
Page Flow Inheritance

Table of contents

1 Introduction..2

2 Basic Inheritance..2

2.1 Inheriting Plain Members.. 2

2.2 Inheriting Annotated Members..2

2.3 Inheriting the @Jpf.Controller annotation...3

3 Advanced Inheritance.. 5

3.1 Overriding..5

3.2 Abstract base classes... 5

4 Local Paths...6

Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

1. Introduction

Page Flow inheritance is a powerful way to share actions, exception handlers, configuration,
etc. among controller classes. The basic idea is simple: you use Java inheritance to share
pieces of controller classes. This document shows ways in which you might use the feature,
and also shows areas that go beyond what you might expect from standard Jave inheritance.

Note:
Both inheritance and Shared Flow offer ways to share actions and exception handlers. See Shared Flow vs. Inheritance for
some guidelines on when to use each one.

2. Basic Inheritance

2.1. Inheriting Plain Members

If you derive from a base class, you inherit all its public/protected member variables and
methods. Just as usual.

2.2. Inheriting Annotated Members

If you derive from a base class, then you inherit all its public/protected annotated members,
like action methods (@Jpf.Action), exception handler methods
(@Jpf.ExceptionHander), or shared flow fields (@Jpf.SharedFlowField). This
is not surprising, but it is important to point out. Inheriting an action method means that you
inherit the action. In the following example, DerivedFlow inherits its begin action from
BaseFlow.

package base;
...
@Jpf.Controller
public class BaseFlow extends PageFlowController
{

@Jpf.Action(
forwards={

@Jpf.Forward(name="index", path="index.jsp")
}

)
public Forward begin()
{

return new Forward("index");
}

}

Page Flow Inheritance

Page 2
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

../netui/sharedFlow.html
../netui/sharedFlowVsInheritance.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Action.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.ExceptionHander.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.SharedFlowField.html

package derived;
...
@Jpf.Controller
public class DerivedFlow extends BaseFlow
{
}

As usual, hitting /derived/DerivedFlow.jpf in your browser will execute the begin action on
DerivedFlow. In this case, it executes the inherited begin action. Pretty simple.

Note:
You may have noticed that "index.jsp" is a local path, and you may have wondered whether hitting /derived/DerivedFlow.jpf
will take you to /base/index.jsp or /derived/index.jsp. The page flow can actually be configured to work either way; see Local
Paths, below.

2.3. Inheriting the @Jpf.Controller annotation

When you extend a base class controller, you inherit its @Jpf.Controller annotation in
a special way: it is merged with the @Jpf.Controller annotation on your derived class.
Here is a very simple example:

package base;
...
@Jpf.Controller(nested=true)
public class BaseFlow extends PageFlowController
{

...
}

package derived;
...
@Jpf.Controller(

simpleActions={
@Jpf.SimpleAction(name="begin", path="index.jsp")

}
)
public class DerivedFlow extends BaseFlow
{
}

The controller DerivedFlow inherits nested=true from the base class, and still keeps
its simpleActions. It is as if DerivedFlow defined the following
@Jpf.Controller annotation:

@Jpf.Controller(
nested=true,
simpleActions={

@Jpf.SimpleAction(name="begin", path="index.jsp")

Page Flow Inheritance

Page 3
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html#nested()
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html

}
)

A more common example involves merging of arrays of annotations, like
@Jpf.SimpleAction or @Jpf.Forward . In the following example, ChildFlow
inherits the simple action baseAction and a catch for LoginException.

package parent;
...
@Jpf.Controller(

simpleActions={
@Jpf.SimpleAction(name="begin", path="page1.jsp"),
@Jpf.SimpleAction(name="baseAction",

navigateTo=Jpf.NavigateTo.previousPage)
},
catches={

@Jpf.Catch(type=LoginException.class, path="loginError.jsp")
}

)
public class ParentFlow extends PageFlowController
{
}

package child;
...
@Jpf.Controller(

simpleActions={
@Jpf.SimpleAction(name="begin", path="index.jsp")

},
catches={

@Jpf.Catch(type=Exception.class, path="error.jsp")
}

)
public class ChildFlow extends ParentFlow
{
}

It is as if ChildFlow was defined with the following @Jpf.Controller annotation:

@Jpf.Controller(
simpleActions={

@Jpf.SimpleAction(name="begin", path="index.jsp"),
@Jpf.SimpleAction(name="baseAction",

navigateTo=Jpf.NavigateTo.previousPage)
},
catches={

@Jpf.Catch(type=LoginException.class, path="loginError.jsp"),
@Jpf.Catch(type=Exception.class, path="error.jsp")

}
)

The basic rule is that attributes (e.g, nested=true) are inherited, while arrays (e.g.,
simpleActions={...}) are inherited and merged. When there are conflicts, values

Page Flow Inheritance

Page 4
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.SimpleAction.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html

from the derived controller override values from the base controller, as you would expect.

3. Advanced Inheritance

3.1. Overriding

You may have noticed from the ParentFlow/ChildFlow example above that the begin
action in ChildFlow overrode the one in ParentFlow. The simple rule is that any
annotation or attribute within your @Jpf.Controller will override one of the same
name/type in the base class. In the following example, the @Jpf.Catch for
LoginException is overridden in DerivedFlow.

package base;
...
@Jpf.Controller(

catches={
@Jpf.Catch(type=LoginException.class, path="loginError.jsp")

}
)
public class BaseFlow extends PageFlowController
{
}

package derived;
...
@Jpf.Controller(

catches={
@Jpf.Catch(type=LoginException.class,

method="handleLoginException")
}

)
public class DerivedFlow extends BaseFlow
{

@Jpf.ExceptionHandler(
forwards={

@Jpf.Forward(name="errorPage", path="error.jsp")
}

)
public Forward handleLoginException(LoginException ex, String

actionName, String message, Object formBean)
{

...
return new Forward("errorPage");

}
}

3.2. Abstract base classes

If you make your base controller class abstract, then you are free from some usual

Page Flow Inheritance

Page 5
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Catch.html

restrictions:

• Even if it is a page flow controller, it does not need to have a begin action.
• Even if it has nested=true in @Jpf.Controller, it does not have to have at least

one @Jpf.Forward or @Jpf.SimpleAction with a returnAction attribute.
This would normally be required.

• If you have a local path (e.g., "index.jsp", which does not start with "/"), you will not
receive a warning if the file does not exist. A derived page flow may have a local file
with this name.

• It is not required to have the @Jpf.Controller annotation.

4. Local Paths

In a derived controller class, you may inherit an action that forwards to a local path (a path
that does not begin with a "/"). In the following example, DerivedFlow inherits a begin
action that forwards to "index.jsp":

package base;
...
@Jpf.Controller(

simpleActions={
@Jpf.SimpleAction(name="begin", path="index.jsp")

}
)
public class BaseFlow extends PageFlowController
{
}

package derived;
...
@Jpf.Controller
public class DerivedFlow extends BaseFlow
{
}

If you hit /derived/DerivedFlow.jpf, where do you end up? /base/index.jsp or
/derived/index.jsp? By default, you end up at /derived/index.jsp; the local path is relative to
the current page flow (/derived/DerivedFlow.jpf). You can change this behavior, though, by
setting inheritLocalPaths=true in your derived class's @Jpf.Controller
annotation, e.g.,

package derived;
...
@Jpf.Controller(inheritLocalPaths=true)
public class DerivedFlow extends BaseFlow
{
}

Page Flow Inheritance

Page 6
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html#nested()
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.SimpleAction.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#returnAction()
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html

Now, if you hit /derived/DerivedFlow.jpf, you will see the content of /base/index.jsp.

Note:
Even when inheritLocalPaths=true, you won't leave (destroy) the current page flow by going to a path that's inherited
from a base class.

Page Flow Inheritance

Page 7
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

	1 Introduction
	2 Basic Inheritance
	2.1 Inheriting Plain Members
	2.2 Inheriting Annotated Members
	2.3 Inheriting the @Jpf.Controller annotation

	3 Advanced Inheritance
	3.1 Overriding
	3.2 Abstract base classes

	4 Local Paths

