
Developing Web
Applications with
Apache Cocoon

and the
Spring Framework

Ugo Cei

Cocoon GetTogether 2004, Gent, Oct. 12th 2004

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Introduction

• This presentation is about enterprise web
applications, that is applications that manage data
that is accessed by many users at the same time.

• Enterprise applications have some kind of database
underneath, typically a releational one.

• This presentation is not about the next version of
Cocoon.

• All the things you are about to see, you can do
with Cocoon 2.1.

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Strengths of Cocoon
for web application development

• Promotes Separation of Concerns.

• SAX-based pipelining.

• Caching.

• Continuation-based flow control.

• Powerful forms framework.

Cocoon GetTogether 2004, Gent, Oct 12th 2004

The Spring Framework

The Spring Framework is a
“lightweight” container based on

the principles of Inversion of
Control and Dependency

Injection that aims to reduce the
complexity of developing

enterprise Java applications.

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Spring Features
• Setter-based and constructor-based Inversion of

Control (or Dependency Injection if you prefer).

• JDBC abstraction.

• O/R mapping (Hibernate, JDO, OJB) integration.

• Transaction management (both JTA and local).

• Aspect-Oriented Programming (own framework
plus AspectJ and AspectWerkz).

• MVC Web framework.

• Lots more now (EJB, JMS, Mail, Web Services,
scheduling, attributes) and in the future (JMX).

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Spring Benefits
• Simplicity

• Modularity

• Extensibility

• Non-invasiveness

• Testability

• Promotes best practices like programming to
interfaces.

• This is all good, but what Spring gives you in
practice is a simpler way of developing J2EE
applications (without forcing you to use EJB).

Cocoon GetTogether 2004, Gent, Oct 12th 2004

What Spring does NOT
offer

• Logging (there’s already Commons Logging or
Log4j).

• Pooling (there’s already Commons DBCP).

• O/R Mapping (there’s already Hibernate, JDO, ...).

• Lots of other things for which there are already
perfectly good libraries out there.

• But Spring makes it easier to use those libraries!

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Architectural Components
Presentation layer Cocoon’s template languages

(JXTG, Velocity, ...)

Controller Cocoon’s Flowscript

Service layer Optional (but recommended)

Data access layer DAOs

Persistence Hibernate, OJB, JDO, ...

Database JDBC

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Patterns of Enterprise
Application Architecture

• Application Controller

• Two Step View

• Service Layer

• Domain Model

• Lazy Load

• Serialized LOB

• Optimistic Locking

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Application Controller
(PoEAA p. 379)

• “An Application Controller has two main
responsibilities: deciding which domain logic to run
and deciding the view with which to display the
response.”

• Cocoon’s Flowscript:

function do_something() {
 var data =
 someDomainLogic(cocoon.request);
 cocoon.sendPage(“views/aView”,
 { “data”: data });
}

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Two Step View
(PoEAA p. 365)

• “Turns domain data into HTML in two steps: first
by forming some kind of logical page, then
rendering the logical page into HTML.”

• In Cocoon, the first step is performed by a
generator, which turns a domain model into XML.

• The second step is performed by one or more
transformers, which can output HTML, XSL-FO,
WML, etc.

• Cocoon’s pipeline machinery makes this easy to
setup and efficient.

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Caching

• Cocoon provides support for caching the output
of each step in a pipeline.

• In a database-driven webapp it’s important to make
the output of the generator cacheable, to avoid
unnecessary hits on the database.

• Cocoon’s JXTemplateGenerator allows you to
specify when generated content should be
considered still valid:

<page jx:cache-key="${cacheKey}"
jx:cache-validity="${cacheValidity}">

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Service Layer
(PoEAA p. 133)

• “Defines an application’s boundary with a layer of
services that establishes a set of available
operations and coordinates the application’s
response in each operation.”

• Using Spring, it’s recommended to create a Service
Layer in order to centralize resource and
transaction management.

• Spring supports declarative transaction
management using AOP.

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Service Layer
(PoEAA p. 133)

Service Layer

Domain Model

Data Source

Layer

User
Interfaces Integration

GatewayData Loaders

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Data Access Objects

• DAOs decouple business logic from a specific
persistence mechanism.

• Define a generic interface:

public interface CategoryDAO {
 public abstract Category getCategory(Long id);
}

• Provide specific implementations:

public class CategoryHibernateDAO
 implements CategoryDAO {
 ...
}

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Declarative Transaction
Management

1. Define the service:
<bean id="petStoreServiceTarget"
 class="PetStoreServiceImpl">
 <property name="categoryDAO">
 <ref bean="categoryDAO"/>
 </property>
 ...
</bean>

2. Wrap an AOP proxy around it:
<bean id="petStoreService"
 class="org...TransactionProxyFactoryBean">
 <property name="transactionManager">
 <ref bean="transactionManager"/></property>
 <property name="target"><ref
 bean="petStoreServiceTarget"/></property>
 <property name="transactionAttributes">
 <props>
 <prop key="*">PROPAGATION_REQUIRED</prop>
 </props>
 </property>
</bean>

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Declarative Transaction
Management

• Methods called on the Service are automatically
executed in the context of a transaction:

var appCtx = cocoon.context.getAttribute ↩
 (WebApplicationContext. ↩
 ROOT_WEB_APPLICATION_CONTEXT_ATTRIBUTE);
var service = appCtx.getBean(“petStoreService”);
var cat = service.findCategory(categoryId);
cocoon.sendPage(“views/category”, {
 “category”: cat });

• A Service Layer gives you a convenient place
where to place transaction boundaries.

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Domain Model
(PoEAA p. 116)

• “A Domain Model creates a web of interconnected
objects, where each object represents some
meaningful individual, whether as large as a
corporation or as small as a single line on an order
form.”

• An O/R mapper can be a valid alternative to EJBs
when implementing a domain model.

• Domain objects contain business logic.

• Choose an O/R tool that has low overhead when
modeling simple cases but is powerful enough to
model complex relationships.

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Why you should never use
raw JDBC directly

• Verbose: try/catch/finally.

• Difficult to get correct error handling, guaranteed
release of resources.

• Not fully portable:

• Need to look at proprietary codes in
SQLException.

• BLOB handling issues.

• Stored procedures returning ResultSets etc.

• Proprietary SQL is not the main problem.

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Object-Relational Mapping

• Transparent persistence.

• The O/R impedance mismatch can be solved.

• You can persist objects with acceptable tradeoffs.

• Partially decouples from database:

• Still must consider performance.

• Deep inheritance questionable.

• Copes better with change:

• ORM queries are less fragile than SQL queries.

• Against your domain objects, not RDBMS
schema.

• Can drop down to SQL queries if necessary.

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Hibernate

“Hibernate is a powerful, ultra-high
performance object/relational

persistence and query service for
Java. Hibernate lets you develop

persistent classes following common
Java idioms - including association,

inheritance, polymorphism,
composition and the Java collections

framework.”

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Lazy Load
(PoEAA p. 200)

• “An object that doesn’t contain all of the data you
need but knows how to get it.”

• Use it to avoid loading a big graph of objects when
following relationships.

• Hibernate supports lazy loading via proxies.

• A problem arises if you close the database session
before rendering the view.

Cocoon GetTogether 2004, Gent, Oct 12th 2004

The Lazy Load Problem

• See the following code:

var session = getHibernateSession();
var obj = session.find(“select ...”);
cocoon.sendPage(uri, { “data”: obj });
session.close();

• This is going to fail if the retrieved objects have
lazy relationships that are navigated by the view,
because the session.close() will happen before the
view is rendered!

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Solution:
Open Session in View

<filter>
 <filter-name>
 OpenSessionInViewFilter
 </filter-name>
 <filter-class>
 org.springframework.orm.hibernate.support.↩
 OpenSessionInViewFilter
 </filter-class>
 <init-param>
 <param-name>singleSession</param-name>
 <param-value>false</param-value>

 </init-param>
</filter>

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Serialized LOB
(PoEAA p. 272)

• “Saves a graph of objects by serializing them into a
single large object (LOB), which it stores in a
database field.”

• The recommended way is to represent these
objects as an XML document.

• Cocoon Forms offers the option to bind an XML
document to a set of fields.

• Spring offers facilities for simplifying handling LOBs
and working around some RDBM’s quirks, like
Oracle.

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Optimistic Locking
(PoEAA p. 416)

• “Prevents conflicts between concurrent business
transactions by detecting a conflict and rolling back
the transaction.”

• Optimistic Locking avoids having to maintain
database transactions across multiple HTTP
requests.

• Hibernate detects conflicts by automatically
versioning entities.

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Setting up a JDBC
DataSource

• With pooling, of course:

<bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 <property name="driverClassName">
 <value>oracle.jdbc.driver.OracleDriver</value>
 </property>
 <property name="url">
 <value>jdbc:oracle:thin:@host:1521:ORCL</value>
 </property>
 <property name="username">
 <value>scott</value>
 </property>
 <property name="password">
 <value>tiger</value>
 </property>
</bean>

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Setting up a Hibernate
Session Factory

<bean id="sessionFactory"
 class="org...LocalSessionFactoryBean">
 <property name="mappingResources">
 <list>
 <value>Category.hbm.xml</value>
 <value>Product.hbm.xml</value>
 ...
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">Oracle</prop>
 </props>
 </property>
 <property name="dataSource">
 <ref bean="dataSource"/>
 </property>
</bean>

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Setting up DAOs

<bean id="categoryDAO" class="CategoryHibernateDAO">
 <property name="sessionFactory">
 <ref bean="sessionFactory"/>
 </property>
</bean>

<bean id="productDAO" class="ProductHibernateDAO">
 <property name="sessionFactory">
 <ref bean="sessionFactory"/>
 </property>
</bean>

...

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Setting up services
<bean id="petStoreServiceTarget"
 class="PetStoreServiceImpl">
 <property name="categoryDAO">
 <ref bean="categoryDAO"/>
 </property>
 ...
</bean>

<bean id="petStoreService"
 class="org...TransactionProxyFactoryBean">
 <property name="transactionManager">
 <ref bean="transactionManager"/></property>
 <property name="target"><ref
 bean="petStoreServiceTarget"/></property>
 <property name="transactionAttributes">
 <props>
 <prop key="*">PROPAGATION_REQUIRED</prop>
 </props>
 </property>
</bean>

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Accessing Spring’s
Application Context

1. Use the ContextLoaderListener:
<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/classes/applicationContext.xml</param-value>
</context-param>

<listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>

2. Get the Application Context from Flowscript:
var appCtx = cocoon.context.getAttribute ↩
 (WebApplicationContext.ROOT_WEB_APPLICATION_CONTEXT_ATTRIBUTE);
var bean = appCtx.getBean(”beanName”);

3. There’s no step 3!

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Javascript Beans

function PropertyHello() {
this.message = "hello world";

}

PropertyHello.prototype.sayHello = function() {
return this.message;

}

PropertyHello.prototype.setMessage =
function(message) {
 this.message = message;
}

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Javascript Beans
<bean id="propertySingleton"

singleton="true"
factory-bean="javascriptScriptFactory"
factory-method="create">

 <constructor-arg index="0">
 <value>PropertyHello.js</value>
 </constructor-arg>

 <!-- Must specify an interface -->
 <constructor-arg index="1">
 <value>org.example.Hello</value>
 </constructor-arg>

 <property name="message">
 <value>hello world property</value>
 </property>

</bean>

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Wrap-up

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Why should I use Cocoon
with Spring...

... instead of Spring MVC or Struts?

Because Cocoon gives you the Flowscript
and Forms.

Cocoon gives you also the Sitemap, lots of
prebuilt components, a Portal, etc. But the
duo above is what is most useful for web

applications (as opposed to web sites).

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Why should I use Spring
with Cocoon...

... instead of Avalon?

Because Spring is geared towards developing
enterprise (J2EE) web applications.

The support Spring gives you when dealing
with databases and other typical EIS
components is unmatched by Avalon.

Because Spring is simpler!

Cocoon GetTogether 2004, Gent, Oct 12th 2004

To learn more...

www.springframework.org hibernate.org

The Spring Petstore Cocoon block:
http://new.cocoondev.org/main/g1/43

Cocoon GetTogether 2004, Gent, Oct 12th 2004

Q&A

