Page Flow Controllers

Table of contents

I 1 11 0o 1T i o 1O 2
2 Starting the CoNtroller ClaSS.........cooi i 2
3 Fleshing Out the CONIOHEr..........ueiiie e 2
S T 0 L= AN 1 o PR 4
32 ACHON MENOGS.........eiiieiieeee bt 4
3.3 HANAIING FOMMS.....ciiiiiiieeee ettt 8
3.4 HandliNg EXCEPLIONS.........ccuiiirieiieiieieie ettt nne s 11
o A= 1T = o o OSSR 12
3L PP 13

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

Page Flow Controllers

1. Introduction

This topic explains the basics behind implementing controller files and actions. As
introduced in the previous topic (NetUl Overview) the following web application schematic
will be used.

implementation page flow

2. Starting the Controller Class

Thefirst step to writing a controller classisto create a new basic class named
Controller.java.

public class Controller

i mport org. apache. beehi ve. net ui . pagef | ow. PageFl owControl | er;

public class Controller
ext ends PageFl owControl | er

{

}

Additionally, Beehive weaves magic into controller classes using metadata annotations. The
@pf . Control | er annotation isarequired marker on any NetUI controller class. The

@pf . Control | er annotation alerts the compiler that this class is a special Page Flow
controller class, instead of atypical Javaclass.

i mport org. apache. beehi ve. net ui . pagef | ow. PageFl owControl | er;
i mport org. apache. beehi ve. net ui . pagef | ow. annot at i ons. Jpf;

@pf.Controller
public class Controller

ext ends PageFl owControl | er
{

}

Now we have the beginnings of a controller implementation.

3. Fleshing Out the Controller

Now that the boilerplate Cont r ol | er . j ava isin place, we can begin to implement the
actions that determine which JSP should actually be displayed. In the above model, there are
5 actions, plus one more action required by all Controller classes, the begi n method.
(Details about the begi n method appear below.)

 begin

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

../netui/overview.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html

Page Flow Controllers

| ogi n

nyPage

si gnUp
processLogin
processSi gnUp

There are two basic ways to implement actions: you can implement an action either asa (1)
simple action or as an (2) action method.

Simple Actions are class-level annotations, that is, annotations that decorate the controller
class. (You can aso think of simple actions as configurations of the controller class. If you
are familiar with Struts, it might help you to know that simple actions turn into <act i on>
elementsin the struts-config.xml file that is automatically generated when a controller class
iscompiled.) Syntactically they appear as follows:

@pf.Controller(
si mpl eAct i ons={
@pf. Si npl eAction(nane="soneNane", path="sonePage.jsp", [...other
properties...])

)
public class Controller

}

Simple actions can handle navigation, form submission, and form validation. If that is all
your action needs to accomplish, you should implement the action as a simple action. What
simple actions can't do is handle decision logic. If your action needs to make a decision and
conditionally execute code based on that decision, you should implement the action as an
action method.

Action M ethods are Java methods that have been endowed with all of the magic of actions:
that is, they can navigate users around the page flow, handle form submissions, validate form
data, handle decision logic, etc. (You can also think of the action methods as configurations
of individual methods, in contrast to simple actions, which configure the entire class. Again,
if you are familiar with Struts, know that action methods, just like simple actions, are
complied as<act i on> elementsin the struts-config.xml file.) Syntactically speaking, an
action method is a Java method that (1) returns the type For war d and (2) is decorated with
the @ pf . Act i on annotation:

@pf. Acti on(
forwards = {
@pf . Forward(name="sonmeNane", path="sonePath.jsp", [...other
properties...])

)
public Forward someMet hod()

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

apidocs/javadoc/org/apache/beehive/netui/pageflow/Forward.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Action.html

Page Flow Controllers

{
}

3.1. Simple Actions

Three of our five actions are purely navigational, and, as such, implementable as smple
actions. Those actionsare begi n, | ogi n, and si gnUp. The remaining actions require
object oriented programming, so they will be implemented as action methods.

The simple action implementations appear below. The following @ pf . Si npl eAct i on
annotations define a set of mappings between action names and JSP destinations. When a
particular action isinvoked, the user is carried to the corresponding JSP.

Each Controller class requires asimple action or action method named begi n--without it the class will not compile. The
begin action functions as the entry-point into the page flow. In this case the begin action simply navigates the user to the
i ndex. j sp page.

i mport org. apache. beehi ve. net ui . pagef | ow. PageFl owCont rol | er
i mport org. apache. beehi ve. net ui . pagef | ow. annot at i ons. Jpf;

@pf.Controller(
si npl eAct i ons={
@pf . Si npl eActi on(nane="begi n", path="index.jsp"),
@pf . Si npl eActi on(nanme="1 ogi n", path="1ogin.|sp"),
@pf . Si npl eActi on(nane="si gnUp", path="signup.jsp"),

public class Controller
ext ends PageFl owControl | er

{
}
3.2. Action M ethods

Now it is time to re-implement the three action methods: | ogi n, pr ocessLogi n, and
processSi gnUp.

The myPage action must determine if the user has already authenicated himself or not and
the action must behave differently depending on the result of that determination. If the user
has already been authenticated, then the page myPage. j sp will be displayed; if the user
has not been authenticated yet, then the pagel ogi n. j sp will be displayed.

We will implement this behavior in two steps: (1) first will implement arudimentary action
method, (2) second we will add the conditional navigational behavior to the method.

© 2004, Apache Software Foundation
Page 4

apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.SimpleAction.html

Page Flow Controllers

3.2.1. Rudimentary Action Methods. Constant Forwards

An action method must have two features: (1) it must the type For war d and (2) must be
decorated with the @ pf . Act i on annotation.

Thefirst step in the re-implementation processis to remove the simple action named
my page and replace it with amethod named myPage() . By returning a For war d object,
the method indicates which page to display to the user.

i nport org. apache. beehi ve. net ui . pagef | ow. For war d;
i mport org. apache. beehi ve. net ui . pagef | ow. PageFl owCont rol | er;
i mport org. apache. beehi ve. net ui . pagef | ow. annot at i ons. Jpf;

@pf.Controller(
si mpl eAct i ons={
@pf. Si npl eActi on(name="begi n", pat h="index.jsp")
@pf. Si npl eActi on(nanme="1 ogi n", path="1o0gin.]sp")

@pf. Si npl eActi on(nane="si gnUp", path="signup.|sp"),
@pf. Si npl eActi on(nanme="processLogi n", path="mypage.jsp"),
@pf. Si npl eActi on(nane="processSi gnUp", path="t hanks.jsp")

}

public class Controller
ext ends PageFl owControl | er

publ i c Forward nyPage()
{

}

To help with configuration and to avoid having JSP names within the body of a controller
method, Beehive once again uses annotations. The Jpf . Act i on and Jpf . For war d
annotations are used on each action method to build a mapping between forward names and
JSPs. The method then works only in terms of the forward name, and doesn't directly refer to
the JSP path.

The general form the of Jpf . Act i on/Jpf . For war d annotations are:

@pf . Acti on(
forwards = {
@pf.Forward(name="...", path="..."),
@pf.Forward(name="...", path="..."),
@pf . Forward(name="...", path="...")
}
)

By convention, forward names such as success and failur e are used, but by no means are

© 2004, Apache Software Foundation
Page 5

apidocs/javadoc/org/apache/beehive/netui/pageflow/Forward.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Action.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/Forward.html

Page Flow Controllers

required. It is good practice, though, to avoid naming the forward based upon the JSP name
since doing so would remove some of the decoupling that Beehive applications attempt to
achieve.

i mport org. apache. beehi ve. net ui . pagef | ow. For war d;
i mport org. apache. beehi ve. net ui . pagef | ow. PageFl owCont rol | er
i mport org. apache. beehi ve. net ui . pagef | ow. annot at i ons. Jpf;

@pf.Controller(

public class Controller
ext ends PageFl owControl | er

@pf. Acti on(
forwards = {
@pf . Forward(name="success", path="nypage.jsp")

)
publ i c Forward nyPage()
{

}
}

All that isleftisar et ur n statement to return the appropriate For war d object. Thisis
accomplished ssimply by constructing anew For war d with the appropriate name.

i mport org. apache. beehi ve. net ui . pagef | ow. For war d;
i mport org. apache. beehi ve. net ui . pagef | ow. PageFl owCont rol | er
i mport org. apache. beehi ve. net ui . pagef | ow. annot at i ons. Jpf;

@pf. Controller(

public class Controller
ext ends PageFl owControl | er

@pf . Acti on(
forwards = {
@pf . Forward(name="success", path="nypage.jsp")

)
publ i c Forward nyPage()
{

return new Forward("success");
}
}

Now we have re-implemented one of our simple actions as an action method. However, our
new action method doesn't do anything more than the original simple action. The new action
method remains a purely navigational action: it is not yet capable of any decision logic and

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

Page Flow Controllers

conditional execution. In the next section we will endow the action method with conditional
navigational behavior.

3.2.2. Advanced Action Methods: Conditional Forwards

Thefirst step in adding conditional navigational behavior isto define two forwards named
authenticated and not_authenticated, which are mapped to nypage. j sp and| ogi n. do
respectively.

i mport org. apache. beehi ve. net ui . pagef | ow. For war d;
i mport org. apache. beehi ve. net ui . pagef | ow. PageFl owCont rol | er;
i mport org. apache. beehi ve. net ui . pagef| ow. annot at i ons. Jpf;

@pf.Controller(

)
public class Controller
ext ends PageFl owControl | er

@pf. Acti on(
forwards = {
@pf . Forward(name="aut henti cat ed”, pat h="rmypage. j sp"),

@pf . Forward(name="not _aut henti cat ed", path="1ogin.do")

)
publ i c Forward nyPage()
{

}
}

But how does the method decide which forward to invoke? In this case, the determination of
authentication is performed by checking a session attributeto seeif the
aut hent i cat ed_user attribute has been set.

i mport org. apache. beehi ve. net ui . pagef | ow. For war d;
i mport org. apache. beehi ve. net ui . pagef | ow. PageFl owControl | er;
i mport org. apache. beehi ve. net ui . pagef | ow. annot at i ons. Jpf;

i mport javax.servlet.http.HtpServl et Request;
i mport javax.servlet.http. HttpSession;

@pf.Controller(
public class Controller
ext ends PageFl owControl | er

@pf . Acti on(
forwards = {

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

Page Flow Controllers

@pf . Forward(name="aut henti cated", pat h="rmypage. j sp"),
@pf . Forward(nanme="not aut henti cated", path="1Iogin.do")

)
publ i c Forward nyPage()
{

Ht t pSer vl et Request request = get Request();
Ht t pSessi on sessi on = request. get Sessi on();

if (session.getAttribute("authenticated user”) !'= null)

return new Forward("authenticated");

return new Forward("not authenticated");

}
}

Now that we have a method with two possible navigation outcomes, the flow diagram
appears as follows. Notice the two named arrows exiting the ny Page () method.

conditional forwards

Y ou may notice that the body of myPage() has no particular logic regarding the JSP
"myPage.jsp" itself. It simply operatesin terms of authentication and generically named
For war d objects. This presents a possibility of sharing thislogic with other controller
methods that are concerned with authentication. .

3.3. Handling Forms

Handling form data works similar to other controller methods. By providing a parameter to
the controller method the HTML form datais made available to the controller method. In the
above model, controller methods that process forms have been named with the
processXXX(..) convention.

e processLogin(...)
e processSignUp(...)

First, define a JavaBean to represent the HTML form to be submitted. This JavaBean can be
of any Javatype, aslong asit conforms to standard JavaBean syntax.

The JavaBean may be defined (1) asast at i ¢ inner class of the controller itself (see
example below) or (2) as a stand-alone Java classin a separate file. The JavaBean class
follows normal JavaBean conventions and requires no special annotations.

i mport org. apache. beehi ve. net ui . pagef | ow. For war d;
i mport org. apache. beehi ve. net ui . pagef | ow. PageFl owControl | er;
i mport org. apache. beehi ve. net ui . pagef | ow. annot at i ons. Jpf;

© 2004, Apache Software Foundation
Page 8

Page Flow Controllers

i mport javax.servlet.http.HtpServl et Request;
i mport javax.servlet.http. HttpSession;

@pf.Controller
public class Controller
ext ends PageFl owControl | er

{
public static class Logi nForminplenents java.io.Serializable
private String usernaneg;
private String password;
public void setUsernanme(String user nane)
} t hi s. user nane = user nane;
public String getUsernane()
{ return this.usernane;
}
public void setPassword(String passwor d)
i this. password = password;
public String getPassword()
{ return this. password;
} }
}

Defining the pr ocessLogi n(...) methodtotakealogi nFor mparameter isall that is
required to have a controller method that can operate upon the submitted form.

i mport org. apache. beehi ve. net ui . pagef | ow. For war d;
i mport org. apache. beehi ve. net ui . pagef | ow. PageFl owCont rol | er;
i mport org. apache. beehi ve. net ui . pagef | ow. annot at i ons. Jpf;

i mport javax.servlet.http. HtpServl et Request;
i mport javax.servlet.http. HttpSession;

@pf.Controller
public class Controller

ext ends PageFl owControl | er
{

© 2004, Apache Software Foundation
Page 9

Page Flow Controllers

public Forward processLogi n(Logi nForm forn

public static class Logi nForm

}
}

Onceagain, pr ocessLogi n(. . .) isaconditional forward controller method. If a user
has entered a correct username and password, then they should be directed to nypage. j sp,
otherwise they will be returned back to thel ogi n. j sp for another attempt. Checking
username and password is outside of the scope of Page Flow, and in this example, we rely
upon amythical MyAppUt i | s classto perform thislogic.

i mport org. apache. beehi ve. net ui . pagef | ow. For war d;
i mport org. apache. beehi ve. net ui . pagef | ow. PageFl owCont rol | er;
i mport org. apache. beehi ve. net ui . pagef | ow. annot at i ons. Jpf;

i mport javax.servlet.http. HtpServl et Request;
i mport javax.servlet.http. HttpSession;

@pf.Controller
public class Controller
ext ends PageFl owControl | er

@pf . Acti on(
forwards = {
@pf . Forward(name="| ogi n_success", pat h="nypage. jsp"),

@pf. Forward(name="l|ogin_failure", path="login.|sp")

public Forward processLogi n(Logi nForm forn

if (MyAppUtils. aut henticate(form getUsernane(),
form get Password()))

{
Ht t pSer vl et Request request = get Request();
Ht t pSessi on sessi on = request. get Sessi on();
session. set Attribute("authenticated_user"”,
form get User nanme());
return new Forward("Il ogin_success");
}

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

Page Flow Controllers

return new Forward("login_failure");

}
Having fleshed out the pr ocessLogi n() action method, the diagram appears as follows.

implementation page flow

Similar implementation would be done for pr ocessSi gnUp(. . .), involving another
form class such as Si gnUpFor m

3.4. Handling Exceptions

Suppose a new user completes the signup form and submits her user profile. But when the
profileis processed, it is discovered that the username has already been taken by another
user. What then?

A natural design choice would be to have the pr ocessSi gnUp action throw an exception
and then have the controller class handle the exception by returning the user to the original
signup page. The following diagram shows how you can interweave exception handling into
the page flow to further refine the paths through the flow.

page flow exception handling

Y ou can implement exception handling using the @ pf . Cat ch and
@ pf . Except i onHandl er annotations. The @ pf . Cat ch defines some exception to
handle should it arise within the controller class. @ pf . Except i onHandl er annotation
is used to define a dedicated method for handling the exception.
@pf.Controller(

cat ches={

@pf . Cat ch(type=Account Al r eadyExi st sExcepti on. cl ass,
nmet hod="handl eAccount Al r eadyExi st sExcepti on")

})
si nmpl eAct i ons={
} .

public class Controller
ext ends PageFl owControl | er
{

@pf . Except i onHandl er (
f or war ds={
@ pf . For war d(nane="si gnup", path="signup.jsp")

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Catch.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.ExceptionHandler.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Catch.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.ExceptionHandler.html

Page Flow Controllers

prot ected Forward
handl eAccount Al r eadyExi st sExcept i on(Account Al r eadyExi st sExcepti on ex,
String acti onNane, String nessage, Object form

return new Forward("signup");

}

To protect a method with this error handling system, you only need to specify that the
method throws the appropriate sort of exception, in this case,
Account Al r eadyExi st sExcepti on.

@pf.Controller(
cat ches={
@ pf . Cat ch(nmet hod="handl eAccount Al r eadyExi st sExcepti on",
t ype=Account Al r eadyExi st sExcepti on. cl ass)

si npl eAct i ons={
} C.

)
public class Controller

ext ends PageFl owControl | er
{

public Forward processSi gnUp(Si gnUpForm form
t hrows Account Al r eadyExi st sExcepti on
{

}

@pf . Except i onHandl er (
f or war ds={
@ pf . Forwar d(nane="si gnup", path="signup.jsp")

prot ected Forward
handl eAccount Al r eadyExi st sExcept i on(Account Al r eadyExi st sExcepti on ex,
String actionNane, String nessage, Cbject form

return new Forward("signup");

4. Form Validation
For details on form validation see the topic Data Validation

© 2004, Apache Software Foundation
Page 12

../netui/validation.html

Page Flow Controllers

5. Next...

Next, learn about linking this controller classto the JSPsto allow for the interception to
occur.

» JSPFiles

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.
© 2004, Apache Software Foundation

© 2004, Apache Software Foundation
Page 13

../netui/jspOverview.html

	1 Introduction
	2 Starting the Controller Class
	3 Fleshing Out the Controller
	3.1 Simple Actions
	3.2 Action Methods
	3.2.1 Rudimentary Action Methods: Constant Forwards
	3.2.2 Advanced Action Methods: Conditional Forwards

	3.3 Handling Forms
	3.4 Handling Exceptions

	4 Form Validation
	5 Next...

