LICENSE-2.0

Derby Developer's Guide
License

The Apache License, Version 2.0

Apache License
Version 2.0, January 2004
http://ww. apache. org/licenses/

TERMS AND CONDI TI ONS FOR USE, REPRODUCTI ON, AND DI STRI BUTI ON
1. Definitions.

"Li cense" shall nmean the terns and conditions for use
reproduction, and distribution as defined by Sections 1 through
9 of this docunent.

"Li censor" shall mean the copyright owner or entity authorized
by the copyright owner that is granting the License

"Legal Entity" shall nean the union of the acting entity and al
other entities that control, are controlled by, or are under
common control with that entity. For the purposes of this
definition, "control" neans (i) the power, direct or indirect,
to cause the direction or managenent of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%
or nmore of the outstanding shares, or (iii) beneficial ownership
of such entity.

"You" (or "Your") shall nmean an individual or Legal Entity
exerci sing perm ssions granted by this License.

"Source" formshall nean the preferred formfor naking
nodi fi cations, including but not linted to software source code
docunent ati on source, and configuration files.

"Cbject" formshall nean any formresulting from nechani ca
transformation or translation of a Source form including but
not limted to conpiled object code, generated docunentation,
and conversions to other nedia types.

"Work" shall nean the work of authorship, whether in Source or
Ooj ect form nade avail abl e under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendi x bel ow).

"Derivative Wrks" shall mean any work, whether in Source or
oject form that is based on (or derived fronm) the Wrk and
for which the editorial revisions, annotations, el aborations,
or other nodifications represent, as a whole, an original work
of authorship. For the purposes of this License, Derivative
Works shall not include works that remain separable from or
nerely link (or bind by nane) to the interfaces of, the Wrk
and Derivative Wrks thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any nodifications or
additions to that Work or Derivative Wrks thereof, that is
intentionally submtted to Licensor for inclusion in the Wrk
by the copyright owner or by an individual or Legal Entity
authorized to subnmit on behalf of the copyright owner. For the
purposes of this definition,

"submtted" means any form of electronic, verbal, or witten
comuni cation sent to the Licensor or its representatives,
including but not limted to comrunication on electronic mailing
lists, source code control systenms, and issue tracking systens

6

Derby Developer's Guide

that are nmanaged by, or on behalf of, the Licensor for the
purpose of discussing and i nproving the Work, but excl uding
communi cation that is conspicuously nmarked or otherw se
designated in witing by the copyright owner as "Not a
Contri bution.™"

"Contributor" shall nean Licensor and any individual or Legal
Entity on behal f of whom a Contribution has been recei ved by
Li censor and subsequently incorporated within the Wrk.

Grant of Copyright License. Subject to the terns and conditions
of this License, each Contributor hereby grants to You a

per petual, worldw de, non-exclusive, no-charge, royalty-free,
irrevocabl e copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform sublicense, and
distribute the Work and such Derivative Wrks in Source or

Obj ect form

Grant of Patent License. Subject to the ternms and conditions of
this License, each Contributor hereby grants to You a perpetual,
wor | dwi de, non-excl usi ve, no-charge, royalty-free, irrevocable
(except as stated in this section) patent |icense to make, have
made, use, offer to sell, sell, inport, and otherw se transfer
the Wrk, where such license applies only to those patent clains
l'i censabl e by such Contributor that are necessarily infringed by
their Contribution(s) alone or by conbination of their
Contribution(s) with the Wrk to which such Contribution(s) was
submitted. If You institute patent litigation against any entity
(including a cross-claimor counterclaimin a lawsuit) alleging
that the Work or a Contribution incorporated within the Wrk
constitutes direct or contributory patent infringenent, then any
patent |icenses granted to You under this License for that Wrk
shall terminate as of the date such litigation is filed.

Redi stri bution. You may reproduce and distribute copies of the
Work or Derivative Wrks thereof in any nedium wth or wthout
nmodi fications, and in Source or (bject form provided that You
neet the follow ng conditions:

(a) You must give any other recipients of the Work or
Derivative Wrks a copy of this License; and

(b) You nust cause any nodified files to carry promi nent notices
stating that You changed the files; and

(c) You nust retain, in the Source formof any Derivative Wrks
that You distribute, all copyright, patent, trademark, and
attribution notices fromthe Source formof the Wrk,
excl udi ng those notices that do not pertain to any part of
the Derivative Wrks; and

(d) If the Work includes a "NOTICE" text file as part of its
di stribution, then any Derivative Wrks that You distribute
nmust include a readable copy of the attribution notices
contai ned within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Wrks, in
at | east one of the follow ng places: within a NOTICE text
file distributed as part of the Derivative Wrks; within the
Source form or docunentation, if provided along with the
Derivative Wrrks; or, within a display generated by the
Derivative Wrks, if and wherever such third-party notices
normal | y appear. The contents of the NOTICE file are for
i nformati onal purposes only and do not nodify the License.
You may add Your own attribution notices within Derivative
Works that You distribute, alongside or as an addendumto
the NOTICE text fromthe Work, provided that such additional
attribution notices cannot be construed as nodifying the
Li cense.

You may add Your own copyright statenent to Your nodifications

Derby Developer's Guide

and nay provide additional or different |license terns and
conditions for use, reproduction, or distribution of Your

nodi fications, or for any such Derivative Wrks as a whol e,
provi ded Your use, reproduction, and distribution of the Work
ot herwi se conplies with the conditions stated in this License.

Submi ssi on of Contributions. Unless You explicitly state

ot herwi se, any Contribution intentionally subnmitted for
inclusion in the Wrk by You to the Licensor shall be under the
ternms and conditions of this License, w thout any additional
terns or conditions. Notwithstanding the above, nothing herein
shal | supersede or nodify the terns of any separate |icense
agreenent you may have executed with Licensor regardi ng such
Contri buti ons.

Trademarks. This License does not grant perm ssion to use the
trade names, trademarks, service marks, or product nanes of the
Li censor, except as required for reasonable and custonary use
in describing the origin of the Wrk and reproducing the content
of the NOTICE file.

Di scl ai ner of Warranty. Unless required by applicable | aw or
agreed to in witing, Licensor provides the Wrk (and each
Contri butor provides its Contributions) on an "AS | S* BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or
inmplied, including, without limtation, any warranties or
conditions of TITLE, NON- I NFRI NGEMENT, MERCHANTABI LITY, or

FI TNESS FOR A PARTI CULAR PURPCSE. You are solely responsible for
determ ni ng the appropriateness of using or redistributing the
Work and assune any risks associated with Your exercise of
permi ssi ons under this License

Limtation of Liability. In no event and under no |egal theory,
whet her in tort (including negligence), contract, or otherw se,
unl ess required by applicable | aw (such as deliberate and
grossly negligent acts) or agreed to in witing, shall any
Contributor be liable to You for danmages, including any direct,
indirect, special, incidental, or consequential danages of any
character arising as a result of this License or out of the use
or inability to use the Work (including but not limted to
danmages for |oss of goodw ||, work stoppage, conputer failure or
mal function, or any and all other conmercial danmages or | osses),
even i f such Contributor has been advi sed of the possibility of
such damages.

Accepting Warranty or Additional Liability. Wile redistributing
the Work or Derivative Wrks thereof, You may choose to offer

and charge a fee for, acceptance of support, warranty, indemity,
or other liability obligations and/or rights consistent with this
Li cense. However, in accepting such obligations, You may act only
on Your own behal f and on Your sole responsibility, not on behal f
of any other Contributor, and only if You agree to i ndemify,

def end, and hol d each Contributor harm ess for any liability
incurred by, or clains asserted agai nst, such Contributor by
reason of your accepting any such warranty or additiona
liability.

END OF TERVS AND CONDI Tl ONS

APPENDI X: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the foll ow ng
boil erpl ate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
coment syntax for the file format. W al so recommend that a
file or class nanme and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives

Derby Developer's Guide
Copyright [yyyy] [name of copyright owner]

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ |l i censes/ LI CENSE-2. 0

Unl ess required by applicable |aw or agreed to in witing, software
di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or
inmplied. See the License for the specific | anguage governing

perm ssions and |limtations under the License.

Derby Developer's Guide

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby.

Purpose of this guide

This guide explains how to use the core Derby technology and is for developers building
Derby applications.

It describes basic Derby concepts, such as how you create and access Derby databases
through JDBC procedures and how you can deploy Derby applications.

Audience

This guide is intended for software developers who already know some SQL and Java.

Derby users who are not familiar with the SQL standard or the Java programming
language will benefit from consulting books on those subjects.

How this guide is organized

This document includes the following sections.
» JDBC applications and Derby basics

Basic details for using Derby, including loading the JDBC driver, specifying a
database URL, and starting Derby.
* After installing

Explains the installation layout.
» Deploying Derby applications

An overview of different deployment scenarios, and tips for getting the details right
when deploying applications.
» Controlling Derby application behavior

JDBC, cursors, locking and isolation levels, and multiple connections.
« Using Derby as a J2EE resource manager

Information for programmers developing back-end components in a J2EE system.
» Developing tools and using Derby with an IDE

Tips for tool designers.
e SQL tips

Insiders' tricks of the trade for using SQL.
* Localizing Derby

An overview of database localization.

10

Derby Developer's Guide

Upgrades

To connect to a database created with a previous version of Derby, you must first
upgrade that database.

Upgrading involves writing changes to the system tables, so it is not possible for
databases on read-only media. The upgrade process:

* marks the database as upgraded to the current release (Version 10.3).
« allows use of new features.

See the release notes for more information on upgrading your databases to this version
of Derby.

Preparing to upgrade

Upgrading your database occurs the first time the new Derby software connects to the
old database.

Before you connect to the database using the new software:

1. Back up your database to a safe location using Derby online/offline backup
procedures.

For more information on backup, see the Derby Server and Administration Guide.

Update your CLASSPATH with the latest jar files.

3. Make sure that there are no older versions of the Derby jar files in your
CLASSPATH. You can determine if you have multiple versions of Derby in your
CLASSPATH by using the sysinfo tool.

N

To use the sysi nf o tool, execute the following command:

java org. apache. derby. t ool s. sysi nfo

The sysi nf o tool uses information found in the Derby jar files to determine the
version of any Derby jar in your CLASSPATH. Be sure that you have only one
version of the Derby jar files specified in your CLASSPATH.

Upgrading a database

To upgrade a database, you must explicitly request an upgrade the first time you connect
to the database with the new version of Derby.

Ensure that you complete the prerequisite steps before you upgrade:
» Back up your database before you upgrade.
» Ensure that only the new Derby jar files are in your CLASSPATH.

When you upgrade the database, you can perform a full upgrade or soft upgrade:

A full upgrade is a complete upgrade of the Derby database. When you perform a
full upgrade, you cannot connect to the database with an older version of Derby and
you cannot revert back to the previous version.

A soft upgrade allows you to run a newer version of Derby against an existing
database without having to fully upgrade the database. This means that you
can continue to run an older version of Derby against the database. However, if
you perform a soft upgrade, certain features will not be available to you until you
perform a full upgrade.

1. To upgrade the database, select the type of upgrade that you want to perform:

11

Derby Developer's Guide

Type of upgrade Action

Full upgrade Connect to the database using the
upgr ade=t r ue database connection URL
attribute. For example:

j dbc: der by: sanpl e; upgr ade=t r ue

Soft upgrade Connect to the database. For example:

connect 'jdbc: derby: sanpl e

In this example, sanpl e is a database
from a previous version of Derby.

Soft upgrade limitations

Soft upgrade allows you to run a newer version of Derby against an existing database
without having to fully upgrade the database. This means that you can continue to run an
older version of Derby against the database.

If you perform a soft upgrade, you will not be able to perform certain functions that are
not available in older versions of Derby. For example, the following Derby Version 10.2
features cannot be used in a database that has been soft upgraded from 10.0:

*« SYNONYMS

« Creating tables using the GENERATED BY DEFAULT option for identity columns

« Reclaiming unused space using the
SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE procedure

The following 10.2 features cannot be accessed from a database which has been soft
upgraded from 10.1:

« GRANT/REVOKE
 Online backup procedures SYSCS_UTIL.SYSCS BACKUP_DATABASE_NOWAIT
and
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT.
« The encryption or re-encryption of a database with a new phrase/key.

Other new features in Derby that do not affect database structure, such as using
timestamp arithmetic, are allowed in a soft upgraded database.

To perform a soft upgrade on a database created using an earlier version of Derby:

1. Simply connect to the database, as shown in the following example:

connect 'jdbc: derby: sanpl e’

In this example, the sample database is a Version 10.0 database.

12

Derby Developer's Guide

JDBC applications and Derby basics

This section describes the core Derby functionality. In addition, it details the most basic
Derby deployment, Derby embedded in a Java application.

Application development overview

Derby application developers use JDBC, the application programming interface that
makes it possible to access relational databases from Java programs.

The JDBC API is part of the Java™ 2 Platform, Standard Edition and is not specific to
Derby. It consists of the java.sql and javax.sql packages, which is a set of classes and
interfaces that make it possible to access databases (from a number of different vendors,
not just Derby) from a Java application.

To develop Derby applications successfully, you will need to learn JDBC. This section
does not teach you how to program with the JDBC API.

This section covers the details of application programming that are specific to Derby
applications. For example, all JDBC applications typically start their DBMS's JDBC driver
and use a connection URL to connect to a database. This chapter gives you the details
of how to start Derby's JDBC driver and how to work with Derby's connection URL to
accomplish various tasks. It also covers essential Derby concepts such as the Derby
system.

You will find reference information about the particulars of Derby's implementation of
JDBC in the Derby Reference Manual.

Derby application developers will need to learn SQL. SQL is the standard query language
used with relational databases and is not tied to a particular programming language. No
matter how a particular RDBMS has been implemented, the user can design databases
and insert, modify, and retrieve data using the standard SQL statements and well-defined
data types. SQL-92 is the version of SQL standardized by ANSI and I1SO in 1992; Derby
supports entry-level SQL-92 as well as some higher-level features. Entry-level SQL-92 is
a subset of full SQL-92 specified by ANSI and I1SO that is supported by nearly all major
DBMSs today. This chapter does not teach you SQL. You will find reference information
about the particulars of Derby's implementation of SQL in the Derby Reference Manual.

Derby implements JDBC that allows Derby to serve as a resource manager in a J2EE
compliant system.

Derby embedded basics

This section discusses the basics of the Derby database.

Derby JDBC driver

Derby consists of both the database engine and an embedded JDBC driver. Applications
use JDBC to interact with a database. Applications running on JDK 1.5 or earlier, must
load the driver in order to work with the database.

In an embedded environment, loading the driver also starts Derby.

In a Java application, you typically load the driver with the static Class.forName method
or with the j dbc. dri ver s system property. For example:

13

Derby Developer's Guide

Cl ass. for Nane(" or g. apache. der by. j dbc. EnbeddedDri ver");

For detailed information about loading the Derby JDBC driver, see "java.sql.Driver
interface" in the Derby Reference Manual.

If your application runs on JDK 1.6 or higher, then you do not need to explicitly load the
EmbeddedDriver. In that environment, the driver loads automatically.

Derby JDBC database connection URL

A Java application using the JDBC API establishes a connection to a database by
obtaining a Connection object.

The standard way to obtain a Connect i on object is to call the method

Dri ver Manager . get Connect i on, which takes a String containing a connection URL
(uniform resource locator). A JDBC connection URL provides a way of identifying a
database. It also allows you to perform a number of high-level tasks, such as creating a
database or shutting down the system.

An application in an embedded environment uses a different connection URL from that
used by applications using the Derby Network Server in a client/server environment. See
the Derby Server and Administration Guide for more information on the Network Server.

However, all versions of the connection URL (which you can use for tasks besides
connecting to a database) have common features:

« you can specify the name of the database you want to connect to

« you can specify a number of attributes and values that allow you to accomplish
tasks. For more information about what you can specify with the Derby connection
URL, see "Examples". For detailed reference about attributes and values, as well as
syntax of the database connection URL, see the "Derby Database Connection URL
Syntax" in the Derby Reference Manual.

An example use of the connection URL:

Connecti on conn=Dri ver Manager . get Connecti on("j dbc: der by: sanpl e") ;

Derby system
A Derby database exists within a system.

A Derby system is a single instance of the Derby database engine and the environment
in which it runs. It consists of a system directory, zero or more databases, and a
system-wide configuration. The system directory contains any persistent system-wide
configuration parameters, or properties, specific to that system in a properties file called
derby.properties. This file is not automatically created; you must create it yourself.

The Derby system is not persistent; you must specify the location of the system directory
at every startup.

However, the Derby system and the system directory is an essential part of a running
database or databases. Understanding the Derby system is essential to successful
development and deployment of Derby applications. Derby databases live in a system,
which includes system-wide properties, an error log, and one or more databases.

Figure 1. Derby databases live in a system, which includes system-wide properties,
an error log, and one or more databases.

14

Derby Developer's Guide

B

* derby.system.home

(value of this system variable
Darty tells Derby the name
of your system directory)

|

Accounting DB Sales DB |

derby.log

The system directory can also contain an error log file called derby.log (see The error
log).

Each database within that system is contained in a subdirectory, which has the same
name as the database (see A Derby database).

In addition, if you connect to a database outside the current system, it automatically
becomes part of the current system.

One Derby instance for each Java Virtual Machine

You could potentially have two instances of a Derby system (JVM) running on the same
machine at the same time. Each instance must run in a different JVM. Two separate
instances of Derby must not access the same database.

For example, in an embedded environment, an application that accesses Derby
databases starts up the local JDBC driver, which starts up an instance of Derby. If you
start another application, such as ij, and connect to the same database, severe database
corruption can result. See Double-booting system behavior.

Booting databases

The default configuration for Derby is to boot (or start) a database when an application
first makes a connection to it. When Derby boots a database, it checks to see if recovery
needs to be run on the database, so in some unusual cases booting can take some time.

You can also configure your system to automatically boot all databases in the system
when it starts up; see derby.system.bootAll in the Tuning Derby manual. Because of the
time needed to boot a database, the number of databases in the system directory affects
startup performance if you use that configuration.

Once a database has been booted within a Derby system, it remains active until the
Derby system has been shut down or until you shut down the database individually.

When Derby boots a database, a message is added to the error log. The message
includes the Derby version that the database was booted with, for example:

2006- 10- 04 03:54: 06. 196 GMVI: Booting Derby versi on Apache Der by
- 10.2.1.5 - (448900): instance c013800d- 00f d-0cb0-e736-ffffd1025a25 on

15

Derby Developer's Guide
dat abase directory sanpl e

The number of databases running in a Derby system is limited only by the amount of
memory available in the JVM.

Shutting down the system

In an embedded environment, when an application shuts down, it should first shut down
Derby.

If the application that started the embedded Derby quits but leaves the JVM running,
Derby continues to run and is available for database connections.

In an embedded system, the application shuts down the Derby system by issuing the
following JDBC call:

Dri ver Manager . get Connecti on("j dbc: der by: ; shut down=t rue");
Shutdown commands always raise SQLEXxceptions.

When a Derby system shuts down, a message goes to the error log:

Sat Jan 10 14:31:54 PDT 2005:
Shutti ng down i nstance 80000001- 00d0- 8bdf - d115- 000a0a0b2d00

Typically, an application using an embedded Derby engine shuts down Derby just before
shutting itself down. However, an application can shut down Derby and later restart

it in the same JVM session. To restart Derby successfully, the JVM needs to unload
org.apache.derby.jdbc.EmbeddedDriver, so that it can reload it when it restarts Derby.
(Loading the local driver starts Derby.)

You cannot explicitly request that the JVM unload a class, but you can ensure that the
EmbeddedDriver class is unloaded by using a Syst em gc() to force it to garbage
collect classes that are no longer needed. Running with - nogc or - nocl assgc definitely
prevents the class from being unloaded and makes you unable to restart Derby in the
same JVM.

It is also possible to shut down a single database instead of the entire Derby system. See
Shutting down Derby or an individual database. You can reboot a database in the same
Derby session after shutting it down.

Defining the system directory

You define the system directory when Derby starts up by specifying a Java system
property called der by. syst em hone.

If you do not specify the system directory when starting up Derby, the current directory
becomes the system directory.

Derby uses the derby.system.home property to determine which directory is its system
directory - and thus what databases are in its system, where to create new databases,
and what configuration parameters to use. See Tuning Derby for more information on
setting this property.

If you specify a system directory at startup that does not exist, Derby creates this new
directory - and thus a new system with no databases-automatically.

The error log

Once you create or connect to a database within a system, Derby begins outputting
information and error messages to the error log.

Typically, Derby writes this information to a log called derby.log in the system
directory, although you can also have Derby send messages to a stream, using the
der by. st ream error. et hod property. By default, Derby overwrites derby.log
when you start the system. You can configure Derby to append to the log with the

16

Derby Developer's Guide

der by. i nf ol 0og. append property. For information on setting this and other properties,
see Tuning Derby.

derby.properties

The text file derby.properties contains the definition of properties, or configuration
parameters that are valid for the entire system.

The derby.properties file is not automatically created. If you want to set Derby properties
with this file, you need to create the file yourself. The derby.properties file should be

in the format created by the j ava. uti | . Properti es. save method. For more
information about properties and the derby.properties file, see Tuning Derby.

Double-booting system behavior

Derby attempts to prevent two instances of Derby from booting the same database by
using a file called db.Ick inside the database directory.

On all platforms running with a JDK of 1.4 or higher, Derby can successfully prevent a
second instance of Derby from booting the database and thus prevents corruption.

On some platforms running with a JDK lower than 1.4, Derby may prevent a second
instance of Derby from booting the database (previous to JDK 1.4 the ability to do this
was OS dependent).

If this is the case, you will see an SQLException like the following:

ERROR XJ040: Failed to start database 'sanple', see the next exception
for details.

ERROR XSDB6: Anot her instance of Derby m ght have al ready booted

t he dat abaseC: \ dat abases\ sanpl e.

The error is also written to the error log.

If you are running a JVM prior to 1.4, Derby issues a warning message on some
platforms if an instance of Derby attempts to boot a database that already has a running
instance of Derby attached to it. However, it does not prevent the second instance from
booting, and thus potentially corrupting, the database. (You can change this behavior
with the property der by. dat abase. f or ceDat abaselLock.)

If a warning message has been issued, corruption might already have occurred.
Corruption can occur even if one of the two booting systems has "readonly" access to the
database.

The warning message looks like this:

WARNI NG Der by

(i nstance 80000000- 00d2- 3265- de92- 000a0a0a0200) is

attenpting to boot the database /export/honme/sky/wonbat

even t hough Der by

(i nstance 80000000- 00d2- 3265- 8abf - 000a0a0a0200) mi ght still be active.
Only one instance of Derby

shoul d boot a database at a tine. Severe and non-recoverabl e corruption
can

result and nmight have al ready occurred.

The warning is also written to the error log.

If you see this warning, you should close the connection and exit the JVM, minimizing

the risk of a corruption. Close all instances of Derby, then restart one instance of Derby
and shut down the database properly so that the db.Ick file can be removed. The warning
message continues to appear until a proper shutdown of the Derby system can delete the
db.Ick file.

17

Derby Developer's Guide

When developing applications, you might want to configure Derby to append to the
log. Doing so will help you detect when you have inadvertently started more than one
instance of Derby in the same system. For example, when the derby.infolog.append
property is set to true for a system, booting two instances of Derby in the same system
produces the following in the log:

Sat Aug 14 09:42:51 PDT 2005:
Booti ng Derby version Apache Derby - 10.0.0.1 - (29612):

i nst ance 80000000- 00d2- 1¢87- 7586- 000a0a0b1300 on dat abase at
directory C\tutorial _system sanple

Sat Aug 14 09:42:59 PDT 2005:

Booti ng Derby version Apache Derby - 10.0.0.1 - (29612):

i nstance 80000000- 00d2- 1c87-9143- 000a0a0b1300 on dat abase at
directory C\tutorial _system Hel |l oWr| dDB

Derby allows you to boot databases that are not in the system directory. While this might
seem more convenient, check that you do not boot the same database with two JVMs.

If you need to access a single database from more than one JVM, you will need to put a

server solution in place. You can allow multiple JVMs that need to access that database

to connect to the server. The Derby Network Server is provided as a server solution. See
the Derby Server and Administration Guide for more information on the Network Server.

Recommended practices

When developing Derby applications, create a single directory to hold your database or
databases.

Give this directory a unique name, to help you remember that:

 All databases exist within a system.

» System-wide properties affect the entire system, and persistent system-wide
properties live in the system directory.

* You can boot all the databases in the system, and the boot-up times of all
databases affect the performance of the system.

* You can preboot databases only if they are within the system. (Databases do not
necessarily have to live inside the system directory, but keeping your databases
there is the recommended practice.)

« Once you connect to a database, it is part of the current system and thus inherits all
system-wide properties.

* Only one instance of Derby can run in a JVM at a single time, and only one instance
of Derby should boot a database at one time. Keeping databases in the system
directory makes it less likely that you would use more than one instance of Derby.

» The error log is located inside the system directory.

A Derby database

A Derby database contains dictionary objects such as tables, columns, indexes, and jar
files. A Derby database can also store its own configuration information.

The database directory

A Derby database is stored in files that live in a directory of the same name as the
database. Database directories typically live in system directories.

A database directory contains the following, as shown in the following figure.
* log directory

Contains files that make up the database transaction log, used internally for data
recovery (not the same thing as the error log).
 segO directory

18

Derby Developer's Guide

Contains one file for each user table, system table, and index (known as
conglomerates).
service.properties file

A text file with internal configuration information.
tmp directory

(might not exist.) A temporary directory used by Derby for large sorts and deferred
updates and deletes. Sorts are used by a variety of SQL statements. For databases
on read-only media, you might need to set a property to change the location of this
directory. See "Creating Derby Databases for Read-Only Use".

jar directory

(might not exist.) A directory in which jar files are stored when you use database
class loading.

Read-only database directories can be archived (and compressed, if desired) into jar or
zip files. For more information, see Accessing a read-only database in a zip/jar file.

The following figure shows the files and directories in the Derby database directories that
are used by the Derby software.

Figure 2. An example of a Derby database directory and file structure.

Sales DB 7

jar
service.properties

Derby imposes relatively few limitations on the number and size of databases and
database objects. The following table shows some size limitations of Derby databases
and database objects:

Table 1. Size limits for Derby database objects

Type of Object Limit

tables in each database java.lang.Long.MAX_VALUE

Some operating systems impose a limit to the
number of files allowed in a single directory.

indexes in each table 32,767 or storage
columns in each table 1,012

number of columns on an index 16

key

rows in each table No limit.

19

Derby Developer's Guide

Type of Object Limit

size of table No limit. Some operating systems impose a limit on
the size of a single file.

size of row No limit. Rows can span pages. Rows cannot span
tables so some operating systems impose a limit on
the size of a single file, which results in limiting the

size of a table and size of a row in that table.

For a complete list of restrictions on Derby databases and database objects, see the
Derby Reference Manual.

Creating, dropping, and backing up databases

You create new databases and access existing ones by specifying attributes to the Derby
connection URL.

There is no drop database command. To drop a database, delete the database directory
with operating system commands. The database must not be booted when you remove a
database. You can get a list of booted databases with getPropertylnfo.

To back up a database, you can use the online backup utility. For information on this
utility, see the Derby Server and Administration Guide.

You can also use roll-forward recovery to recover a damaged database. Derby
accomplishes roll-forward recovery by using a full backup copy of the database, archived
logs, and active logs from the most recent time before a failure. For more information on
roll-forward recovery see the Derby Server and Administration Guide.

Single database shutdown

An application can shut down a single database within a Derby system and leave the rest
of the system running.

Storage and recovery

A Derby database provides persistent storage and recovery. Derby ensures that all
committed transactions are durable, even if the system fails, through the use of a
database transaction log.

Whereas inserts, updates, and deletes may be cached before being written to disk, log
entries tracking all those changes are never cached but always forced to disk when a
transaction commits. If the system or operating system fails unexpectedly, when Derby
next starts up it can use the log to perform recovery, recovering the "lost" transactions
from the log and rolling back uncommitted transactions. Recovery ensures that all
committed transactions at the time the system failed are applied to the database, and all
transactions that were active are rolled back. Thus the databases are left in a consistent,
valid state.

In normal operation, Derby keeps the log small through periodic checkpoints.
Checkpointing marks the portions of the log that are no longer useful, writes changed
pages to disk, then truncates the log.

Derby checkpoints the log file as it fills. It also checkpoints the log when a shutdown
command is issued. Shutting down the JVM in which Derby is running without issuing the
proper shutdown command is equivalent to a system failure from Derby's point of view.

Booting a database means that Derby checks to see if recovery needs to be run on a
database. Recovery can be costly, so using the proper shutdown command improves
connection or startup performance.

20

Derby Developer's Guide
Log on separate device

You can put a database's log on a separate device when you create it.

For more information, see the Derby Server and Administration Guide.

Database pages

Derby tables and indexes, known as conglomerates, consist of two or more pages.

A page is a unit of storage whose size is configurable on a system-wide, database-wide,
or conglomerate-specific basis. By default, a conglomerate grows one page at a time
until eight pages of user data (or nine pages of total disk use, which includes one page
of internal information) have been allocated. (You can configure this behavior; see
"derby.storage.initialPages" in Tuning Derby.) After that, it grows eight pages at a time.

The size of a row or column is not limited by the page size. Rows or columns that are
longer than the table's page size are automatically wrapped to overflow pages.

Database-wide properties

You can set many Derby properties as database-level properties. When set in this way,
they are stored in the database and "travel" with the database unless overridden by a
system property.

For more information, see "Database-Wide Properties" in Tuning Derby.

Note: You should work with database-level properties wherever possible.
Derby database limitations

Derby databases have a few limitations.
Indexes

Indexes are not supported for columns defined on CLOB, BLOB, LONG VARCHAR, and
XML data types.

If the length of the key columns in an index is larger than half the page size of the index,

creating an index on those key columns for the table fails. For existing indexes, an insert
of new rows for which the key columns are larger than half of the index page size causes
the insert to fail.

Avoid creating indexes on long columns. Create indexes on small columns that provide
a quick look-up to larger, unwieldy data in the row. You might not see performance
improvements if you index long columns. For information about indexes, see Tuning
Derby.

System shutdowns
The system shuts down if the database log cannot allocate more disk space.

A "LogFull" error or some sort of | OExcept i on occurs in the der by. | og file when
the system runs out of space. If the system has no more disk space to append to the
der by. | og file, you might not see the error messages.

Connecting to databases

You connect to a database using a form of the Derby connection URL as an argument to
the DriverManager.getConnection call.

You specify a path to the database within this connection URL.

21

Derby Developer's Guide
Connecting to databases within the system

The standard way to access databases is in the file system by specifying the path
to the database, either absolute or relative to the system directory. In a client/server
environment, this path is always on the server machine.

By default, you can connect to databases within the current system directory (see
Defining the system directory). To connect to databases within the current system, just
specify the database name on the connection URL. For example, if your system directory
contains a database called myDB, you can connect to that database with the following
connection URL:

j dbc: der by: myDB
The full call within a Java program would be:

Connecti on conn =Dri ver Manager. get Connecti on("j dbc: der by: nyDB") ;
Connecting to databases outside the system directory

You can also connect to databases in other directories (including subdirectories of the
system directory) by specifying a relative or absolute path name to identify the database.
The way you specify an absolute path is defined by the host operating system.

Using the connection URL as described here, you can connect to databases in more than
one directory at a time.

Two examples:

jdbc: derby:../otherDirectory/ nyDB
jdbc: derby: c:/otherDirectory/ nyDB

Note: Once connected, such a database becomes a part of the Derby system, even
though it is not in the system directory. This means that it takes on the system-wide
properties of the system and no other instance of Derby should access that database. It
is recommended that you connect to databases only in the system directory.
Conventions for specifying the database path

When accessing databases from the file system (instead of from classpath or a jar file),
any path that is not absolute is interpreted as relative to the system directory.

The path must do one of the following:

« refer to a previously created Derby database
« specify the create=true attribute

The path separator in the connection URL is / (forward slash), as in the standard file://
URL protocol.

You can specify only databases that are local to the machine on which the JVM

is running. NFS file systems on UNIX and remote shared files on Windows
(//machine/directory) are not guaranteed to work. Using derby.system.home and forward
slashes is recommended practice for platform independent applications.

If two different database name values, relative or absolute, refer to the same actual
directory, they are considered equivalent. This means that connections to a database
through its absolute path and its relative path are connections to the same database.
Within Derby, the name of the database is defined by the canonical path of its directory
from java.io.File.getCanonicalPath.

Derby automatically creates any intermediate directory that does not already exist when
creating a new database. If it cannot create the intermediate directory, the database
creation fails.

22

Derby Developer's Guide

If the path to the database is ambiguous, i.e., potentially the same as that to a database
that is available on the classpath (see "Special Database Access"), use the directory:
subsubprotocol to specify the one in the file system. For example:

j dbc: derby: directory: nyDB
Special database access

You can also access databases from the classpath or from a jar file (in the classpath or
not) as read-only databases.

Accessing databases from the classpath:

In most cases, you access databases from the file system. However, it is also possible to
access databases from the classpath. The databases can be archived into a jar or zip file
or left as is.

All such databases are read-only.

To access an unarchived database from the classpath, specify the name of the database
relative to the directory in the classpath. You can use the classpath subprotocol if such

a database is ambiguous within the directory system. See Embedded Derby JDBC
database connection URL for more information.

For example, for a database called sample in C:\derby\demo\databases, you can put the
C:\derby\demo\databases directory in the classpath and access sample like this:

j dbc: der by: / sanpl e

The forward slash is required before sample to indicate that it is relative to
C:\derby\demo\databases directory.

If only C:\derby were in the class path, you could access sample (read-only) like this:

j dbc: der by: / deno/ dat abases/ sanpl e
Accessing databases from a jar or zip file:

It is possible to access databases from a jar file. The jar file does not have to be on the
classpath.

Note: All such databases are read-only.

For example, suppose you have archived the database jarDB1 into a file called jarl.jar.
This archive is in the classpath before you start up Derby. You can access jarDB1 with
the following connection URL

j dbc: derby: /j ar DB1
To access a database in a jar file that is not on the classpath, use the jar subprotocol.

For example, suppose you have archived the database jarDB2 into a file called jar2.jar.
This archive is not in the classpath. You can access jarDB2 by specifying the path to the
jar file along with the jar subsubprotocol, like this:

jdbc:derby:jar:(c:/derby/lib/jar2.jar)jarDB2

For complete instructions and examples of accessing databases in jar files, see
Accessing a read-only database in a zip/jar file.

23

Derby Developer's Guide

Database connection examples

The examples in this section use the syntax of the connection URL for use in an
embedded environment.

This information also applies to the client connection URL in a client/server environment.
For reference information about client connection URLSs, see "java.sgl.Connection
interface" in the Derby Reference Manual.

jdbc:derby:dbl

Open a connection to the database dbl. dbl is a directory located in the system
directory.
jdbc:derby:london/sales

Open a connection to the database london/sales. london is a subdirectory of the
system directory, and sales is a subdirectory of the directory london.
jdbc:derby:/reference/phrases/french

Open a connection to the database /reference/phrases/french.

On a UNIX system, this would be the path of the directory. On a Windows system,
the path would be C:\reference\phrases\french if the current drive were C. If a jar file
storing databases were in the user's classpath, this could also be a path within the
jar file.

jdbc:derby:a:/demo/sample

Open a connection to the database stored in the directory \demo\sample on drive A
(usually the floppy drive) on a Windows system.
jdbc:derby:c:/databases/salesdb jdbc:derby:salesdb

These two connection URLs connect to the same database, salesdb, on a Windows
platform if the system directory of the Derby system is C:\databases.
jdbc:derby:support/bugsdb;create=true

Create the database support/bugsdb in the system directory, automatically creating
the intermediate directory support if it does not exist.
jdbc:derby:sample;shutdown=true

Shut down the sample database. (Authentication is not enabled, so no user
credentials are required.)
jdbc:derby:/myDB

Access myDB (which is directly in a directory in the classpath) as a read-only
database.
jdbc:derby:classpath:/myDB

Access myDB (which is directly in a directory in the classpath) as a read-only
database. The reason for using the subsubprotocol is that it might have the same
path as a database in the directory structure.
jdbc:derby:jar:(C:/dbs.jar)products/boiledfood

Access the read-only database boiledfood in the products directory from the jar file
C:/dbs.jar.
jdbc:derby:directory:myDB

Access myDB, which is in the system directory. The reason for using the
di rect ory: subsubprotocol is that it might happen to have the same path as a
database in the classpath.

Working with the database connection URL attributes

You specify attributes on the Derby connection URL.

24

Derby Developer's Guide

The examples in this section use the syntax of the connection URL for use in an
embedded environment. You can also specify these same attributes and values on the
client connection URL if you are using Derby as a database server. For more information,
see the Derby Server and Administration Guide.

You can also set these attributes by passing a Properties object along with a connection
URL to Dri ver Manager . get Connect i on when obtaining a connection; see
"Specifying Attributes in a Properties Object".

All attributes are optional.
You can specify the following attributes:

» bootPassword=key

« collation=collationAttribute
 create=true

» databaseName=nameofDatabase
 dataEncryption=true

« encryptionProvider=providerName
 encryptionAlgorithm=algorithm

« territory=Il_CC

« logDevice=logDirectoryPath
 createFrom=BackupPath

* restoreFrom=BackupPath

« rollForwardrecoveryFrom=BackupPath
» password=userPassword
 shutdown=true

» user=userName

For detailed information about the connection URL syntax and attributes, see "Derby
Database Connection URL Syntax" in the Derby Reference Manual.

Using the databaseName attribute

You can use a databaseName attribute on a database connection URL to specify the
name of the database to which you want to connect.

j dbc: der by: ; dat abaseNane=dat abaseNane

You can access read-only databases in jar or zip files by specifying j ar as the
subsubprotocol, like this:

j dbc: derby: jar: (pat hToAr chi ve) dat abasePat hW t hi nAr chi ve

Or, if the jar or zip file has been included in the classpath, like this:

j dbc: der by: / dat abasePat hW t hi nAr chi ve
Shutting down Derby or an individual database

Applications in an embedded environment shut down the Derby system by specifying
the shutdown=true attribute in the connection URL. To shut down the system, you do not
specify a database name, and you must not specify any other attribute.

j dbc: der by: ; shut down=t r ue

A successful shutdown always results in an SQLException to indicate that Derby has
shut down and that there is no other exception.

You can also shut down an individual database if you specify the databaseName.
You can shut down the database of the current connection if you specify the default
connection instead of a database name(within an SQL statement).

25

Derby Developer's Guide

/1 shutting down a database from your application
Dri ver Manager . get Connecti on(
"j dbc: der by: sanpl e; shut down=t rue");

If user authentication and SQL authorization are both enabled, only the database owner
can shut down the database.

/1 shutting down an aut henticated dat abase as dat abase owner
Dri ver Manager . get Connect i on(

"j dbc: der by: secur esanpl e; user =j oeowner ; passwor d=secr et ; shut down=t rue") ;
Creating and accessing a database

You create a database by supplying a new database name in the connection URL and
specifying create=true.

Derby creates a new database inside a new subdirectory in the system directory. This
system directory has the same name as the new database. If you specify a partial path, it
is relative to the system directory. You can also specify an absolute path.

j dbc: der by: dat abaseNane; cr eat e=tr ue
For more details about create=true, see "create=true" in the Derby Reference Manual.
Providing a user name and password

When user authentication is enabled, an application must provide a user
name and password. One way to do this is to use the user=userName and
password=userPassword connection URL attributes.

j dbc: der by: sanpl e; user=jill; passwor d=t oFet chAPai |
Creating a database with territory-based collation

By default, Derby uses Unicode codepoint collation. However, you can specify
territory-based collation when you create the database.

You canusethecol l ationandterritory attributes to specify territory-based
collation. This type of collation applies only to user-defined tables. The system tables use
the Unicode codepoint collation.

Restriction: The col | ati on attribute can be specified only when you create a
database. You cannot specify this attribute on an existing database or when you upgrade
a database.

To create a database with territory-based collation:

1. Specify the language and country codes for the t er ri t or y attribute, and the
TERRITORY_BASED value for the col | at i on attribute when you create the
database.

For example:

j dbc: der by: Mexi canDB; create=true;territory=es_MX; col | ati on=TERRI TORY_BASED

Encrypting a database when you create it

If your environment is configured properly, you can create your database as an encrypted
database (one in which the database is encrypted on disk). To do this, you use the
dataEncryption=true attribute to turn on encryption and the boot Passwor d=key
attribute or the encryptionKey attribute to specify a key for the encryption.

26

Derby Developer's Guide

You can also specify an encryption provider and encryption algorithm other
than the defaults with the encrypti onPr ovi der =pr ovi der Nane and
encrypti onAl gorithmeal gorithm attributes.

j dbc: der by: encrypt edDB; cr eat e=t r ue; dat aEncr ypti on=t r ue;
boot Passwor d=DBpasswor d

Creating an encrypted database with an external key
You can create a database and encrypt the database with an external key.
To create an encrypted database using an external key:

1. Use the encryptionKey attribute in the connection URL.

For example to create the database and encrypt the database encDB using an
external key, specify this URL:

j dbc: der by: encDB; cr eat e=t r ue; dat aEncrypti on=t rue; encrypti onAl gorit hn=DES/
CBC/ NoPaddi ng; encrypti onKey=6162636465666768

Attention: If you lose the encryption key you will not be able to boot the database.
Booting an encrypted database

You must specify several attributes in the URL when you boot an encrypted database.
You must specify these attributes the first time that you connect to the database within a
JVM session, or after you shut the database down within the same JVM session.

To boot an existing encrypted database:

1. The attribute that you specify depends on how the database was originally
encrypted:
« If the database was encrypted using the bootPassword mechanism, specify
the bootPassword attribute. For example:

j dbc: der by: wonbat ; boot Passwor d=cl 0760uds2caPe
« If the database was encrypted using an external key, specify the
encryptionKey attribute. For example:

jdbc: derby: flintstone; encrypti onAl gorithmrAES/ CBC/ NoPaddi ng;
encrypti onKey=c566bab9ee8b62a5ddb4d9229224c678

If the algorithm that was used when the database was created is not the

default algorithm, you must also specify the encryptionAlgorithm attribute. The

default encryption algorithm used by Derby is DES/CBC/NoPadding.
Specifying attributes in a properties object

Instead of specifying attributes on the connection URL, you can specify attributes
as properties in a Properties object that you pass as a second argument to the
Dri ver Manager . get Connect i on method.

For example, to set the user name and password:

Cl ass. for Name(" or g. apache. der by. j dbc. EnbeddedDri ver");
Properties p = new Properties();

p. put ("user", "sa");

p. put (" password", "manager");

Connection conn = DriverManager. get Connecti on(

"j dbc: der by: mynewDB", p);

27

Derby Developer's Guide

After installing

This section provides reference information about the installation directory, JVMs,
classpath, upgrades, and platform-specific issues.

Review the i ndex. ht m file at the top level of the Derby distribution for pointers to
reference and tutorial information about Derby. See the Release Notes for information on
platform support, changes that may affect your existing applications, defect information,
and recent documentation updates. See Getting Started with Derby for basic product
descriptions, information on getting started, and directions for setting the path and the
classpath.

The installation directory
You may install the Derby software in a directory of your choice.
See the i ndex. ht ml file for pointers to information on Derby.

The distribution includes setup scripts that use an environment variable called
DERBY_HOME. The variable's value is set to the Derby base directory.

C. >echo Y©OERBY_HOVE%
C: \ DERBY_HOVE

If you want to set your own environment, Getting Started with Derby instructs you on
setting its value to the directory in which you installed the Derby software.

The distribution for Derby contains all the files you need, including the documentation set,
some example applications, and a sample database.

Details about the installation:

 index.html in the top-level directory is the top page for the on-line documentation.

* RELEASE-NOTES.html, in the top-level Derby base directory, contains important
last-minute information. Read it first.

« /bin contains utilities and scripts for running Derby.

» /demo contains some sample applications, useful scripts, and prebuilt databases.

 /databases includes prebuilt sample databases.
» /programs includes sample applications.

 /docs contains the on-line documentation (including this document).

« /javadoc contains the documented APIs for the public classes and interfaces.
Typically, you use the JDBC interface to interact with Derby; however, you can use
some of these additional classes in certain situations.

« /lib contains the Derby libraries.

Batch files and shell scripts

The /bin directory contains scripts for running some of the Derby tools and utilities. To
customize your environment, put the directory first in your path.

These scripts serve as examples to help you get started with these tools and utilities on
any platform. However, they may require modification in order to run properly on certain
platforms.

Derby and JVMs

28

Derby Developer's Guide

Derby is a database engine written completely in Java; it will run in any JVM, version 1.4
or higher.

Derby libraries and classpath

Derby libraries are located in the /lib subdirectory of the Derby base directory. You must
set the classpath on your development machine to include the appropriate libraries.

Getting Started with Derby explains how to set the classpath in a development
environment.

UNIX-specific issues

This section discusses Derby issues specifically related to UNIX platforms.

Configuring file descriptors

Scripts

Derby databases create one file per table or index. Some operating systems limit the
number of files an application can open at one time.

If the default is a low number, such as 64, you might run into unexpected IOExceptions
(wrapped in SQLExcept i ons). If your operating system lets you configure the number of
file descriptors, set this number to a higher value.

Your installation contains executable script files that simplify invoking the Derby tools.
On UNIX systems, these files might need to have their default protections set to include
execute privilege.

A typical way to do this is with the command chmod +x *.ksh.

Consult the documentation for your operating system for system-specific details.

29

Derby Developer's Guide

Derby embedded basics

This section explains how to use and configure Derby in an embedded environment.

Included in the installation is a sample application program, /demo/programs/simple,
which illustrates how to run Derby embedded in the calling program.

Embedded Derby JDBC driver

The Derby driver class name for the embedded environment is
org.apache.derby.jdbc.EmbeddedDriver.

In a Java application running on JDK 1.5 or lower, you typically load the driver with
the static Cl ass. f or Nane method or with the j dbc. dri ver s system property. If
your application runs on JDK 1.6 or higher, then you do not need to explicitly load the
EmbeddedDriver. In that environment, the driver loads automatically.

For detailed information about loading the Derby JDBC driver, see "java.sql.Driver
interface" in the Derby Reference Manual.

Embedded Derby JDBC database connection URL

This is the standard Derby JDBC connection URL, which you can use for tasks besides
connecting to a database.

j dbc: der by: [subsubpr ot ocol :] [dat abaseNan®] [; attri but e=val ue] *

Subsubprotocol, which is not typically specified, determines how Derby looks for a
database: in a directory, in a class path, or in a jar file. Subsubprotocol is one of the
following:

« directory The default. Specify this explicitly only to distinguish a database that might
be ambiguous with one on the class path.

« classpath Databases are treated as read-only databases, and all databaseNames
must begin with at least a slash, because you specify them "relative" to the
classpath directory.

« jar Databases are treated as read-only databases. DatabaseNames might require a
leading slash, because you specify them "relative" to the jar file.

jar requires an additional element immediately before the database name:
(pat hToAr chi ve)
pathToArchive is the path to the jar or zip file that holds the database.

You typically pass the connection URL as an argument to the JDBC
DriverManager.getConnection method call. For example:

Dri ver Manager . get Connecti on("j dbc: der by: sanpl e") ;

You can specify attributes and attribute values to a connection URL. For detailed
reference about attributes and values, see the Derby Reference Manual.

Getting a nested connection

When you are executing a method within SQL, that method might need to reuse the
current connection to the database in order to execute more SQL statements. Such

30

Derby Developer's Guide

a connection is called a nested connection. The way for a method to get a nested
connection is to issue a connection request using the connection URL.

j dbc: def aul t: connecti on

URL attributes are not supported as part of this connection URL. Any URL attributes
specified in a Properties object, user name, or password that are passed to a
java.sql.DriverManager.getConnection() call will be ignored.

Starting Derby as an embedded database

To start Derby, you start the Derby JDBC driver. Starting the Derby driver starts up the
complete Derby system within the current JVM.

For example, when using the JBDC driver manager directly within Java code, you
typically start a JDBC driver in one of these ways:

« Specify the jdbc.drivers system property, which allows users to customize the JDBC
drivers used by their applications. For example:

java -Djdbc. drivers=org. apache. der by. j dbc. EnbeddedDri ver
appl i cati ond ass

» Load the class directly from Java code using the static method Class.forName. For
example:

Cl ass. for Name(" or g. apache. der by. j dbc. EnbeddedDri ver");

« If your application runs on JDK 1.6 or higher, then you do not need to explicitlty load
the EmbeddedDriver. In that environment, the driver loads automatically and the
engine starts when your application requests its first Connection.

For more details, see "java.sql.Driver interface" in the Derby Reference Manual.

Once the Derby JDBC driver class has been loaded, you can connect to any Derby
database by passing the embedded connection URL with the appropriate attributes to the
DriverManager.getConnection method.

For example:

Connection conn = DriverManager. get Connection("j dbc: der by: sanpl e");

31

Derby Developer's Guide

Deploying Derby applications

Typically, once you have developed a Derby application and database, you package up
the application, the Derby libraries, and the database in some means for distribution to
your users. This process is called deployment.

This section discusses issues for deploying Derby applications and databases.

Deployment issues

This section discusses deployment options and details.

Embedded deployment application overview
In an embedded environment, Derby runs in the same JVM as the application.

The application can be a single-user application or a multi-user application server. In the
latter case, Derby runs embedded in the user-provided server framework, and any client
applications use user-provided connectivity or allow the application server to handle all
database interaction.

Figure 3. Derby embedded in a single-user Java application

Java Virtual Machine

p———) e mmm—— []

Application Derby Deroy database

Figure 4. Derby embedded in a multi-user Java application server

¢ 0
Loppte = and == |

ﬁjj] Application Derby Derby «
-l

Application Server

When a Derby database is embedded in a Java application, the database is dedicated
to that single application. If you deploy more than one copy of the application, each
application has its own copy of the database and Derby software. A Derby server
framework can work in multi-threaded, multi-connection mode and can even connect
to more than one database at a time. A server framework, such as the Derby Network

32

Derby Developer's Guide

Server, can be used to manage multiple connections and handle network capabilities.
Some server framework solutions, such as WebSphere Application Server, provide
additional features such as web services and connection pooling. However, only one
server framework at a time can operate against a Derby database.

The Derby application accesses an embedded Derby database through the JDBC API.
To connect, an application makes a call to the local Derby JDBC driver. Accessing the
JDBC driver automatically starts the embedded Derby software. The calling application is
responsible for shutting down the embedded Derby database software.

Deploying Derby in an embedded environment

You can embed Derby in any Java application (single- or multi-user) by deploying the
following packages.

« The Derby library (derby.jar).

» The libraries for the application. You have the option of storing these libraries in the
database.

» The database or databases used by the application, in the context of their system
directory.

In the following figure, the top graphic shows the deployment of an application, where
the application, the Derby software for embedded use, the derby.properties file and

the database are four objects. The bottom graphic shows a simplified deployment by
reducing the number of objects to two by storing the application and the properties file in
the database.

Figure 5. Two approaches to deploying a Derby application in an embedded
environment.

Y Your System Direct
derby.jar ! o
b, ;
Your application.jar derby.proparties Your DB

D i Your System Directory
derbyjar

Application and
properties stored
in databasa

Your DB

Embedded systems and properties

Database-wide properties are stored in the database and are simpler for deployment,
while system-wide parameters might be easier for development.

33

Derby Developer's Guide

« If you are setting any system-wide properties, see if they can be set as
database-wide properties instead.

« Are any properties being set in the derby.properties file? Some properties can only
be set on a system-wide basis. If so, deploy the entire system directory along with
the properties file. Deploy only those databases that you wish to include. Setting
properties programmatically can simplify this step- you will not have to worry about
deploying the system directory/properties file.

Extra steps are required for deploying an application and an embedded database on
read-only media.

Creating Derby databases for read-only use
You can create Derby databases for use on read-only media such as CD-ROMs.

Derby databases in zip or jar files are also read-only databases. Typically, read-only
databases are deployed with an application in an embedded environment.

Creating and preparing the database for read-only use
To create databases for use on read-only media, perform these steps.

1. Create and populate the database on read-write media.

2. Commit all transactions and shut down Derby in the prescribed manner. If you do
not shut down Derby in the prescribed manner, Derby will need to perform recovery
the next time the system boots. Derby cannot perform recovery on read-only media.

3. Delete the tmp directory if one was created within your database directory. If you
include this directory, Derby will attempt to delete it and will return errors when
attempting to boot a database on read-only media.

4. For the read-only database, set the property derby.storage.tempDirectory to a
writable location.

Derby needs to write to temporary files for large sorts required by such SQL
statements as ORDER BY, UNION, DISTINCT, and GROUP BY. For more
information about this property, see Tuning Derby.

der by. st orage. t enpDi rect ory=c: / t enp/ myt enp
5. Configure the database to send error messages to a writable file or to an output
stream.

For information, see Tuning Derby.

derby.streamerror.file=c:/tenp/ nyl og. LOG
Be sure to set these properties so that they are deployed with the database.

Deploying the database on the read-only media
To deploy the database on read-only media, perform the following steps.

1. Move the database directory to the read-only media, including the necessary
subdirectory directories (log and seg0) and the file ser vi ce. properti es.

2. Use the database as usual, except that you will not be able to insert or update any
data in the database or create or drop dictionary objects.

Transferring read-only databases to archive (jar or zip) files

Once a database has been created in Derby, it can be stored in a jar or zip file and
continue to be accessed by Derby in read-only mode.

34

Derby Developer's Guide

This allows a read-only database to be distributed as a single file instead of as multiple
files within a directory and to be compressed. In fact, a jar or zip file can contain any
number of Derby databases and can also contain other information not related to Derby,
such as application data or code.

You cannot store the derby.properties file in a jar or zip file.

To create a jar or zip file containing one or more Derby databases:

1. Create a database for use on read-only media.

2. From the directory that contains the database folder, archive the database directory
and its contents. For example, for the database sales that lives in the system
directory C:\london, issue the command from london. Do not issue the command
from inside the database directory itself.

For example, archive the database folder and its contents using the JAR program from
the JDK. You can use any zip or jar tool to generate the archive.

This command archives the database directory sales and its contents into a compressed
jar file called dbs.jar.

cd C\london
jar cM C\dbs.jar sales

You can add multiple databases with jar. For example, this command puts the sales
databases and the boiledfood database (in the subdirectory products) into the archive.

cd C\london
jar cM C:\dbs.jar sal es products\boil edfood

The relative paths of the database in the jar need not match their original relative paths.
You can do this by allowing your archive tool to change the path, or by moving the
original databases before archiving them.

The archive can be compressed or uncompressed, or individual databases can be
uncompressed or compressed if your archive tool allows it. Compressed databases take
up a smaller amount of space on disk, depending on the data loaded, but are slower to
access.

Once the database is archived into the jar or zip file, it has no relationship to the original
database. The original database can continue to be modified if desired.

Accessing a read-only database in a zip/jar file

To access a database in a zip/jar, you specify the jar in the subsubprotocol.

jdbc: derby: jar: (pat hToAr chi ve) dat abasePat hW't hi nAr chi ve

The pathToArchive is the absolute path to the archive file. The
databasePathWithinArchive is the relative path to the database within the archive. For
example:

jdbc: derby:jar: (C:/dbs.jar)products/boil edf ood
jdbc: derby:jar: (C /dbs.jar)sal es

If you have trouble finding a database within an archive, check the contents of the archive
using your archive tool. The databasePathWithinArchive must match the one in the
archive. You might find that the path in the archive has a leading slash, and thus the URL
would be:

jdbc: derby:jar: (C: /dbs.jar)/products/boil edf ood

35

Derby Developer's Guide

Databases in a jar or zip file are always opened read-only and there is currently no
support to allow updates of any type.

Accessing databases within a jar file using the classpath

Once an archive containing one or more Derby databases has been created it can be
placed in the classpath. This allows access to a database from within an application
without the application's knowing the path of the archive.

When jar or zip files are part of the classpath, you do not have to specify the jar
subsubprotocol to connect to them.

To access a database in a zip or jar file in the classpath:

1. Set the classpath to include the jar or zip file before starting up Derby:

CLASSPATH="C: \ dbs. j ar ; %CL ASSPATHY%
2. Connect to a database within the jar or zip file with one of the following connection
URLs:

St andard synt ax:
j dbc: der by: / dat abasePat hW t hi nAr chi ve

Syntax w th subsubprotocol:
j dbc: der by: cl asspat h: / dat abasePat hW t hi nAr chi ve

For example:

j dbc: der by: / product s/ boi | edf ood
j dbc: der by: cl asspat h: / product s/ boi | edf ood

Connecting to databases with ambiguous paths to databases in the file system

Use the basic connection URL syntax only if the database path specified does not also
point to a Derby database in the file system.

If this is the case, the connection attempt might fail or connect to the wrong database.
Use the form of the syntax with the subsubprotocol to distinguish between the databases.

For example:

j dbc: der by: cl asspat h: / product s/ boi | edf ood

Connecting to databases when the path is ambiguous because of databases in the
classpath

To connect to a database in the file system when the connection URL that you would
use would be ambiguous with a database in the classpath, use the following form of the
connection URL.

j dbc: der by: di rect ory: dat abasePat hl nFi | eSyst em
For example,

jdbc: derby: directory:/product s/ boil edf ood

Apart from the connection URL, databases in archives in the classpath behave just like
databases in archives accessed through the file system. However, databases in archives
are read-only.

Databases on read-only media and DatabaseMetaData

Databases on read-only media return true for DatabaseMetaData.isReadOnly.

36

Derby Developer's Guide

Loading classes from a database
You can store application logic in a database and then load classes from the database.

Application logic, which can be used by SQL functions and procedures, includes
Java class files and other resources. Storing application code simplifies application
deployment, since it reduces the potential for problems with a user's classpath.

In an embedded environment, when application logic is stored in the database, Derby
can access classes loaded by the Derby class loader from stored jar files.

Class loading overview

You store application classes and resources by storing one or more jar files in the
database. Then your application can access classes loaded by Derby from the jar file and
does not need to be coded in a particular way. The only difference is the way in which
you invoke the application.

Here are the basic steps.
Create jar files for your application

Include any Java classes in a jar file that are intended for Derby class loading, except the
following classes:

» The standard Java packages (java.*, j avax. *)

Derby does not prevent you from storing such a jar file in the database, but these
classes are never loaded from the jar file.
* The classes that are supplied with your Java environment (for example, sun.*)

A running Derby system can load classes from any number of jar files from any number
of schemas and databases.

Create jar files intended for Derby database class loading the same way you create a jar
file for inclusion in a user's classpath. For example, consider an application targeted at
travel agencies:

jar cf travelagent.jar travel agent/*.cl ass.

Various IDEs have tools to generate a list of contents for a jar file based on your
application. If your application requires classes from other jar files, you have a choice:

 Extract the required third-party classes from their jar file and include only those
classes in your jar file.

Use this option when you need only a small subset of the classes in the third-party
jar file.
« Store the third-party jar file in the database.

Use this option when you need most or all of the classes in the third-party jar file,
since your application and third-party logic can be upgraded separately.
« Deploy the third-party jar file in the user's class path.

Use this option when the classes are already installed on a user's machine (for
example, Objectspace's JGL classes).
Add the jar file or files to the database

Use a set of procedures to install, replace, and remove jar files in a database.
When you install a jar file in a database, you give it a Derby jar name, which is an
SQ.92l dentifier.

37

Derby Developer's Guide

Note: Once a jar file has been installed, you cannot modify any of the individual classes
or resources within the jar file. Instead, you must replace the entire jar file.
Jar file examples:

See the Derby Tools and Utilities Guide for reference information about the utility and
complete syntax.

Installing jar files:

-- SQ. statenent
CALL sqlj.install_jar(
‘tours.jar', 'APP.Sanplel , 0)

-- SQ. statenent
-- using a quoted identifier for the
-- Derby jar nane
CALL sqlj.install _jar(
"tours.jar', 'APP."Sanple2"', 0)

Removing jar files:

-- SQ statenent
CALL sqglj.renove_j ar(
" APP. Sampl el', 0)

Replacing jar files:

-- SQ. statenent
CALL sqlj.replace_jar(
‘c:\nyjarfiles\newtours.jar', 'APP. Sanplel')

Enable database class loading with a property

Once you have added one or more jar files to a database, you must set the database jar
"classpath” by including the jar file or files in the derby.database.classpath property to
enable Derby to load classes from the jar files.

This property, which behaves like a class path, specifies the jar files to be searched for
classes and resources and the order in which they are searched. If Derby does not find a
needed class stored in the database, it can retrieve the class from the user's classpath.
(Derby first looks in the user's classpath before looking in the database.)

» Separate jar files with a colon ().

» Use two-part names for the jar files (schema name and jar name). Set the property
as a database-level property for the database. The first time you set the property,
you must reboot to load the classes.

Example:

CALL SYSCS _UTI L. SYSCS_SET_DATABASE_PROPERTY(
' der by. dat abase. cl asspat h' ,
" APP. Tour sLogi c: APP. ACCOUNTI NGLOG C')

See "derby.database.classpath" in Tuning Derby for more information about the property.

Note: Derby's class loader looks first in the user's classpath for any needed classes, and
then in the database. To ensure class loading with the database class loader, remove
classes from the classpath.

Code your applications

In your applications, you load the classes either by indirectly referencing them in the code
or by directly using java.lang.Class.forName.

38

Derby Developer's Guide
You load resources the way you normally would, using the standard

java.lang.Class.getResourceAsStream, a mechanism that allows an application to access
resources defined in the classpath without knowing where or how they are stored.

You do not need to make any changes to the way code interacts with Derby and its JDBC
driver. An application can safely attempt to boot Derby, even though it is already running,
without any errors. Applications connect to Derby in the usual manner.

Note: The method getResource is not supported.

Dynamic changes to jar files or to the database jar classpath

When you store jar files in a single database and make those jar files available to that
database, it is possible to make changes to jar files or to change the database jar
"classpath" dynamically (without having to reboot).

That is, when you install or replace a jar file within an SQL statement or change the
database jar "classpath” (the derby.database.classpath property) , Derby is able to load
the new classes right away without your having to reboot.

Requirements for dynamic changes

Certain conditions must be met for Derby to be able to load the new classes right away
without you having to reboot.

 You originally configured database-level class loading for the database correctly.
Turning on the database-level class loading property requires setting the
der by. dat abase. cl asspat h property with valid two-part names, then rebooting.
« If changes to the derby.database.classpath property are needed to reflect new jar
files, you change the property to a valid value.

If these requirements are not met, you will have to reboot to see the changes.
Notes on dynamic changes

When you are changing the derby.database.classpath property, all classes loaded from
database jar files are reloaded, even for a jar file that has not changed.

Remember that the user's classpath is searched first.

Any existing prepared statements will use the previously loaded classes unless they
require class loading, in which case they will fail with a ClassNotFound error.

Cached objects do not match objects created with newly loaded classes. For example,
an in-memory Customer object will not match a new Cust oner object if the Cust oner
class has been reloaded, and it will raise a Cl assCast Except i on.

39

Derby Developer's Guide

Derby server-side programming

This section discusses special programming for Derby.

These features include such programming as database-side JDBC procedures and
triggers.

Programming database-side JDBC procedures

Methods invoked within an application are called application-side methods. Methods
invoked within Derby are called database-side procedures.

An application-side method can be exactly the same as a database-side procedure. The
only difference is where you invoke them. You write the method only once. Where you
invoke the method-within the application or within an SQL statement-determines whether
it is an "application-side" or a "database-side" method.

Database-side JDBC procedures and nested connections

Most database-side JDBC Procedures need to share the same transaction space as the
statements that called them.

The reasons for this are:

« to avoid blocking and deadlocks
« to ensure that any updates done from within the method are atomic with the outer
transaction

In order to use the same transaction, the procedure must use the same connection as the
parent SQL statement in which the method was executed. Connections re-used in this
way are called nested connections.

Use the connection URL jdbc:default:connection to re-use the current Connect i on

The Database Connection URL jdbc:default:connection allows a Java method to get the
Connection of the SQL statement that called it. This is the standard (SQL standard, Part
13 SQL Routines and Java) mechanism to obtain the nested connection object. The
method would get a Connecti on:

Connection conn = DriverManager. get Connecti on(
"j dbc: def aul t: connecti on");

Loading a JDBC driver in a database-side routine is not required.
Requirements for database-side JDBC procedures using nested connections

In order to preserve transactional atomicity, database-side JDBC procedures that use
nested connections have the following limitations.

« Cannot issue a commit or rollback, unless called within a CALL statement.

« Cannot change connection attributes such as auto-commit.

« Cannot modify the data in a table used by the parent statement that called the
procedure, using INSERT, UPDATE, or DELETE. For example, if a SELECT
statement using the T table calls the changeTabl es procedure, changeTabl es
cannot modify data inthe T t abl e.

« Cannot drop a table used by the statement that called the procedure.

« Cannot be in a class whose static initializer executes DDL statements.

In addition, the Connection object that represents the nested connection always has its
auto-commit mode set to false.

40

Derby Developer's Guide

Database-side JDBC procedures using non-nested connections

A database-side JDBC procedure can create a new connection instead of using a nested
connection. Statements executed in the procedure will be part of a different transaction,
and so can issue commits and rollbacks.

Such procedures can connect to a database different from the one to which the parent
SQL statement that called it is connected. The procedure does not use the same
transaction or Connection. It establishes a new Connect i on and transaction.

Note: If database-side JDBC procedures do not use nested connections, this means
that they are operating outside of the normal DBMS transaction control, so it is not good
practice to use them indiscriminately.

Invoking a procedure using the CALL command

If a procedure uses only IN parameters, Derby can execute the procedure by using the
SQL CALL command. A stored procedure with IN, OUT, or INOUT parameters can be
invoked from a client application by using the CallableStatement method.

You can invoke the procedure in an SQL statement such as the following:

CALL MYPROC()

Note: You cannot roll back this statement, because commits occur within the procedure
itself. Procedures that use nested connections, on the other hand, are not permitted to
commit or roll back and can therefore be rolled back after the calling statement.

You can also use the CALL command to execute a procedure that does return a value,
but you will not be able to access the value.

Database-side JDBC procedures and SQLExceptions

It is possible to code database-side procedures, like application-side methods, to catch
SQLExceptions. SQLExceptions that are caught within a procedure are hidden from the
calling application code.

When such SQLExcept i ons are of transaction severity (such as deadlocks), this
"hiding" of the exception causes unexpected problems.

This is because errors of transaction severity roll back work already done by a
transaction (not just the piece executed by the called method) and silently begin a new
transaction. When the method execution is complete, Derby detects that the outer
statement was invalidated by a deadlock and rolls back any work done in the new
transaction as well. This is the expected behavior, because all the statements in between
explicit commits should be treated atomically; the new transaction implicitly begun by
Derby's rollback was not intended by the application designer.

However, this is not the same behavior that would happen if the method were invoked in
the application. In that situation, Derby would roll back the work done by the transaction
and silently begin a new transaction. Work in the new transaction would not be rolled
back when the method returned. However, coding the application in that way means
that the transaction did not end where you expected it to and is probably a programming
mistake. Coding in this manner is not recommended.

A method that catches a deadlock exception and then continues is probably making a
mistake. Errors of transaction severity should be caught not by nested code, but only by
the outermost application code. That is the only way to ensure that transactions begin
and end where you expect them to.

41

Derby Developer's Guide
Not all database vendors handle nested deadlocks the same way. For this and other
reasons, it is not possible to write portable SQL-invoking methods. However, it is possible
to write SQL-invoking methods that behave identically regardless of whether you invoke
them in the application or as a procedure in the database.

In order to ensure identical application- and database-side handling of nested errors,
code try-catch blocks to check for the severity of exceptions as follows:

try {
pr epar edSt at enent . execut e() ;

} catch (SQLException se) {
String SQLState = se.getSQ.State();
if (SQState.equal s("23505"))
{ correctDuplicateKey(); }
else if (SQState.equal s("22003")) {
correctArithmeticOverflow(); }
else { throw se; }

}

Of course, users also have the choice of not wrapping SQL statements in try-catch blocks
within methods. In that case, SQLExceptions are caught higher up in their applications,
which is the desired behavior.

User-defined SQLExceptions

When the execution of a database-side method raises an error, Derby wraps that
exception in an SQLException with an SQLSt at e of 38000.

You can avoid having Derby wrap the exception if:

» The exception is an SQLException
» The range of the SQLState is 38001-38999

(This conforms to the SQL99 standard.)

Programming trigger actions

Derby allows you to create triggers. When you create a trigger, you define an action or
set of actions that are executed when a database event occurs on a specified table. A
database event is a delete, insert, or update operation.

For example, if you define a trigger for a delete on a particular table, the trigger action is
executed whenever someone deletes a row or rows from the table.

The CREATE TRI GGER statement in the Derby Reference Manual goes into detail of the
complete CREATE TRI GGER syntax. This section provides information on defining the
trigger action itself, which is only one aspect of creating triggers.

This section refers to the CREATE TRI GGER statement as the trigger actions.

Trigger action overview
A trigger action is a simple SQL statement.

For example:

CREATE TRIGGER . . .

DELETE FROM flightavailability

WHERE flight_id IN (SELECT flight_id FROMflightavailability
VWHERE YEAR(flight_date) < 2005);)

42

Derby Developer's Guide

A trigger action does have some limitations, though; for example, it cannot contain
dynamic parameters or alter the table on which the trigger is defined. See "TriggerAction”
in the Derby Reference Manual for details.

Performing referential actions

Derby provides referential actions. Examples in this section are included to illustrate how
to write triggers.

You can choose to use standard SQL referential integrity to obtain this functionality,
rather than writing triggers. See the Derby Reference Manual for more information on
referential integrity.

Accessing before and after rows
Many trigger actions need to access the values of the rows being changed.
Such trigger actions need to know one or both of the following:

« the "before" values of the rows being changed (their values before the database
event that caused the trigger to fire)

« the "after" values of the rows being changed (the values to which the database
event is setting them)

Derby provides transition variables and transition tables for a trigger action to access
these values. See "Referencing Old and New Values: The Referencing Clause" in the
Derby Reference Manual.

Examples of trigger actions

The following trigger action copies a row from the flights table into the flight_history table
whenever any row gets inserted into flights and adds the comment "inserted from trigl" in
the status column of the flight_history table.

CREATE TRIGGER trigl

AFTER UPDATE ON flights

REFERENCI NG OLD AS UPDATEDROW

FOR EACH ROW MODE DB2SQL

I NSERT | NTO flights_history

VALUES (UPDATEDROW FLI GHT_I| D, UPDATEDROW SEGVENT_NUMBER,
UPDATEDROW ORI G_Al RPORT, UPDATEDROW DEPART_TI ME,

UPDATED ROW DEST_AI RPORT, UPDATEDROW ARRI VE_TI ME,
UPDATEDROW MEAL, UPDATEDROW FLYI NG Tl ME, UPDATEDROW M LES,
UPDATEDROW Al RCRAFT, ' | NSERTED FROM trigl');

Triggers and exceptions

Exceptions raised by triggers have a statement severity; they roll back the statement that
caused the trigger to fire.

This rule applies to nested triggers (triggers that are fired by other triggers). If a trigger
action raises an exception (and it is not caught), the transaction on the current connection
is rolled back to the point before the triggering event. For example, suppose Trigger A
causes Trigger B to fire. If Trigger B throws an exception, the current connection is rolled
back to the point before the statement in Trigger A that caused Trigger B to fire. Trigger
A is then free to catch the exception thrown by Trigger B and continue with its work. If
Trigger A does not throw an exception, the statement that caused Trigger A, as well as
any work done in Trigger A, continues until the transaction in the current connection is
either committed or rolled back. However, if Trigger A does not catch the exception from

43

Derby Developer's Guide

Trigger B, it is as if Trigger A had thrown the exception. In that case, the statement that
caused Trigger A to fire is rolled back, along with any work done by both of the triggers.

Aborting statements and transactions

You might want a trigger action to be able to abort the triggering statement or even the
entire transaction.

Triggers that use the current connection are not permitted to commit or roll back the
connection, so how do you do that? The answer is: have the trigger throw an exception,
which is by default a statement-level exception (which rolls back the statement). The
application-side code that contains the statement that caused the trigger to fire can then
roll back the entire connection if desired. Programming triggers in this respect is no
different from programming any database-side JDBC method.

44

Derby Developer's Guide

Controlling Derby application behavior

This section looks at some advanced Derby application concepts.

The JDBC Connection and Transaction Model

Session and transaction capabilities for SQL are handled through JDBC procedures, not
by SQL commands.

JDBC defines a system session and transaction model for database access. A session is
the duration of one connection to the database and is handled by a JDBC Connect i on
object.

Connections
A Connection object represents a connection with a database.

Within the scope of one Connect i on, you access only a single Derby database.
(Database-side JDBC procedures can allow you to access more than one database in
some circumstances.) A single application might allow one or more Connect i ons to
Derby, either to a single database or to many different databases, provided that all the
databases are within the same system.

With DriverManager, you use the connection URL as an argument to get the
get Connect i on method to specify which database to connect to and other details.

The following example shows an application establishing three separate connections to
two different databases in the current system.

Connection conn = DriverManager. get Connecti on(

"j dbc: der by: sanpl e") ;
System out . println("Connected to dat abase sanple");
conn. set Aut oConmi t (f al se);
Connection conn2 = Driver Manager. get Connecti on(

"j dbc: der by: newDB; creat e=true");
System out. printl n("Created AND connected to newDB");
conn2. set Aut oCommi t (f al se) ;
Connection conn3 = Driver Manager. get Connecti on(

"j dbc: der by: newDB") ;
System out. println("Got second connection to newDB");
conn3. set Aut oCommi t (f al se) ;

A Connection object has no association with any specific thread; during its lifetime, any
number of threads might have access to it, as controlled by the application.

Statements

To execute SQL statements against a database, an application uses
Statements (j ava. sql . St at enent) and PreparedStatements

(j ava. sql . Prepar edSt at enent), or CallableStatements

(j ava. sql . Cal | abl eSt at enent) for stored procedures.

Because PreparedStatement extends Statement and CallableStatement extends
PreparedStatement, this section refers to both as Statements. Statements are obtained
from and are associated with a particular Connection.

ResultSets and Cursors

Executing a Statement that returns values gives a Resul t Set
(j ava. sgl . Resul t Set), allowing the application to obtain the results of the statement.

45

Derby Developer's Guide

Only one Resul t Set can be open for a particular St at enent at any time, as per the
JDBC specification.

Thus, executing a Statement automatically closes any open Resul t Set generated by an
earlier execution of that St at ermrent .

For this reason, you must use a different Statement to update a cursor (a named
Resul t Set) from the one used to generate the cursor.

The names of open cursors must be unique within a Connection.
Nested connections

SQL statements can include routine invocations. If these routines interact with the
database, they must use a Connection.

Transactions

A transaction is a set of one or more SQL statements that make up a logical unit of work
that you can either commit or roll back and that will be recovered in the event of a system
failure.

All the statements in the transaction are atomic. A transaction is associated with a
single Connect i on object (and database). A transaction cannot span Connections (or
databases).

Derby permits schema and data manipulation statements (DML) to be intermixed within
a single transaction. If you create a table in one transaction, you can also insert into it
in that same transaction. A schema manipulation statement (DDL) is not automatically
committed when it is performed, but participates in the transaction within which it is
issued. Because DDL requires exclusive locks on system tables, keep transactions that
involve DDL short.

Transactions when auto-commit is disabled

When auto-commiit is disabled, you use a Connection object's commi t and r ol | back
methods to commit or roll back a transaction.

The comi t method makes permanent the changes resulting from the transaction
and releases locks. The r ol | back method undoes all the changes resulting from the
transaction and releases locks. A transaction encompasses all the SQL statements
executed against a single Connect i on object since the last commi t orrol | back.

You do not need to explicitly begin a transaction. You implicitly end one transaction and
begin a new one after disabling auto-commit, changing the isolation level, or after calling
comit orroll back.

Committing a transaction also closes all Resul t Set objects excluding the Resul t Set
objects associated with cursors with holdability t r ue. The default holdability of the
cursorsis true and Resul t Set objects associated with them need to be closed
explicitly. A commit will not close such Resul t Set objects. It also releases any database
locks currently held by the Connect i on, whether or not these objects were created in
different threads.

Using auto-commit

A new connection to a Derby database is in auto-commit mode by default, as specified by
the JDBC standard.

Auto-commit mode means that when a statement is completed, the method commit is
called on that statement automatically. Auto-commit in effect makes every SQL statement
a transaction. The commit occurs when the statement completes or the next statement

is executed, whichever comes first. In the case of a statement returning a Resul t Set ,

46

Derby Developer's Guide

the statement completes when the last row of the Resul t Set has been retrieved or the
Resul t Set has been closed explicitly.

Some applications might prefer to work with Derby in auto-commit mode; some might
prefer to work with auto-commit turned off. You should be aware of the implications of
using either model.

You should be aware of the following when you use auto-commit:

e Cursors

You cannot use auto-commit if you do any positioned updates or deletes (that is,
an update or delete statement with a "WHERE CURRENT OF" clause) on cursors
which have the close cursors on commit option set.

Auto-commit automatically closes cursors, which are explicitly opened with the
close on commit option, when you do any in-place updates or deletes.

A cursor declared to be held across commit can execute updates and issue multiple
commits before closing the cursor, but the cursor must be repositioned before any
statement following the commit. If this is attempted with auto-commit on, an error is
generated.

Database-side JDBC Procedures (procedures using nested connections)

You cannot execute procedures within SQL statements if those procedures perform
a commit or rollback on the current connection. Since in the auto-commit mode

all SQL statements are implicitly committed, Derby turns off auto-commit during
execution of database-side procedures and turns it back on when the method
completes.

Procedures that use nested connections are not permitted to turn auto-commit on or
off or to commit or roll back.
Table-level locking and the SERIALIZABLE isolation level

When an application uses table-level locking and the SERIALIZABLE isolation level,
all statements that access tables hold at least shared table locks. Shared locks
prevent other transactions that update data from accessing the table. A transaction
holds a lock on a table until the transaction commits. So even a SELECT statement
holds a shared lock on a table until its connection commits and a new transaction
begins.

Table 2. Summary of Application Behavior with Auto-Commit On or Off

Topic Auto-Commit On | Auto-Commit Off
Transactions Each statement Commit() or
is a separate rollback() begins a
transaction. transaction.

Database-side JDBC procedures Auto-commit is Works (no explicit

(routines using nested connections) turned off. commits or
rollbacks are
allowed).

Updatable cursors Does not work. Works.

Works. Works. Lower
concurrency when
applications use
SERIALIZABLE

isolation mode and

Multiple connections accessing the
same data

table-level locking.

a7

Derby Developer's Guide

Topic Auto-Commit On | Auto-Commit Off

Updatable ResultSets Works. Works. Not required
by the JDBC
program.

Turning off auto-commit

You can disable auto-commit with the Connection class's setAutoCommit method.

conn. set Aut oCommi t (f al se);
Explicitly closing Statements, ResultSets, and Connections

You should explicitly close Statements, Resul t Set' s, and Connect i ons when you no
longer need them.

Connections to Derby are resources external to an application, and the garbage collector
will not close them automatically.

For example, close a Statement object using its ¢l ose method; close a Connecti on
object using its cl ose method. If auto-commit is disabled, active transactions need to be
explicitly committed or rolled back before closing the connection

Statement versus transaction runtime rollback

When an SQL statement generates an exception, this exception results in a runtime
rollback. A runtime rollback is a system-generated rollback of a statement or transaction
by Derby, as opposed to an explicit r ol | back call from your application.

Extremely severe exceptions, such as disk-full errors, shut down the system, and the
transaction is rolled back when the database is next booted. Severe exceptions, such as
deadlock, cause transaction rollback; Derby rolls back all changes since the beginning
of the transaction and implicitly begins a new transaction. Less severe exceptions, such
as syntax errors, result in statement rollback; Derby rolls back only changes made by the
statement that caused the error. The application developer can insert code to explicitly
roll back the entire transaction if desired.

Derby supports partial rollback through the use of savepoints. See the Derby Reference
Manual for more information.

Result set and cursor mechanisms

A result set maintains a cursor, which points to its current row of data. It can be used to
step through and process the rows one by one.

In Derby, any SELECT statement generates a cursor which can be controlled by a

j ava. sql . Resul t Set object. Derby does not support SQL-92's DECLARE CURSOR
language construct to create cursors, however Derby supports positioned deletes and
positioned updates of updatable cursors.

Simple non-updatable result sets

This example is an excerpt from a sample JDBC application that generates a result set
with a simple SELECT statement and then processes the rows.

Connecti on conn = Driver Manager. get Connecti on(
"j dbc: der by: sanpl e") ;
Statenent s = conn.createStatement();
S. execute("set schema ' SAMP' ") ;
//note that autocommit is on--it is on by default in JDBC
Resul tSet rs = s. execut eQuery(
"SELECT enpno, firstnne, |astnanme, salary, bonus, comm"

48

Derby Developer's Guide

+ "FROM sanp. enpl oyee");
/** a standard JDBC ResultSet. It nmintains a

* cursor that points to the current row of data. The cursor
* nmoves down one row each tine the nethod next() is called.
* You can scroll one way only--forward--with the next()
* nmethod. When auto-conmit is on, after you reach the
* Jlast row the statenment is considered conpl eted
* and the transaction is commtted.
*/
Systemout.println("last name" + "," + "first nane" + ": earnings");

/* here we are scrolling through the result set
with the next() mnethod.*/
while (rs.next()) {
/'l processing the rows
String firstnne = rs.getString("Fl RSTNVE") ;
String |l astNane = rs.getString("LASTNAMVE") ;
Bi gDeci mal sal ary = rs. getBi gDeci mal (" SALARY") ;
Bi gDeci mal bonus = rs. get Bi gDeci nal (" BONUS") ;
Bi gDeci mal comm = rs. get Bi gDeci mal (" COW'") ;
Systemout.println(lastName + ", " + firstnme + ":
+ (sal ary. add(bonus. add(conm))));

rs.close();

/1l once we've iterated through the |ast row,

/1 the transaction comits automatically and rel eases
[/ shared | ocks

s.cl ose();

Updatable result sets

Updatable result sets in Derby can be updated by using result set update methods
(updat eRow() ,del et eRow() and i nsert Row()), or by using positioned update or
delete queries.

Both scrollable and non-scrollable result sets can be updatable in Derby.

If the query which was executed to create the result set is not updatable, Derby will
downgrade the concurrency mode to Resul t Set . CONCUR_READ ONLY, and add a
warning about this on the Resul t Set . The compilation of the query fails if the result set
cannot be updatable, and contains a FOR UPDATE clause.

Positioned updates and deletes can be performed if the query contains FOR UPDATE or if
the concurrency mode for the result set is Resul t Set . CONCUR_UPDATABLE.

To use the result set update methods, the concurrency mode for the result set must be
Resul t Set . CONCUR_UPDATABLE. The query does not need to contain FOR UPDATE to
use these methods.

Updatable cursors lock the current row with an update lock when positioned on the row,
regardless of isolation level. Therefore, to avoid excessive locking of rows, only use
concurrency mode Resul t Set . CONCUR_UPDATABLE or the FOR UPDATE clause when
you actually need to update the rows. For more information about locking, see Types and
scope of locks in Derby systems.

Requirements for updatable result sets

Only specific SELECT statements- simple accesses of a single table-allow you to update
or delete rows as you step through them.

For more information, see "SELECT statement" and "FOR UPDATE clause" in the Derby
Reference Manual.

Forward only updatable result sets

A forward only updatable result set maintains a cursor which can only move in one
direction (forward), and also update rows.

49

Derby Developer's Guide

To create a forward only updatable result set, the statement has to be
created with concurrency mode Resul t Set . CONCUR_UPDATABLE and type
Resul t Set . TYPE_FORWARD_ONLY.

Note: The default type is Resul t Set . TYPE_FORWARD ONLY.

Example of using Resul t Set . updat eXXX() + Result Set. updat eRow() to update
a row:

Statenent stnmt = conn. createStatenent (ResultSet. TYPE_FORWARD _ONLY,
Resul t Set . CONCUR_UPDATABLE) ;

Resul t Set uprs = stnt.executeQuery(
"SELECT FI RSTNAME, LASTNAME, WORKDEPT, BONUS " +
" FROM EMPLOYEE") ;

while (uprs.next()) {
i nt newBonus = uprs.getlnt("BONUS") + 100;
uprs. updat el nt (" BONUS", newBonus);
uprs. updat eRow() ;

}

Example of using Resul t Set . del et eRow() to delete a row:

Statenent stnt = conn. createStatenent (ResultSet. TYPE_FORWARD _ONLY,
Resul t Set . CONCUR_UPDATABLE) ;
Resul t Set uprs = stnt.executeQuery(
"SELECT FI RSTNAVE, LASTNAME, WORKDEPT, BONUS " +
"FROM EMPLOYEE") ;

while (uprs.next()) {
if (uprs.getlnt("WORKDEPT")==300) ({
uprs. del et eRow() ;
}

}

Visibility of changes

 After an update or delete is made on a forward only result set, the result set's
cursor is no longer on the row just updated or deleted, but immediately before
the next row in the result set (it is necessary to move to the next row before
any further row operations are allowed). This means that changes made by
Resul t Set . updat eRow() and Resul t Set . del et eRow() are never visible.

« If arow has been inserted, i.e using Resul t Set . i nsert Row() it may be visible in
a forward only result set.

Conflicting operations

The current row of the result set cannot be changed by other transactions, since it will
be locked with an update lock. Result sets held open after a commit have to move to the
next row before allowing any operations on it.

Some conflicts may prevent the result set from doing updates/deletes:
« If the current row is deleted by a statement in the same transaction, calls to
Resul t Set . updat eRow() will cause an exception, since the cursor is no longer
positioned on a valid row.
Scrollable updatable result sets

A scrollable updatable result set maintains a cursor which can both scroll and update
rows.

Derby only supports scrollable insensitive result sets. To create a scrollable
insensitive result set which is updatable, the statement has to be created
with concurrency mode Resul t Set . CONCUR_UPDATABLE and type

Resul t Set . TYPE_SCROLL_I NSENSI TI VE.

50

Derby Developer's Guide
Example of using result set update methods to update a row:

Statenent stnt =
conn. creat eSt at ement (Resul t Set . TYPE_SCROLL_| NSENSI Tl VE,
Resul t Set . CONCUR_UPDATABLE) ;
Resul t Set uprs = stnt.executeQuery(
"SELECT FI RSTNAME, LASTNAME, WORKDEPT, BONUS " +
"FROM EMPLOYEE") ;

uprs. absolute(5); // update the fifth row
int newBonus = uprs.getlnt("BONUS") + 100;
uprs. updat el nt (" BONUS", newBonus);

upr s. updat eRow() ;

Example of using Resul t Set . del et eRow() to delete a row:

Statenent stnt =
conn. creat eSt at ement (Resul t Set . TYPE_SCROLL_| NSENSI Tl VE,
Resul t Set . CONCUR_UPDATABLE) ;
Resul t Set uprs = stnt.executeQuery(
"SELECT FI RSTNAME, LASTNAME, WORKDEPT, BONUS " +
"FROM EMPLOYEE") ;

uprs. last();
uprs.relative(-5); // noves to the 5th fromthe |ast row
uprs. del et eRow() ;

Visibility of changes
« Changes caused by other statements, triggers and other transactions (others) are
considered as other changes, and are not visible in scrollable insensitive result sets.
« Own updates and deletes are visible in Derby's scrollable insensitive result sets.
Note: Derby handles changes made using positioned updates and deletes as own
changes, so when made via a result set's cursor such changes are also visible in
that result set.
* Rows inserted to the table may become visible in the result set.
* Resul t Set . rowDel et ed() returns true if the row has been deleted using
the cursor or result set. It does not detect deletes made by other statements or
transactions. Note that the method will also work for result sets with concurrency
CONCUR_READ_ONLY if the underlying result set is FOR UPDATE and a cursor
was used to delete the row.
* Resul t Set . r owUpdat ed() returns true if the row has been updated using
the cursor or result set. It does not detect updates made by other statements or
transactions. Note that the method will also work for result sets with concurrency
CONCUR_READ_ONLY if the underlying result set is FOR UPDATE and a cursor
was used to update the row.
* Note: Both Resul t Set . r owpdat ed() and Resul t Set . r owDel et ed() return
true if the row first is updated and later deleted.
Please be aware that even if changes caused by others are not visible in the result set,
SQL operations, including positioned updates, which access the current row will read and
use the row data as it is in the database, not as it is reflected in the result set.

Conflicting operations

A conflict may occur in scrollable insensitive result sets if a row is updated/deleted by
another committed transaction, or if a row is updated by another statement in the same
transaction. The row which the cursor is positioned on is locked, however once it moves
to another row, the lock may be released depending on transaction isolation level. This
means that rows in the scrollable insensitive result set may have been updated/deleted
by other transactions after they were fetched.

51

Derby Developer's Guide

Since the result set is insensitive, it will not detect the changes made by others. When
doing updates using the result set, conflicting changes on the columns being changed wiill
be overwritten.

Some conflicts may prevent the result set from doing updates/deletes:

» The row has been deleted after it was read into the result set: Scrollable insensitive
result sets will give a warning with SQLSt at e 01001 .

« The table has been compressed: Scrollable insensitive result sets will give a
warning with SQLSt at e 01001. A compress conflict may happen if the cursor is
held over a commit. This is because the table intent lock is released on commit, and
not reclaimed until the cursor moves to another row.

To avoid conflicts with other transactions, you may increase the transaction isolation
level to repeatable read or serializable. This will make the transaction hold locks on the
rows which have been read until it commits.

Note: When you use holdable result sets, be aware that the locks will be released on
commit, and conflicts may occur regardless of isolation level. You should probably avoid
using holdable result sets if your application relies on transactional behavior for the result
set.

Inserting rows with updatable result sets

Updatable result set can be used to insert rows to the table, by using
Resul t Set. i nsert Row() .

When inserting a row, each column in the insert row that does not allow null as a value
and does not have a default value must be given a value using the appropriate update
method. If the inserted row satisfies the query predicate, it may become visible in the
result set.

Example of using Resul t Set . i nsert Row() to insert a row:

Statenent stnmt = conn. createStatenent (ResultSet. TYPE_FORWARD _ONLY,
Resul t Set . CONCUR_UPDATABLE) ;

Resul t Set uprs = stnt.executeQuery(
"SELECT firstnanme, |astnanme, workdept, bonus " +
"FROM enpl oyee") ;

uprs. noveTol nsert Row() ;

uprs. updat eStri ng(" FlI RSTNAME", "Andreas");

uprs. updat eStri ng("LASTNAME", "Korneliussen");

upr s. updat el nt (" WORKDEPT", 123);

uprs.insertRow();

upr s. noveToCur r ent Row() ;

Naming or accessing the name of a cursor

There is no SQL language command to assign a name to a cursor. You can use
the JDBC set Cur sor Nanme method to assign a name to a Resul t Set that allows
positioned updates and deletes.

You assign a name to a Resul t Set with the set Cur sor Nane method of the
St at ement interface. You assign the name to a cursor before executing the St at ermrent
that will generate it.

Statenent s3 = conn.createStatenent();
/1 name the statement so we can reference the result set
/1 it generates
s3. set Cur sor Nanme(" UPDATABLESTATEMENT") ;
/1 we will be able to use the followi ng statenent |ater
/1 to access the current row of the cursor
/1l a result set needs to be obtained prior to using the
/1 WHERE CURRENT synt ax
ResultSet rs = s3. executeQuery("select * from

Fl i ght Booki ngs FOR UPDATE of nunber_seats");

52

Derby Developer's Guide

Prepar edSt at enent ps2 = conn. prepar eSt at ement (
"UPDATE Fl i ght Booki ngs SET nunber_seats = ? " +
"WHERE CURRENT OF UPDATABLESTATEMENT");

Typically, you do not assign a name to the cursor, but let the system generate one for
you automatically. You can determine the system-generated cursor name of a ResultSet
generated by a SELECT statement using the Resul t Set class's get Cur sor Nane
method.

Pr epar edSt at ement ps2 = conn. pr epar eSt at ement (
"UPDATE enpl oyee SET bonus = ? WHERE CURRENT OF "+
Updat abl e. get Cur sor Nane()) ;

Extended updatable result set example

Connecti on conn = Driver Manager. get Connection("j dbc: derby: sanpl e");
conn. set Aut oConmi t (f al se);

/'l Create the statement with concurrency node CONCUR UPDATABLE
/1l to allow result sets to be updatable
Statenent stnt = conn. createStatenent (ResultSet. TYPE_FORWARD ONLY,
Resul t Set . CONCUR_UPDATABLE,
Resul t Set . CLOSE_CURSORS_AT_COWM T) ;
/1 Updat abl e statenents have some requirenments
/1 for exanple, select nust be on a single table
Resul t Set uprs = stnt.executeQuery(
"SELECT FI RSTNVE, LASTNAME, WORKDEPT, BONUS " +
"FROM EMPLOYEE FOR UPDATE of BONUS'); // Only bonus can be updated

String theDept="E21";

while (uprs.next())
String firstnne uprs. get String("FlI RSTNVE") ;
String | ast Nane uprs. get String("LASTNAME") ;
String wor kDept uprs. get Stri ng(" WORKDEPT") ;
Bi gDeci mal bonus = uprs. get Bi gDeci mal (" BONUS") ;
i f (workDept.equal s(theDept)) {
/1 if the current row neets our criteria,
/1 update the updatable colum in the row
upr s. updat eBi gDeci mal (" BONUS",
bonus. add(Bi gDeci mal . val ueO (250L)));
uprs. updat eRow() ;
System out . println("Updating bonus for enployee:" +
firstnme + | ast Nane);

I mn—-

}
} . _ .
conn.comit(); // conmit the transaction
/'l cl ose object
uprs. cl ose();
stnt.close();

/1 Cdose connection if the application does not need it any nore
conn. cl ose();

Result sets and auto-commit

Except for the result sets associated with holdable cursors, issuing a commit will cause
all result sets on your connection to be closed.

The JDBC application is not required to have auto-commit off when using update
methods on updatable result set, even if the result set is not holdable. Positioned updates
and deletes cannot be used in combination with autocommit and non-holdable result
sets.

53

Derby Developer's Guide
Scrollable result sets

JDBC 2.0 adds two new types of result sets which allows you to scroll in either direction
or to move the cursor to a particular row. Derby supports one of these types: scrollable
insensitive result sets (Resul t Set . TYPE_SCRCLL_| NSENSI TI VE).

When you use a result set of type of type Resul t Set . TYPE_SCRCLL_| NSENSI Tl VE,
Derby materializes rows from the first one in the result set up to the one with the biggest
row number as the rows are requested. The materialized rows will be backed to disk if
necessary, to avoid excessive memory usage.

Insensitive result sets, in contrast to sensitive result sets, are insensitive to changes

made by others on the rows which have been materialized. Derby allows updates of

scrollable insensitive result sets, please see Visibilty of changes, which also explains
visibility of own changes.

Note: Derby does not support result sets of type
ResultSet. TYPE_SCROLL_SENSITIVE.

//autocommit does not have to be off because even if
//we accidentally scroll past the last row, the inplicit conmt
/lon the the statement will not close the result set because result sets
/lare held over conmt by default
conn. set Aut oConmi t (f al se);
Statenent s4 = conn. creat eSt at enent (Resul t Set . TYPE_SCROLL_| NSENSI Tl VE
Resul t Set . CONCUR_READ _ONLY) ;
s4. execute("set schema ' SAMP' ") ;
Resul t Set scrol | er=s4. execut eQuery(
"SELECT sal es_person, region, sales FROM sales " +
"WHERE sal es > 8 ORDER BY sal es DESC');
if (scroller.first()) { // One rowis now materialized
Systemout.println("The sales rep who sold the highest nunber"” +
of sales is " +
scroller.getString("SALES_PERSON'));
} else {
Systemout.println("There are no rows.");

scrol l er. beforeFirst();
scrol |l er.afterlLast(); /1 By calling afterlast(), all rows will be
materi al i zed
scrol | er. absol ute(3);
if (!scroller.isAfterLast()) {
System out. println("The enployee with the third hi ghest number " +

"of sales is " +
scrol l er.getString("SALES PERSON') + ", with " +
scrol l er.getlnt("SALES") + " sales");

if (scroller.isLast()) {
Systemout.println("There are only three rows.");

if (scroller.last()) {
Systemout.println("The | east highest nunber " +
"of sales of the top three sales is: " +
scroller.getlnt("SALES"));

scrol l er.close();

s4. cl ose();

conn. commi t ()

conn. cl ose();

System out . println("d osed connection");

Holdable result sets

The holdable result set feature permits an application to keep result sets open after
implicit or explicit commits. By default, the cursor controlled by the result set is held open
after a commit.

54

Derby Developer's Guide
Note: Derby, supports non-holdable result sets on platforms which support JDBC 3.

Starting with Java 2 Platform, Standard Edition, v 1.4 (J2SE), result sets can be created
with close when a commit occurs option. Such result sets will be automatically closed
when a commit happens. Result sets are automatically closed when a transaction aborts,
whether or not they have been specified to be held open.

To specify whether a result set should be held open after a commit takes place,
supply one of the following ResultSet parameters to the Connect i on method
creat eSt at ement, prepar eSt at enent, or prepareCal | :

* CLOSE_CURSORS_AT_COMMIT

Result sets are closed when an implicit or explicit commit is performed.
« HOLD_CURSORS_OVER_COMMIT

Result sets are held open when a commit is performed, implicitly or explicitly. This is
the default behavior.

The method Statement.getResultSetHoldability() indicates whether a result set generated
by the Statement object stays open or closes, upon commit. See the Derby Reference
Manual for more information.

When an implicit or explicit commit occurs, result sets that hold cursors open behave as
follows:

« Open result sets remain open. Non-scrollable result sets becomes positioned before
the next logical row of the result set. Scrollable insensitive result sets keep their
current position.

« When the session is terminated, the result set is closed and destroyed.

« All locks are released, including locks protecting the current cursor position.

« For non-scrollable result sets, immediately following a commit, the only valid
operations that can be performed on the ResultSet object are:

* positioning the result set to the next row with Resul t Set . next ().
« closing the result set with Resul t Set . cl ose().

When a rollback or rollback to savepoint occurs, either explicitly or implicitly, the following
behavior applies:

« All open result sets are closed.

« All locks acquired during the unit of work are released.

Note: Holdable result sets do not work with XA transactions in Derby. When
working with XA transactions, the result set should be opened with holdability
Resul t Set . CLOSE_CURSORS_AT_COW T.

Holdable result sets and autocommit

When autocommit is on, a positioned update or delete statement will automatically cause
the transaction to commit.

If the result set has holdability Resul t Set . CLOSE_CURSORS_AT_COWM T, combined
with autocommit on, Derby gives an exception on positioned updates and deletes
because the cursor is closed immediately before the positioned statement is commenced,
as mandated by JDBC. In contrast, no such implicit commit is done when using result set
updates methods.

Non-holdable result set example

The following example uses Connection.createStatement to return a Resul t Set that will
close after a commit is performed.

Connection conn = ds. get Connecti on(user, passwd);

Statenent stnt =

conn. creat eSt at ement (Resul t Set. TYPE_SCROLL_| NSENSI Tl VE,
Resul t Set . CONCUR READ ONLY,

55

Derby Developer's Guide
Resul t Set . CLOSE_CURSORS_AT_COWM T) ;

Locking, concurrency, and isolation

This section discusses topics pertinent to multi-user systems, in which concurrency is
important.

Derby is configured by default to work well for multi-user systems. For single-user
systems, you might want to tune your system so that it uses fewer resources; see Lock
granularity.

Isolation levels and concurrency

Derby provides four transaction isolation levels. Setting the transaction isolation level
for a connection allows a user to specify how severely the user's transaction should be
isolated from other transactions.

For example, it allows you to specify whether transaction A is allowed to make changes
to data that have been viewed by transaction B before transaction B has committed.

A connection determines its own isolation level, so JDBC provides an application with

a way to specify a level of transaction isolation. It specifies four levels of transaction
isolation. The higher the transaction isolation, the more care is taken to avoid conflicts;
avoiding conflicts sometimes means locking out transactions. Lower isolation levels thus
allow greater concurrency.

Inserts, updates, and deletes always behave the same no matter what the isolation level
is. Only the behavior of select statements varies.

To set isolation levels you can use the JDBC Connection.setTransactionlsolation method
or the SQL SET ISOLATION statement.

If there is an active transaction, the network client driver always commits the active
transaction, whether you use the JDBC Connection.setTransactionlsolation method
or the SQL SET ISOLATION statement. It does this even if the method call or
statement does not actually change the isolation level (that is, if it sets the isolation
level to its current value). The embedded driver also always commits the active
transaction if you use the SET ISOLATION statement. However, if you use the
Connection.setTransactionlsolation method, the embedded driver commits the active
transaction only if the call to Connection.setTransactionlsolation actually changes the
isolation level.

The names of the isolation levels are different, depending on whether you use a JDBC
method or SQL statement. Mapping of JDBC transaction isolation levels to Derby
isolation levels shows the equivalent names for isolation levels whether they are set
through the JDBC method or an SQL statement.

Table 3. Mapping of JDBC transaction isolation levels to Derby isolation levels

Isolation levels for JDBC Isolation levels for SQL
Connection.TRANSACTION_READ_UNCOMMITT| UR, DIRTY READ, READ

(ANSI level 0) UNCOMMITTED
Connection.TRANSACTION_READ_ COMMITTED| CS, CURSOR STABILITY, READ
(ANSI level 1) COMMITTED
Connection.TRANSACTION_REPEATABLE_REAIl RS

(ANSI level 2)

56

Derby Developer's Guide

Isolation levels for JIDBC

Isolation levels for SQL

(ANSI level 3)

Connection.TRANSACTION_SERIALIZABLE

RR, REPEATABLE READ,
SERIALIZABLE

These levels allow you to avoid particular kinds of transaction anomalies, which are

described in Transaction Anomalies.

Table 4. Transaction Anomalies

Anomaly

Example

Dirty Reads

A dirty read happens when a transaction
reads data that is being modified by
another transaction that has not yet
committed.

Transaction A begins.

UPDATE enpl oyee SET salary = 31650
WHERE enpno = ' 000090’

Transaction B begins.

SELECT * FROM enpl oyee

(Transaction B sees data updated by
transaction A. Those updates have not yet
been committed.)

Non-Repeatable Reads

Non-repeatable reads happen when a
query returns data that would be different
if the query were repeated within the
same transaction. Non-repeatable reads
can occur when other transactions are
modifying data that a transaction is
reading.

Transaction A begins.

SELECT * FROM enpl oyee
WHERE enpno = ' 000090

Transaction B begins.

UPDATE enpl oyee SET sal ary = 30100
WHERE enpno = ' 000090

(Transaction B updates rows viewed

by transaction A before transaction A
commits.) If Transaction A issues the same
SELECT statement, the results will be
different.

Phantom Reads

Records that appear in a set being

read by another transaction. Phantom
reads can occur when other transactions
insert rows that would satisfy the
WHERE clause of another transaction's
statement.

Transaction A begins.

SELECT * FROM enpl oyee
WHERE sal ary > 30000

Transaction B begins.

I NSERT | NTO enpl oyee

(empno, firstnne, mdinit,

| ast nane, job,

sal ary) VALUES (' 000350', 'NICK,
"A ' GREEN , ' LEGAL COUNSEL', 35000)

Transaction B inserts a row that would
satisfy the query in Transaction A if it were
issued again.

The transaction isolation level is a way of specifying whether these transaction anomalies
are allowed. The transaction isolation level thus affects the quantity of data locked by a
particular transaction. In addition, a DBMS's locking schema might also affect whether
these anomalies are allowed. A DBMS can lock either the entire table or only specific
rows in order to prevent transaction anomalies.

57

Derby Developer's Guide

When Transaction Anomalies Are Possible shows which anomalies are possible under
the various locking schemas and isolation levels.

Table 5. When Transaction Anomalies Are Possible

Table-Level Row-Level
Isolation Level Locking Locking
TRANSACTION_READ_UNCOMMITTED Dirty reads, Dirty reads,
nonrepeatable nonrepeatable
reads, and reads, and
phantom reads | phantom reads
possible possible
TRANSACTION_READ_COMMITTED Nonrepeatable | Nonrepeatable
reads and reads and
phantom reads | phantom reads
possible possible
TRANSACTION_REPEATABLE_READ Phantom reads | Phantom reads
not possible possible
because entire
table is locked
TRANSACTION_SERIALIZABLE None None

The following java.sql.Connection isolation levels are supported:

* TRANSACTI ON_SERI ALI ZABLE

RR, SERI ALI ZABLE, or REPEATABLE READ from SQL.

TRANSACTION_SERIALIZABLE means that Derby treats the transactions as if
they occurred serially (one after the other) instead of concurrently. Derby issues
locks to prevent all the transaction anomalies listed in Transaction Anomalies from
occurring. The type of lock it issues is sometimes called a range lock.

« TRANSACTI ON_REPEATABLE_READ
RS from SQL.

TRANSACTION_REPEATABLE_READ means that Derby issues locks to prevent
only dirty reads and non-repeatable reads, but not phantoms. It does not issue
range locks for selects.

TRANSACTI ON_READ_COWM TTED

CS or CURSOR STABI LI TY from SQL.

TRANSACTION_READ_COMMITTED means that Derby issues locks to prevent
only dirty reads, not all the transaction anomalies listed in Transaction Anomalies.

TRANSACTION_READ_COMMITTED is the default isolation level for transactions.
TRANSACTI ON_READ_UNCOWM TTED

UR, DI RTY READ, or READ UNCOWM TTED from SQL.

For a SELECT INTO, FETCH with a read-only cursor, full select used in an
INSERT, full select/subquery in an UPDATE/DELETE, or scalar full select
(wherever used), READ UNCOMMITTED allows:

« Any row that is read during the unit of work to be changed by other application
processes.

< Any row that was changed by another application process to be read even if
the change has not been committed by the application process.

58

Derby Developer's Guide

For other operations, the rules that apply to READ COMMITTED also apply to
READ UNCOMMITTED.

Configuring isolation levels

If a connection does not specify its isolation level, it inherits the default isolation level for
the Derby system. The default value is CS.

When set to CS, the connection inherits the TRANSACTION_READ_COMMITTED
isolation level. When set to RR, the connection inherits the
TRANSACTION_SERIALIZABLE isolation level, when set to RS, the connection inherits
the TRANSACTION_REPEATABLE_READ isolation level, and when set to UR, the
connection inherits the TRANSACTION_READ_UNCOMMITTED isolation level.

To override the inherited default, use the methods of java.sql.Connection.

In addition, a connection can change the isolation level of the transaction within an
SQL statement. For more information, see "SET ISOLATION statement” in the Derby
Reference Manual. You can use the WITH clause to change the isolation level for the
current statement only, not the transaction. For information about the WITH clause, see
"SELECT statement" in the Derby Reference Manual.

In all cases except when you change the isolation level using the WITH clause, changing
the isolation level commits the current transaction. In most cases, the current transaction
is committed even if you set the isolation level in a way that does not change it (that is, if
you set it to its current value). See Isolation levels and concurrency for details.

Note: For information about how to choose a particular isolation level, see Tuning Derby.

Lock granularity

Derby can be configured for table-level locking. With table-level locking, when a
transaction locks data in order to prevent any transaction anomalies, it always locks the
entire table, not just those rows being accessed.

By default, Derby is configured for row-level locking. Row-level locking uses more
memory but allows greater concurrency, which works better in multi-user systems.
Table-level locking works best with single-user applications or read-only applications.

You typically set lock granularity for the entire Derby system, not for a particular
application. However, at runtime, Derby may escalate the lock granularity for a particular
transaction from row-level locking to table-level locking for performance reasons. You
have some control over the threshold at which this occurs. For information on turning off
row-level locking, see "derby.storage.rowlLocking" in Tuning Derby. For more information
about automatic lock escalation, see "About the System's Selection of Lock Granularity"
and "Transaction-Based Lock Escalation" in Tuning Derby. For more information on
tuning your Derby system, see "Tuning Databases and Applications".

Types and scope of locks in Derby systems

There are several types of locks available in Derby systems, including exclusive, shared,
and update locks.

Exclusive locks

When a statement modifies data, its transaction holds an exclusive lock on data that
prevents other transactions from accessing the data.

This lock remains in place until the transaction holding the lock issues a commit or
rollback. Table-level locking lowers concurrency in a multi-user system.

59

Derby Developer's Guide
Shared locks

When a statement reads data without making any modifications, its transaction obtains a
shared lock on the data.

Another transaction that tries to read the same data is permitted to read, but

a transaction that tries to update the data will be prevented from doing so

until the shared lock is released. How long this shared lock is held depends

on the isolation level of the transaction holding the lock. Transactions using

the TRANSACTION_READ_COMMITTED isolation level release the lock

when the transaction steps through to the next row. Transactions using the
TRANSACTION_SERIALIZABLE or TRANSACTION_REPEATABLE_READ
isolation level hold the lock until the transaction is committed, so even a SELECT
can prevent updates if a commit is never issued. Transactions using the
TRANSACTION_READ_UNCOMMITTED isolation level do not request any locks.

Update locks

When a user-defined update cursor (created with the FOR UPDATE clause or by using
concurrency mode Resul t Set . CONCUR_UPDATABLE) reads data, its transaction
obtains an update lock on the data.

If the user-defined update cursor updates the data, the update lock is converted to an
exclusive lock. If the cursor does not update the row, when the transaction steps through
to the next row, transactions using the TRANSACTION_READ_COMMITTED isolation
level release the lock. (For update locks, the TRANSACTION_READ_UNCOMMITTED
isolation level acts the same way as TRANSACTION_READ_COMMITTED.)

Update locks help minimize deadlocks.
Lock compatibility

This table lists compatibility between lock types. + means the lock types are compatible,
while - means they are incompatible.

Table 6. Lock Compatibility Matrix

' Shared Update Exclusive
Shared + + =

Update + - -
Exclusive - - -

Scope of locks

The amount of data locked by a statement can vary.
Table locks

A statement can lock the entire table.

Table-level locking systems always lock entire tables.

Row-level locking systems can lock entire tables if the WHERE clause of a statement
cannot use an index. For example, UPDATES that cannot use an index lock the entire
table.

Row-level locking systems can lock entire tables if a high number of single-row locks
would be less efficient than a single table-level lock. Choosing table-level locking
instead of row-level locking for performance reasons is called lock escalation. For more
information about this topic, see "About the System's Selection of Lock Granularity" and
"Transaction-Based Lock Escalation” in Tuning Derby.

60

Derby Developer's Guide

Single-row locks
A statement can lock only a single row at a time.

For row-level locking systems:

« For TRANSACTION_REPEATABLE_READ isolation, the locks are released at the
end of the transaction.

e For TRANSACTION_READ_COMMITTED isolation, Derby locks rows only as the
application steps through the rows in the result. The current row is locked. The row
lock is released when the application goes to the next row.

« For TRANSACTION_SERIALIZABLE isolation, however, Derby locks the whole set
before the application begins stepping through.

e For TRANSACTION_READ_UNCOMMITTED, no row locks are requested.

Derby locks single rows for INSERT statements, holding each row until the transaction is
committed. If there is an index associated with the table, the previous key is also locked.

Range locks
A statement can lock a range of rows (range lock).

For row-level locking systems:
« For any isolation level, Derby locks all the rows in the result plus an entire range of
rows for updates or deletes.
» For the TRANSACTION_SERIALIZABLE isolation level, Derby locks all the rows
in the result plus an entire range of rows in the table for SELECTSs to prevent
nonrepeatable reads and phantoms.

For example, if a SELECT statement specifies rows in the Employee table where the
salary is BETWEEN two values, the system can lock more than just the actual rows it
returns in the result. It also must lock the entire range of rows between those two values
to prevent another transaction from inserting, deleting, or updating a row within that
range.

An index must be available for a range lock. If one is not available, Derby locks the entire
table.

Table 7. Types and scopes of locking

Transaction Isolation Table-Level

Level Locking Row-Level Locking
Connection. TRANSACTIf§ For SELECT SELECT statements get no
(SQL: UR) statements, locks. For other statements,

table-level locking same as for TRANSACTION_
is never requested | READ_COMMITTED.

using this isolation
level. For other
statements, same

as for TRANSACTIO
Connection. TRANSACTI{ SELECT statements | SELECTSs lock and release single
(SQL: CS) get a shared lock rows as the user steps through the
on the entire table. | ResultSet. UPDATEs and DELETES
The locks are get exclusive locks on a range
released when of rows. INSERT statements get
the user closes exclusive locks on single rows (and
the ResultSet. sometimes on the preceding rows).

Other statements
get exclusive

61

Derby Developer's Guide

Deadlocks

Transaction Isolation | Table-Level
Level Locking Row-Level Locking
locks on the entire
table, which are
released when
the transaction
commits.
Connection. TRANSACTI{ Same as for TRANSA SELECT statements get shared
(SQL: RS) locks on the rows that satisfy the
WHERE clause (but do not prevent
inserts into this range). UPDATEs and
DELETEs get exclusive locks on a
range of rows. INSERT statements
get exclusive locks on single rows
(and sometimes on the preceding
rows).
Connection. TRANSACTI{ SELECT statements | SELECT statements get shared locks
(SQL: RR) get a shared lock on a range of rows. UPDATE and
on the entire table. | DELETE statements get exclusive
Other statements locks on a range of rows. INSERT
get exclusive statements get exclusive locks on
locks on the entire | single rows (and sometimes on the
table, which are preceding rows).
released when
the transaction
commits.

Notes on locking

In addition to the locks already described, foreign key lookups require briefly held shared
locks on the referenced table (row or table, depending on the configuration).

The table and examples in this section do not take performance-based lock escalation
into account. Remember that the system can choose table-level locking for performance
reasons.

In a database, a deadlock is a situation in which two or more transactions are waiting for
one another to give up locks.

For example, Transaction A might hold a lock on some rows in the Accounts table and
needs to update some rows in the Orders table to finish. Transaction B holds locks on
those very rows in the Orders table but needs to update the rows in the Accounts table
held by Transaction A. Transaction A cannot complete its transaction because of the

lock on Orders. Transaction B cannot complete its transaction because of the lock on
Accounts. All activity comes to a halt and remains at a standstill forever unless the DBMS
detects the deadlock and aborts one of the transactions.

Figure 6. A deadlock where two transactions are waiting for one another to give up
locks.

62

Derby Developer's Guide

Transaction A Transaction B
A has alock on B has alock o
accounts and needs | and needs a lr
a lock on orders to accounts 1o fir
finish the transaction. fransaction.
Orders Accounts

Avoiding deadlocks

Using both row-level locking and the TRANSACTION_READ_COMMITTED isolation
level makes it likely that you will avoid deadlocks (both settings are Derby defaults).
However, deadlocks are still possible.

Derby application developers can avoid deadlocks by using consistent application logic;
for example, transactions that access Accounts and Orders should always access the
tables in the same order. That way, in the scenario described above, Transaction B
simply waits for transaction A to release the lock on Orders before it begins. When
transaction A releases the lock on Orders, Transaction B can proceed freely.

Another tool available to you is the LOCK TABLE statement. A transaction can attempt
to lock a table in exclusive mode when it starts to prevent other transactions from getting
shared locks on a table. For more information, see "LOCK TABLE statement" in the
Derby Reference Manual.

Deadlock detection

When a transaction waits more than a specific amount of time to obtain a lock (called the
deadlock timeout), Derby can detect whether the transaction is involved in a deadlock.

When Derby analyzes such a situation for deadlocks it tries to determine how many
transactions are involved in the deadlock (two or more). Usually aborting one transaction
breaks the deadlock. Derby must pick one transaction as the victim and abort that
transaction; it picks the transaction that holds the fewest number of locks as the victim,
on the assumption that transaction has performed the least amount of work. (This may
not be the case, however; the transaction might have recently been escalated from
row-level locking to table locking and thus hold a small number of locks even though it
has done the most work.)

When Derby aborts the victim transaction, it receives a deadlock error (an SQLException
with an SQLSt at e of 40001). The error message gives you the transaction IDs, the
statements, and the status of locks involved in a deadlock situation.

63

Derby Developer's Guide

ERROR 40001: A | ock coul d not be obtained due to a deadl ock,

cycle of locks & waiters is:

Lock : ROW DEPARTMENT, (1,14)

Waiting XID : {752, X} , APP, update departnent set |ocation='Boise'
wher e dept no=' E21'

Ganted XID : {758, X} Lock : ROW EMPLOYEE, (2,8)

Waiting XID : {758, U , APP, update enpl oyee set bonus=150 where
sal ary=23840

Ganted XID : {752, X} The selected victimis XID: 752

For information on configuring when deadlock checking occurs, see Configuring deadlock
detection and lock wait timeouts.

Note: Deadlocks are detected only within a single database. Deadlocks across multiple
databases are not detected. Non-database deadlocks caused by Java synchronization
primitives are not detected by Derby.

Lock wait timeouts

Even if a transaction is not involved in a deadlock, it might have to wait a considerable
amount of time to obtain a lock because of a long-running transaction or transactions
holding locks on the tables it needs.

In such a situation, you might not want a transaction to wait indefinitely. Instead, you
might want the waiting transaction to abort, or time out, after a reasonable amount of
time, called a lock wait timeout.

Configuring deadlock detection and lock wait timeouts

You configure the amount of time a transaction waits before Derby does any deadlock
checking with the derby.locks.deadlockTimeout property.

You configure the amount of time a transaction waits before timing out with the

der by. | ocks. wai t Ti meout property. When configuring your database or system,
you should consider these properties together. For example, in order for any deadlock
checking to occur, the der by. | ocks. deadl ockTi meout property must be setto a
value lower than the der by. | ocks. wai t Ti neout property. If it is set to a value equal
to or higher than the der by. | ocks. wai t Ti meout , the transaction times out before
Derby does any deadlock checking.

By default, derby.locks.waitTimeout is set to 60 seconds. -1 is the equivalent of no wait
timeout. This means that transactions never time out, although Derby can choose a
transaction as a deadlock victim.

Figure 7. One possible configuration: deadlock checking occurs when a
transaction has waited 30 seconds; no lock wait timeouts occur.

64

Derby Developer's Guide

Transactions are never abored
deadiockTimeoud=30 unless they are salected as the
wictim whan desdiocks ane checkad.

v

I've vasiled 30 seconds,
Arn | deadlocked?

Hmot, keap waiting unil
| can chiain locks (| or forawar).

seconds waiting o obtain & lock

v

Figure 8. Another typical configuration: deadlock checking occurs after a
transaction has waited 60 seconds for a lock; after 90 s