1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.math.analysis;
18
19 import java.io.Serializable;
20 import org.apache.commons.math.MathException;
21
22 /**
23 * Implements the <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
24 * Neville's Algorithm</a> for interpolation of real univariate functions. For
25 * reference, see <b>Introduction to Numerical Analysis</b>, ISBN 038795452X,
26 * chapter 2.
27 * <p>
28 * The actual code of Neville's evalution is in PolynomialFunctionLagrangeForm,
29 * this class provides an easy-to-use interface to it.</p>
30 *
31 * @version $Revision: 620312 $ $Date: 2008-02-10 12:28:59 -0700 (Sun, 10 Feb 2008) $
32 * @since 1.2
33 */
34 public class NevilleInterpolator implements UnivariateRealInterpolator,
35 Serializable {
36
37 /** serializable version identifier */
38 static final long serialVersionUID = 3003707660147873733L;
39
40 /**
41 * Computes an interpolating function for the data set.
42 *
43 * @param x the interpolating points array
44 * @param y the interpolating values array
45 * @return a function which interpolates the data set
46 * @throws MathException if arguments are invalid
47 */
48 public UnivariateRealFunction interpolate(double x[], double y[]) throws
49 MathException {
50
51 PolynomialFunctionLagrangeForm p;
52 p = new PolynomialFunctionLagrangeForm(x, y);
53 return p;
54 }
55 }