
Jdbc Control Developer's Guide

Table of contents

1 Jdbc Control Annotation's Reference...3

1.1 The ConnectionDataSource Annotation..3

1.2 The ConnectionDriver Annotation.. 3

1.3 The ConnectionOptions Annotation..4

1.4 The SQL Annotation... 4

2 Parameter Substitution in the SQL Annotation's Statement Member................................6

2.1 Substitution Criteria...6

2.2 Substituting Simple Parameters...7

2.3 Treatment of Curly Braces Within Literals... 7

2.4 Substituting Indirect Parameters..7

2.5 Generic Substitution.. 8

2.6 Referring to Functions in Substitution Statements..9

2.7 SQL Escapes Support.. 9

3 Invoking Stored Procedures with the Jdbc Control... 10

3.1 Calling Stored Procedures with IN Parameters... 10

3.2 Calling Stored Procedures with OUT Parameters... 11

3.3 Wrapping Procedures in Functions... 13

3.4 Creating Strored Procedures..13

4 Stored Functions.. 14

4.1 Calling Stored Functions... 14

4.2 Creating Stored Functions... 15

5 Jdbc Control Return Type Mapping...16

5.1 Mapping a Single Value.. 16

5.2 Mapping a Single Row.. 16

Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

5.3 Returning Multiple Rows from a Jdbc Control Method..19

5.4 Returning Apache XMLBeans from a Jdbc Control... 25

5.5 Mapping to a RowSet.. 28

5.6 Creating Customer Result Set Mappers.. 28

5.7 Database -> Java Type Mapping Tables... 31

5.8 New Features and Enhancements..34

Jdbc Control Developer's Guide

Page 2
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

1. Jdbc Control Annotation's Reference

The Jdbc Control uses Java 1.5 annotations extensively. All annotations are defined in the
org.apache.beehive.controls.system.jdbc.JdbcControl interface. Whenever possible
annotations are checked for validity during compile time using an apt processor. The compile
time checks include parsing the _statement_ member of the SQL annotation to make sure it
conforms to the parameter substitution syntax expected by the Jdbc Control.

1.1. The ConnectionDataSource Annotation

The ConnectionDataSource annotation is a class-level annotation used to lookup a
DataSource using the JNDI service.

Member Name Value Type Value Required Description

jndiName String Yes A data source name
which can be used for
a JNDI lookup

jndiContextFactory Class <? extends
JndiContextFactory>

No A JNDI context factory

1.2. The ConnectionDriver Annotation

The ConnectionDriver annotation is a class-level annotation used to connect directly to a
database instance using a connection URL.

Member Name Value Type Value Required Description

databaseDriverClass java.lang.Class Yes The database driver
class

databaseURL String Yes The database
connection URL

userName String No The username to
connect to the
database with

password String No The password
associated with
userName

properties String No A semicolon seperated
list of properties for the
connection, property

Jdbc Control Developer's Guide

Page 3
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

values are ignored if
either the userName or
password element of
this annotation is set.

1.3. The ConnectionOptions Annotation

The ConnectionOptions annotation is a class-level annotation used to set options on a JDBC
connection. It is used in conjunction with the ConnectionDataSource and ConnectionDriver
annotations but is not required.

Member Name Value Type Value Required Description

readOnly |boolean No If set to true tells the
database to optimize
the connection for
read-only access (still
can do updates, etc),
defaults to false

resultSetHoldability HoldabilityType No Specifies ResultSet
cursor holdability,
defaults to close
cursors after commit

typeMappers TypeMapper[] No Type mappers
implement the
java.sql.SQLData
interface and handle
mappings between
SQL UDTs and Java
classes

1.4. The SQL Annotation

The SQL annotation is method annotation which specifies the SQL to send to the database as
well as any other options for the query.

Member Name Value Type Value Required Description

statement String Yes The SQL statement to
send to the database

arrayMaxLength int No If the method return
type is an array type,
limit the size of the
array to this value

Jdbc Control Developer's Guide

Page 4
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

batchUpdate boolean No Defaults to false, JDBC
3.0 batch update

fetchSize int No Performance hint for
fetching ResultSet
rows, defaults to zero,
indicating db should
determine fetch size.

fetchDirection FetchDirection No Performance hint for
fetching ResultSet
rows, defaults to
forward.

getGeneratedKeys boolean No Defaults to false, JDBC
3.0 generated keys

generatedKeyColumnNamesString array No Defines column names
of columns with
generated keys to be
returned

generatedKeyColumnIndexesint array No Defines column
indexes of columns
with generated keys to
be returned

iteratorElementType Class No Defines type of class to
iterate over when
method return type is
Iterator

maxRows int No Limit the maximum
number of rows
returned by the
database.

resultSetHoldabilityOverrideHoldabilityType No Overrides value set by
ConnectionOptions
holdability element for
the duration of the
method call.

resultSetMapper Class No Defines a custom
ResultSetMapper for
use with this method

scrollableResultSet ScrollType
enumeration

No Enables the return of
scrollable ResultSet's,

Jdbc Control Developer's Guide

Page 5
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

default is
non-scrollable. See
JdbcControl.java for
ScrollType values.

typeMappersOverride TypeMapper[] No Overrides
typemapper's set in the
ConnectionOptions
annotation.

2. Parameter Substitution in the SQL Annotation's Statement Member

You can use parameter substitution in the SQL annotation's _statement_ member to form a
query dynamically. The client calls the method on the Jdbc control, passing in values for the
method's parameters, and those parameter values are substituted into the SQL statement.

This topic describes substitution techniques and rules, including how to treat curly braces,
how to substitute whole SQL statements, SQL phrases, simple parameters, and indirect
parameters.

2.1. Substitution Criteria

Substitution is subject to the following criteria:

• Substitution matching is case sensitive. For example, the method parameter CustCity
will not match the substitution pattern {custCity}.

• The type of the method parameter must be compatible with the type of the
associated database field in the statement. If you attempt to substitute a Java String
where the database expects a NUMBER, the statement will fail. For information on
mapping between database types and Java types, see Mapping Database Field Types to
Java Types in the Database Control.

• Substitution will not occur if the substitution pattern contains spaces. The Java
Database Connectivity (JDBC) API allows access to built-in database functions via
escapes of the form {fn user()}. If spaces occur in an item enclosed in curly braces ({}),
the Database control treats the item as a JDBC escape and passes it on without
substitution. For example, the custCity method parameter will not be substituted if the
substitution is specified as {custCity } or { custCity}. For more information on JDBC
escapes, please consult the documentation for your JDBC driver.

• When substituting date or time values, use the classes in the java.sql package. For
example, attempting to substitute java.util.Date in a SQL Date field will not work. Use
java.sql.Date instead.

Jdbc Control Developer's Guide

Page 6
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

2.2. Substituting Simple Parameters

If you are substituting individual values into a WHERE, LIKE, or AND clause, you may
substitute them directly in the @SQL annotation's statement parameter without escaping the
values with the {sql:} substitution syntax.

The following example illustrates simple parameter substitution:

@SQL(statement="SELECT name FROM customer WHERE city={custCity} AND
state={custState}")
public String [] getCustomersInCity(String custCity, String custState);

The value of the custCity method parameter is substituted in the query in place of the
{custCity} item, and the value of the custState method parameter is substituted in the query
in place of the {custState} item.

2.3. Treatment of Curly Braces Within Literals

Curly braces (\{\}) within literals (strings within quotes) are ignored. This means statements
like the following will not work as you might expect. In the following example the curly
braces have lost their substitution functionality, because they appear within single quotes.

@SQL(statement="SELECT name FROM employees WHERE name LIKE
'%{partialName}%'")
public String[] partialNameSearch(String partialName);

Since the curly braces are ignored inside the literal string, the expected substitution of the
partialName Java String into the SELECT statement does not occur. To avoid this problem,
pre-format the match string before invoking the Jdbc control method, as shown below. Note
that single quotes are not included in the pre-formatted string because single quotes are
implicitly added to the substitution value when it is passed to the SQL query.

String partialNameToMatch = "%" + matchString + "%"
String [] names = myJdbcControl.partialNameSeach(partialNameToMatch);

Then pass the pre-formatted string to the Jdbc control:

@SQL (statement="SELECT name FROM employees WHERE name LIKE
{partialNameToMatch}")
public String[] partialNameSearch(String partialNameToMatch);

2.4. Substituting Indirect Parameters

Jdbc Control Developer's Guide

Page 7
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

Assume the following class is declared and is accessible to the Database control:

public static class Customer
{

public String firstName;
public String lastName;
public String streetAddress;
public String city;
private String state;
public String zipCode;
public String getState() {return state};

}

You can then refer to the members of the Customer class in the SQL statement, as shown in
the following example:

@SQL(statement="SELECT name FROM customer WHERE city={cust.city} AND
state={cust.state}")
public String [] getCustomersInCity(Customer cust);

Note: Class member variables and accessor (getXxx) methods must be public in order for the
Database control to substitute them.

The dot notation is used to access the members of the parameter object.

The following list describes the precedence for resolving dot notations in substitutions given
the substitution pattern {myClass.myMember}:

• If class myClass exposes public getMyMember() and setMyMember() methods,
getMyMember() is called and the return value is substituted. For Boolean variables,
substitute isMyMember() for getMyMemnber().

• Else if class myClass exposes a public field named myMember, myClass.myMember is
substituted.

• Lastly, if class myClass implements java.util.Map, myClass.get("myMember") is called
and the return value is substituted.

• Any combination of these may exist, as in {A.B.C} where B is a public member of A and
B has a public getC() method.

If none of these conditions exist, the Jdbc control method will throw a
com.bea.control.ControlException.

2.5. Generic Substitution

To pass a whole SQL statement to the database, use the substitution syntax shown in bold.

Jdbc Control Developer's Guide

Page 8
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

@SQL(statement="{sql: sqlStatement}")
public myRecordType myQuery(String sqlStatement);

The SQL statement placed within the bracket syntax {sql: } is escaped and passed directly to
the database.

You can use same substitution syntax to pass in any part of a SQL statement, such as a
WHERE or LIKE clause, or a column name. In the following example, filtering phrases can
be substituted into the base SQL statement.

@SQL(statement="SELECT * FROM CUSTOMER {sql: whereClause}")
public myRecordType myQuery(String whereClause);

In the following example, a column name is dynamically written to the SQL statement by
means of the {sql: } bracket syntax.

@SQL(statement="SELECT SUM({sql: colName}) FROM MYTABLE")
public int sumColumn(String colName);

2.6. Referring to Functions in Substitution Statements

If your database supports internal functions, you can refer to the internal function within the
substitution syntax {sql: }. The following method refers to the function in(), by placing the
function call within the brackets {sql: }.

@SQL(statement="SELECT * FROM customer WHERE {sql:fn
in(custid,{customerIDs})}")

Customer[] callInternalFunction(Integer[] customerIDs);

Not all databases and database drivers support internal functions within substitution brackets;
for example, Oracle drivers do not support this scenario.

2.7. SQL Escapes Support

The SQL annotations statement member supports the use of the SQL Escape syntax within
the SQL statement. SQL Escapes follow the standard escape syntax and may contain
parameter substitutions. The set of supported escape keywords is:

• escape
• fn
• d
• t
• ts

Jdbc Control Developer's Guide

Page 9
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

• call
• ?=
• oj

The following examples illustrate some of the possible usages.

@SQL(statement="INSERT INTO USERS (creationDate, userName) VALUES({d
{creationDateFormat}},{userName})
public int addUser(String creationDateFormat, String userName) throws
SQLException;

@SQL(statement="INSERT INTO USERS (userId, userName) VALUES({?=
sp_userId()},{userName})")
public int addUser(String userName) throws SQLException;

3. Invoking Stored Procedures with the Jdbc Control

The following topics explain how to call and create stored procedures with the Jdbc Control.

3.1. Calling Stored Procedures with IN Parameters

If the stored procedure contains only IN parameters, you can call the procedure by passing
method parameters to the procedure.

Assume the following procedure sp_updateData has been created on the database.

CREATE OR REPLACE PROCEDURE sp_updateData
(pkID IN SMALLINT,
intVal IN INT)

AS
BEGIN
UPDATE CUSTOMER
SET NAME = intVal
WHERE CUSTID = pkID;

END sp_updateData;

The following database control method calls the procedure sp_updateData and passes two
method parameters to the procedure.

@SQL(statement="call sp_updateData({keyVal}, {intVal})"
void call_sp_updateCust(short keyVal, int intVal);

The method parameters are substituted into the procedure call using the curly brace
substitution syntax.

Jdbc Control Developer's Guide

Page 10
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

If you are calling this stored procedure against a Sybase database, you must include curly
braces around the stored procedure call. For Sybase, the annotation value should look like
this:

@SQL(statement="{call sp_updateData({keyVal}, {intVal})}")

3.2. Calling Stored Procedures with OUT Parameters

To call a procedure that contains OUT parameters:

1. Use a SQLParameter Array as the parameter of the Java method that calls the procedure.
2. Use question marks as placeholders for the parameters within the procedure call.

The SQLParameter class is an public inner class of JdbcControl.java, source follows:

public static class SQLParameter {
public static final int IN = 1;
public static final int OUT = 2;
public static final int INOUT = IN | OUT;

public Object value = null;
public int type = Types.NULL;
public int dir = IN;

public SQLParameter(Object value) {
this.value = value;

}

public SQLParameter(Object value, int type) {
this.value = value;
this.type = type;

}

public SQLParameter(Object value, int type, int dir) {
this.value = value;
this.type = type;
this.dir = dir;

}

public Object clone() {
return new SQLParameter(value, type, dir);

}
}

For example, assume that the following procedure sp_squareInt exists on the database.

CREATE OR REPLACE PROCEDURE sp_squareInt
(field1 IN INTEGER, field2 OUT INTEGER) IS

BEGIN

Jdbc Control Developer's Guide

Page 11
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

field2 := field1 * field1;
END sp_squareInt;

The following Java method will call the procedure sp_squareInt.

@SQL(statement="{call sp_squareInt(?, ?)})"
void call_sp_squareInt(SQLParameter[] params) throws SQLException;

Note that the method parameter params is not explicitly substituted into the procedure call
{call sp_squareInt(?, ?)}. The substitution syntax {call ...} has special meaning within the
@SQL statement annotation. When the substitution syntax {call myStoredProc(?,?,?...)} is
encountered, it automatically distributes the elements of params into the procedure call.

The following shows how to construct an SQLParameter[] to call the procedure sp_squareInt.

// Construct a SQLParameter[]
// to hold two SQLParameter objects
SQLParameter[] params = new SQLParameter[2];

// Construct two objects corresponding to the initial values of the
// stored procedure's two parameters.
Object obj0 = new Integer\(x);
Object obj1 = new Integer(0);

// The stored procedure sp_squareInt has two parameters:
// an IN parameter of data type INTEGER
// and an OUT parameter of data type INTEGER.
// params[0] is build to correspond to the IN parameter,
// params[1] is build to correspond to the OUT parameter.
params[0] = new SQLParameter(obj0, Types.INTEGER, SQLParameter.IN);
params[1] = new SQLParameter(obj1, Types.INTEGER,

SQLParameter.OUT);

// Call the stored procedure.
// Note that the procedure does not return any value.
// Instead the result of the procedure is loaded directly into the

OUT parameter,
// and, in turn, into params[1].
myJDBCControlFile.call_sp_squareInt(params);

// Get the result loaded directly into params[1].
return Integer.parseInt(params[1].value.toString());

Note that Jdbc control method call_sp_squareInt does not return the result of the procedure
call. Instead the result of the procedure is loaded directly into the procedure's OUT
parameter, and this in turn is loaded directly into the corresponding SQLParameter object. To
get the result of the procedure, examine the .value property of the SQLParameter object.

Jdbc Control Developer's Guide

Page 12
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

params[1].value

3.3. Wrapping Procedures in Functions

An alternative to calling stored procedures directly is to wrap them in stored functions, then
call the wrapping function from your database control file.

For example the following Jdbc control method will create a function that wraps the
procedure sp_squareInt.

/**
* Wraps a procedure in a function.
* /
@SQL(statement="CREATE OR REPLACE FUNCTION wrapProc (p1 INTEGER)

RETURN INTEGER IS p2 INTEGER; BEGIN sp_squareInt(p1, p2); RETURN p2; END;")
public void create_wrapProc();

Once the procedure has been wrapped, you can call the function, instead of calling the
procedure directly.

@SQL(statement="SELECT wrapProc({x}) FROM DUAL")
public int callWrapProc(int x, int y);

3.4. Creating Strored Procedures

You can also send any DDL statement to the database through a database control method.

/**
* A stored procedure that takes an integer, squares it, and loads
* the result into an OUT parameter.
* /
@SQL(statement="CREATE OR REPLACE PROCEDURE sp_squareInt (field1 IN

INTEGER, field2 OUT INTEGER) IS BEGIN field2 := field1 * field1; END
sp_squareInt; ")

void create_sp_squareInt() throws SQLException;

Some XA database drivers contain restrictions on code that rollsback or commits a
transaction independently of the driver's transaction management. Since DDL statements are
implicitly transactional (COMMIT is called whether or not it explicitly appears in the DDL
statement), you may have to suspend the transaction with these XA drivers. For example if
you send a DDL statement using the Oracle XA thin client without suspending the
transaction, the driver throws the following exception:

ORA-02089: COMMIT is not allowed in a subordinate session

Jdbc Control Developer's Guide

Page 13
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

The following code suspends the transaction, executes the DDL statement, and then resumes
the transaction.

import javax.transaction.Transaction;
import javax.transaction.TransactionManager;
import javax.transaction.TxHelper;

TransactionManager tm = TxHelper.getTransactionManager();
Transaction saveTx = null;
try
{

// Suspend the transaction
saveTx = tm.forceSuspend();

// Execute the DDL statement
myDBControlFile.create_sp_squareInt();

}
finally
{

// Resume the transaction
tm.forceResume(saveTx);

}

4. Stored Functions

This topic explains how to call and create stored functions using Jdbc control.

4.1. Calling Stored Functions

To call a stored function, place the function call in an @SQL statement annotation. When the
Java method callMyFunction is called, the SQL statement in the @SQLl statement
annotation is passed to the database. Any data returned by the SQL statement is passed back
to, and returned by, the Java method.

@SQL(statement="SELECT my_function FROM DUAL")
int callMyFunction() throws SQLException;

In most cases, the Jdbc control automatically converts between the appropriate database data
types and Java data types. For example, if the database function my_function returns the
database type INTEGER, the Java method callMyFunction() will automatically convert it
into the Java type int.

You can substitute values dynamically into the database function call using curly braces. The

Jdbc Control Developer's Guide

Page 14
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

following method passes the parameter int x to the function call.

4.2. Creating Stored Functions

You can also send any DDL statement to the database through a Jdbc control method.

/**
* A stored function that takes an integer, squares it, and returns the
* result through the database control method.
* /
@SQL(statement="CREATE OR REPLACE FUNCTION fn_squareInt (field1 IN

INTEGER) RETURN INTEGER IS field2 INTEGER; BEGIN field2 := field1 * field1;
RETURN field2; END fn_squareInt;")

void create_fn_squareInt() throws SQLException;

Some XA database drivers contain restrictions on code that rollsback or commits a
transaction independently of the driver's transaction management. Since DDL statements are
implicitly transactional (COMMIT is called whether or not it explicitly appears in the DDL
statement), you may have to suspend the transaction with these XA drivers. For example if
you send a DDL statement using the Oracle XA thin client without suspending the
transaction, the driver throws the following exception:

ORA-02089: COMMIT is not allowed in a subordinate session

The following code suspends the transaction, executes the DDL statement, and then resumes
the transaction.

import javax.transaction.Transaction;
import javax.transaction.TransactionManager;
import javax.transaction.TxHelper;

TransactionManager tm = TxHelper.getTransactionManager();
Transaction saveTx = null;
try
{

// Suspend the transaction
saveTx = tm.forceSuspend();

// Execute the DDL statement
myDBControlFile.create_fn_squareInt();

}
finally
{

// Resume the transaction
tm.forceResume(saveTx);

Jdbc Control Developer's Guide

Page 15
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

}

5. Jdbc Control Return Type Mapping

When returning a value from a database, the Jdbc Control maps the JDBC ResultSet
generated by the SQL to the calling method's return type. These mappings can be
characterized as follows:

5.1. Mapping a Single Value

This topic describes how to write methods that return a single value from the database. The
example provided represents a SELECT statement that requests only a single field of a single
row. The return value of the method should be an object or primitive of the appropriate type
for that field's data.

5.1.1. Returning a Single Column

The following example assumes a Customers table in which the field custid, representing the
customer ID, is the primary key. Given the customer ID, the method looks up a single
customer name.

@SQL(statement="SELECT name FROM customer WHERE custid={customerID}")
public String getCustomerName(int customerID);

In this example, the name field is of type VARCHAR, so the return value is declared as
String. The method's customerID parameter is of type int. When the SQL statement executes,
this parameter is mapped to an appropriate numeric type accepted by the database.

5.1.2. Returning an Update Count

Suppose that with the same database table a row is inserted; the following code could be used
to get the update count from the insert statement:

@SQL(statement="INSERT INTO customer VALUES ({customerName},{customerID})")
public int insertCustomer(String customerName, int customerID);

5.2. Mapping a Single Row

This topic describes how to write methods on a Jdbc control that return a single row from the
database. When you return a single row with multiple fields, your method must have a return
type that can contain multiple values--either an object that is an instance of a class that you

Jdbc Control Developer's Guide

Page 16
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

have built for that purpose, or a java.util.HashMap object.

If you know the names of the fields returned by the query, you will probably want to return a
custom object. If the number of columns or the particular field names returned by the query
are unknown or may change, you may choose to return a HashMap.

5.2.1. Returning an Object

You can specify that the return type of a Jdbc control method is a custom object, an instance
of a class whose members correspond to fields in the database table. In most cases, a class
whose members hold corresponding database field values is declared as an inner class (a
class declared inside another class) in the Jdbc control's JCX file. However, it may be any
Java class that meets the following criteria:

• The class must contain members with names that match the names of the columns that
will be returned by the query. Because database column names are case-insensitive, the
matching names are case-insensitive. The class may also contain other members, but
members with matching names are required.

• The members must be of an appropriate type to hold a value from the corresponding
column in the database.

• The class must be declared as public static if the class is an inner class.

The following example declares a Customer class with members corresponding to fields in
the Customers table. The findCustomer method returns an object of type Customer:

public static class Customer
{

public int custid;
public String name;
public Customer() {};

}

@SQL(statement="SELECT custid,name FROM customer WHERE
custid={customerID})"
Customer findCustomer(int customerID)

Note: The Customer class above is simplified for the sake of clarity. For data modeling
classes, it is generally good design practice to have private fields, with public setter and
getter methods.

public static class Customer
{

private int custid;
private String name;

Jdbc Control Developer's Guide

Page 17
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

public Customer() {};

public int getCustid()
{

return this.custid;
}

public void setCustid(int custid)
{

this.custid = custid;
}

public String getName()
{

return this.name;
}

public void setName(String name)
{

this.name = name;
}

}

5.2.2. Handling Empty Values When Returning Objects

If a database field being queried contains no value for a given row, the class member is set to
null if it is an object and to 0 or false if it is a primitive. This may affect your decisions
regarding the types you use in your class. If the database field contained no data, an Integer
member would receive the value null, but an int member would receive the value 0. Zero
may be a valid value, so using int instead of Integer makes it impossible for subsequent code
to determine whether a value was present in the database.

If there is no column in the database corresponding to a member of the class, that member is
also set to null or 0, depending on whether the member is an primitive or an object.

If the query returns columns that cannot be matched to the members of the class, an
exception is thrown. If you don't know the columns that will be returned or if they may
change, you should consider returning a HashMap instead of a specific class. For more
information, see the Returning a HashMap section, below.

If no rows are returned by the query, the returned value of the Jdbc control method is null.

In the example given above, the method is declared as returning a single object of type
Customer. So even if the database operation returns multiple rows, only the first row is
returned to the method's caller. To learn how to return multiple rows to the caller, see
Mapping Multiple Rows.

Jdbc Control Developer's Guide

Page 18
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

5.2.3. Returning a HashMap or Map

If the number of columns or the particular column names returned by the query are unknown
or may change, you may choose to return a HashMap. To return a HashMap, declare the
return value of the method as java.util.HashMap, as shown here:

@SQL(statement="SELECT * FROM customer WHERE custid={custID})"
public java.util.HashMap findCustomerHash(int custID);

The HashMap returned contains an entry for each column in the result. The key for each
entry is the corresponding column name. The capitalization of the key names returned by
HashMap.keySet() depends on the database driver in use, but all keys are case-insensitive
when accessed via the HashMap's methods. The value is an object of the Java Database
Connectivity (JDBC) default type for the database column.

In the example above, the method is declared as returning a single object of type
java.util.HashMap. So even if the database operation returns multiple rows, only the first row
is returned to the method's caller.

To learn how return multiple rows to the caller, see Mapping Multiple Rows.

The following code allows you to access the name field of the returned record:

@Control
private CustomerDBControl custDB;

public String getCustomerName(int custID)
{

java.util.HashMap hash;
String name;
hash = custDB.findCustomerHash(custID);
if(hash != null)
{

name = (String)hash.get("NAME");
}
else
{

name = new String("Customer not found");
}
return name;

}

If the query returns no rows, the returned value of the Jdbc control method is null.

5.3. Returning Multiple Rows from a Jdbc Control Method

Jdbc Control Developer's Guide

Page 19
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

This topic describes how to write a method on a Jdbc control that returns multiple rows from
the database. It describes the ways in which you can perform this operation, including
returning an array, returning an Iterator object, and returning a resultset.

5.3.1. Deciding How to Return Multiple Rows

A SELECT query may return one or more fields from multiple rows. A method on a Jdbc
control that returns multiple rows should have a return type that can store these values. The
Jdbc control method can return an array of objects, an Iterator, or a resultset.

Returning an array of objects is the easiest way to return multiple rows, so it is a good choice
if you think your users will prefer simplicity when using your control. However, when an
array is returned only one database operation is performed, and the entire resultset must be
stored in memory. For large resultsets, this is problematic. You can limit the size of the
returned array, but then you cannot provide a way for your user to get the remainder of the
resultset. To learn how to return an array of objects, see the Returning an Array of Objects
section, below.

While Iterators require more sophistication on the part of users of your control, they are more
efficient at handling large resultsets. An Iterator is accessed one element (row) at a time via
the Iterator's next() method, and it transparently makes repeated requests from the database
until all records have been processed. An Iterator does not present the risk of running out of
memory that an array presents. However, note that an Iterator returned from a database
control cannot be used within a Page Flow controller class, because an Iterator wraps a
ResultSet object, which is always closed by the time it is passed to the web-tier (where Page
Flow files reside). For this reason, your Jdbc control should return an array of objects (see
above) when it is called from a page flow controller. Also, an Iterator cannot be returned to a
stateful process, because stateful processes cannot maintain an open database connection
(which Iterators require). To learn about returning a java.util.Iterator, see the Returning an
Iterator section, below.

Finally, you can choose to return a java.sql.ResultSet from a Jdbc control method. This
grants complete access to the results of the database operation to clients of your control, but
it requires knowledge of the java.sql package. Also, note that a ResultSet returned from a
Jdbc control cannot be used within a Page Flow controller, because a ResultSet object is
always closed by the time it is passed to the web-tier (where Page Flow files reside). For this
reason, your Jdbc control should provide an array of objects when it is called from a Page
Flow controller. To learn about returning a java.sql.ResultSet, see the Returning a Resultset
section, below.

5.3.2. Returning an Array of Objects

Jdbc Control Developer's Guide

Page 20
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

To return an array of objects, declare the method's return type to be an array of the object you
want to return. That type may be either a type you define, or it may be java.util.Hashmap.

Examples of both of these techniques are provided in the following sections.

5.3.3. Returning an Array of User-Defined Objects

The following example demonstrates how to return an array of objects whose type you have
declared. In this case, an array of Customer objects is returned:

public static class Customer
{

public int custid;
public String name;

}

@SQL(statement="SELECT custid,name FROM customer WHERE custage<19",
arrayMaxLength=100)
Customer [] findAllMinorCustomers()

This example returns all rows in which the custage field contains a value less than 19.

When returning an array of objects, the class declared as the return type of the method must
meet the criteria described in the Returning an Object section of the Returning a Single Row
from a Jdbc Control topic. If no rows are returned by the query, the returned value of the
Database control method is a zero-length array.

If you are returning an array from Jdbc control method, you can limit the size of the array
returned by setting the arrayMaxLength attribute of the @SQL annotation. This attribute can
protect you from very large resultsets that may be returned by very general queries. If
arrayMaxLength is present, no more than that many rows are returned by the method.

The default value of arrayMaxLength is 1024. For very large ResultSets you can avoid
excessive memory usage by returning an Iterator object as described below in the Returning
an Iterator section, below.

5.3.4. Returning an Array of HashMaps

Returning an array of HashMaps is analogous to returning an array of user-defined objects,
which is described in the preceding section.

The following example demonstrates returning an array of HashMaps:

public static class Customer
{

Jdbc Control Developer's Guide

Page 21
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

public int custid;
public String name;
public Customer() {};

}

@SQL(statement="SELECT custid,name FROM customer WHERE custage<19",
arrayMaxLength=100)
java.util.HashMap [] findAllMinorCustomersHash()

The array of HashMaps returned contains an element for each row returned, and each
element of the array contains an entry for each column in the result. The key for each entry is
the corresponding column name. The capitalization of the key names returned by
HashMap.keySet() depends on the database driver in use, but keys are case-insensitive when
accessed via the HashMap's methods. The value returned is an object of the Java Database
Connectivity (JDBC) default type for the database column.

If no rows are returned by the query, the returned value of the Jdbc control method is a
zero-length array.

The following code shows how to access the name field of the returned records:

@Control
private CustomerDBControl custDB;

java.util.HashMap [] hashArr;
String name;

hashArr = custDB.findAllMinorCustomersHash();
for(i=0; i<hashArr.length; i++)
{

name = (String)hashArr[i].get("NAME");
// say hello to the all of the minors

System.out.println("Hello, " + name + "!");
}

5.3.5. Returning an Iterator

When you want to return an Iterator object, you declare the method's return type to be
java.util.Iterator. You then add the iteratorElementType attribute to the @SQL annotation to
indicate the underlying type that the Iterator will contain. The specified type may be either a
type you define, or it may be java.util.Hashmap. Examples of these techniques are given in
the following sections. If your method returns an Iterator, a compile time error will be
generated if the iteratorElementType annotation member has not been set.

The Iterator that is returned is only guaranteed to be valid for the life of the method call to
which it is returned. You should not store an Iterator returned from a Jdbc control method as

Jdbc Control Developer's Guide

Page 22
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

a static member of your web service's class, nor should you attempt to reuse the Iterator in
subsequent method calls if it is persisted by other means.

5.3.6. Returning an Iterator with a User-Defined Object

To return an Iterator that encapsulates a user-defined type, provide the class name as the
value of the iteratorElementType attribute of the @SQL annotation, as shown here:

public static class Customer
{

public int custid;
public String name;
public Customer() {};

}

@SQL(statement="SELECT custid,name FROM customer"
iteratorElementType=Customer.class)
java.util.Iterator getAllCustomersIterator()

The class specified in the iterator-element-type attribute must meet the criteria described in
Returning an Object.

The following example shows how to access the returned records:

CustomerJDBCControl.Customer cust;
java.util.Iterator iter = null;
iter = custDB.getAllCustomersIterator();
while (iter.hasNext())
{

cust = (CustomerJDBCControl.Customer)iter.next();
// say hello to every customer
System.out.println("hello, " + cust.name + "!");

}

5.3.7. Returning an Iterator with HashMap

To return an Iterator that encapsulates a HashMap, provide java.util.HashMap as the value of
the iterator-element-type attribute of the @SQL annotation, as shown here:

public static class Customer
{

public int custid;
public String name;
public Customer() {};

}

@SQL(statement="SELECT custid,name FROM customer",

Jdbc Control Developer's Guide

Page 23
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

iteratorElementType=java.util.HashMap.class)
java.util.Iterator getAllCustomersIterator()

The following code shows how to access the returned records:

java.util.HashMap custHash;
java.util.Iterator iter = null;
int customerID;
String customerName;
iter = custDB.getAllCustomersIterator();
while (iter.hasNext())
{

custHash = (java.util.HashMap)iter.next();
customerID = (int)custHash.get("CUSTID");
customerName = (String)custHash.get("NAME");

}

The HashMap contains an entry for each database column that is returned by the query. The
key for each entry is the corresponding column name, in all uppercase. The value is an object
of the JDBC default type for the database column.

5.3.8. Returning a ResultSet

The Jdbc control is designed to allow you to obtain data from a database in a variety of ways
without having to understand the classes in the java.sql package. If you and your users do
understand these classes, however, you can gain complete access to the java.sql.ResultSet
object returned by a query.

If you want to return a resultset, you declare the method's return type to be java.sql.ResultSet.
A client of your control then accesses the resultset directly to process the results of the
database operation.

The following example demonstrates returning a resultset:

@SQL(statement="SELECT * FROM customer")
public java.sql.ResultSet findAllCustomersResultSet();

The following code shows how to access the returned resultset:

java.sql.ResultSet resultSet;
String thisCustomerName;
resultSet = custDB.findAllCustomersResultSet();
while (resultSet.next())
{

thisCustomerName = new String(resultSet.getString("name"));
}

Jdbc Control Developer's Guide

Page 24
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

This example assumes the rows returned from the database operation include a column called
name.

5.4. Returning Apache XMLBeans from a Jdbc Control

This topic assumes a strong understanding of Apache XML Beans. For additional
information about XML Bean see the Apache XML Beans Site http://xmlbeans.apache.org/.

The following topic explains how to return XMLBean types from custom Jdbc controls.

An XMLBean is essentially an XML document with a Java API attached to it. The API is
used for parsing and manipulating the data in the XML document. A typical XMLBean
might represent database data in the following form.

<DOCTYPE XCustomer>
<XCustomer xmlns="java:///database/customer_db"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<XCustomerRow>
<CUSTID>1<CUSTID>
<NAME>Fred Williams<NAME>
<ADDRESS>123 Slugger Circle<ADDRESS>

<XCustomerRow>
<XCustomerRow>

<CUSTID>2<CUSTID>
<NAME>Marnie Smithers<NAME>
<ADDRESS>5 Hitchcock Lane<ADDRESS>

<XCustomerRow>
<XCustomerRow>

<CUSTID>3<CUSTID>
<NAME>Bill Walton<NAME>
<ADDRESS>655 Tall Timbers Road<ADDRESS>

<XCustomerRow>
<XCustomer>

The data can be accessed and manipulated using the XMLBean's API. For example, assume
that custBean represents the XML document above. The following Java code extracts the
Fred Williams from the document.

String name = custBean.getXCustomer().getXCustomerRowArray(1).getNAME();

Retrofitting database controls to return XMLBeans rather than RowSets, ResultSets, or
Iterators, is a powerful technique because there are few restrictions on where XMLBeans can
be imported. This is not the case with ResultSets and Iterators, which cannot be passed
directly to web-tier classes (web services and page flows). Also, data in XMLBean form is
very easy to manipulate because there is a rich API attached to the XMLBean.

Jdbc Control Developer's Guide

Page 25
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

5.4.1. Creating a Schema

The first step in using XMLBean classes is creating a schema from which the XMLBean
classes can be generated. The schema you create for a database control must be capable of
modeling the sorts of data returned from the database.

If you write your own schema, at a minimum, the schema's elements should have the same
names as the fields in the database, which allows data returned from the database to be
automatically mapped into the XMLBean.

When the XSD file is compiled, XMLBean types are generated that can be returned by the
methods in the database control.

5.4.2. Editing Schemas to Create New "Document" Types

Note that only one of the generated types is a "Document" XMLBean type:
XCustomerDocument. The other types, XCustomerDocument.XCustomer and
XCustomerDocument.XCustomer.XCustomerRow, can only be used with reference to the
"Document" type. This distinction is especially important because only "Document" types
are eligible for direct participation in a business process, or to be passed to a web service. For
this reason you may want to edit your schema to include "Document" types corresponding to
other types in the Schema, especially if you have a very large schema with many nested types
defined in terms of a single "Document" type.

To generate a new Document type for some element, move that element so that it becomes a
top-level element in the schema. In the following example, the XCustomerRow element has
been moved to the top-level of the schema: its original position has been replaced with a
reference element: <xsd:element ref="XCustomerRow"/>.

<xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="java:///database/customer_db"

xmlns="java:///database/customer_db"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:wld="http://www.bea.com/2002/10/weblogicdata"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:element name="XCustomer"
wld:DefaultNamespace="java:///database/customer_db" wld:RowSet="true">

<xsd:complexType>
<xsd:choice maxOccurs="unbounded">
<xsd:element ref="XCustomerRow"/>
<xsd:choice>
<xsd:complexType>
<xsd:element>

Jdbc Control Developer's Guide

Page 26
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

<xsd:element name="XCustomerRow">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CUSTID" type="xsd:int" wld:JDBCType="INTEGER"

minOccurs="0" wld:TableName="MYSCHEMA.CUSTOMER"
nillable="true"><xsd:element>

<xsd:element name="NAME" type="xsd:string" wld:JDBCType="VARCHAR"
minOccurs="0" wld:TableName="MYSCHEMA.CUSTOMER"
nillable="true"><xsd:element>

<xsd:element name="ADDRESS" type="xsd:string"
wld:JDBCType="VARCHAR" minOccurs="0" wld:TableName="MYSCHEMA.CUSTOMER"
nillable="true"><xsd:element>

<xsd:element name="CITY" type="xsd:string" wld:JDBCType="VARCHAR"
minOccurs="0" wld:TableName="MYSCHEMA.CUSTOMER"
nillable="true"><xsd:element>

<xsd:element name="STATE" type="xsd:string" wld:JDBCType="CHAR"
minOccurs="0" wld:TableName="MYSCHEMA.CUSTOMER"
nillable="true"><xsd:element>

<xsd:element name="ZIP" type="xsd:string" wld:JDBCType="VARCHAR"
minOccurs="0" wld:TableName="MYSCHEMA.CUSTOMER"
nillable="true"><xsd:element>

<xsd:element name="AREA_CODE" type="xsd:string"
wld:JDBCType="CHAR" minOccurs="0" wld:TableName="MYSCHEMA.CUSTOMER"
nillable="true"><xsd:element>

<xsd:element name="PHONE" type="xsd:string" wld:JDBCType="CHAR"
minOccurs="0" wld:TableName="MYSCHEMA.CUSTOMER"
nillable="true"><xsd:element>

<xsd:sequence>
<xsd:anyAttribute

namespace="http://www.bea.com/2002/10/weblogicdata"
processContents="skip">lt;xsd:anyAttribute>

<xsd:complexType>
<xsd:element>

<xsd:schema>

There are now two top-level elements, XCustomer and XCustomerRow, which compile into
two corresponding "Document" types: XCustomerDocument and XCustomerRowDocument.

5.4.3. Returning a XMLBean Types from Control Methods

Once you have generated XMLBean types that model the database data, you can import these
types into your Jdbc control.

import databaseCustomerDb.XCustomerDocument;
import databaseCustomerDb.XCustomerDocument.XCustomer;
import databaseCustomerDb.XCustomerDocument.Factory;

XMLBean types can be returned from the control's methods.

@SQL(statement="SELECT custid, name, address FROM customer")

Jdbc Control Developer's Guide

Page 27
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

public XCustomerDocument findAllCustomersDoc();

The data returned from the query is automatically mapped into the XMLBean because the
names of the database fields match the fields of the XMLBean.

5.5. Mapping to a RowSet

This topic describes how to write methods on a Jdbc control that return a RowSet from the
database. Since the RowSet implementations provided by the JDK are part of the javax.sql,
package the JdbcControl does not support any of them by default. A sample
ResultSetMapper for RowSet's is included as part of the Jdbc Control's distribution but must
be explicitly set in the @SQL annotation in order to be invoked.

The DefaultRowSetResultSetMapper will create a javax.sql.CachedRowSetImpl. The
following example sets the resultSetMapper for the method getAllUsers() to the
DefaultRowSetResultSetMapper which enables the Jdbc control to map the ResultSet to a
RowSet.

@SQL(statement="SELECT * FROM USERS",
resultSetMapper=org.apache.beehive.controls.system.jdbc.DefaultRowSetResultSetMapper.class)
public RowSet getAllUsers() throws SQLException;

ResultSetMapper's can be created for other types of RowSets and almost any other type of
mapping from a result set to any object. See the [Jdbc Control Custom ResultSetMappers]
topic for more information.

5.6. Creating Customer Result Set Mappers

5.6.1. Overview

When the Jdbc Control maps a ResultSet to a return type, it first checks to see if a
resultSetMapper has been set in the method's @SQL annotation. If a mapper has been set, it
is always the one used for mapping the ResultSet to the method's return type. If
resultSetMapper has not been set, the Jdbc control looks for a _resultSetMapper_ based on
the method's return type.

Mapper Class Name Method Return Type

DefaultIteratorResultSetMapper Iterator

DefaultResultSetMapper ResultSet

DefaultXmlObjectResultSetMapper Classes derived from XmlObject

Jdbc Control Developer's Guide

Page 28
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

DefaultObjectresultMapper Default to this mapper

5.6.2. Creating a custom ResultSet Mapper

To create your own ResultSet mapper, create a new class which extends the abstract class
org.apache.beehive.controls.system.jdbc.ResultSetMapper. The mapToResultType() method
does all the work of mapping the ResultSet to the method's return type -- it will be invoked
by the JdbcControl when the control is ready to perform the mapping. Below is the code for
the ResultSetMapper class.

/**
* Extend this class to create new ResultSet mappers. The extended class
will be invoked by the JdbcController
* when it is time to map a ResultSet to a method's return type.
*
* ResultSet mappers must be specified on a per method basis using the SQL
annotation's resultSetMapper field
*/
public abstract class ResultSetMapper {

/**
* Map a ResultSet to an object type
*
* @param context A ControlBeanContext instance, see Beehive controls

javadoc for additional information
* @param m Method assoicated with this call.
* @param resultSet Result set to map.
* @param cal A Calendar instance for time/date value resolution.
* @return The Object resulting from the ResultSet
* @throws Exception On error.
*/
public abstract Object mapToResultType(ControlBeanContext context,

Method m, ResultSet resultSet, Calendar cal)
throws Exception;

/**
* Can the ResultSet which this mapper uses be closed by the Jdbc

control?
* @return true if the ResultSet can be closed by the JdbcControl
*/
public boolean canCloseResultSet() { return true; }

}

5.6.3. An Example

Suppose you have a return type class which needs to do some special processing of a
ResultSet.

Jdbc Control Developer's Guide

Page 29
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

public final class CustomerX
{

private String _customerName;
private String _customerPhoneNumber;

public void setCustomerName(String firstName, String lastName) {
_customerName = firstName + " " + lastName;

}

public String getCustomerName() { return _customerName; }

public void setCustomerPhoneNumber(int areaCode, String phoneNumber) {
_customerPhoneNumber = "(" + areaCode + ")" + phoneNumber;

}

public String getCustomerPhoneNumber() { return _customerPhoneNumber; }
}

Let's assume the ResultSet contains the following columns:

Column Name Type

FIRST_NAME Varchar

LAST_NAME Varchar

AREA_CODE INT

PHONE_NUMBER Varchar

Here's what the ResultSetMapper implementation might look like:

public final class CustomerXResultSetMapper extends ResultSetMapper {

public Object mapToResultType(ControlBeanContext context, Method m,
ResultSet resultSet, Calendar cal)

throws Exception
{

resultSet.next();
CustomerX c = new CustomerX();
final String fName = resultSet.getString("FIRST_NAME");
final String lName = resultSet.getString("LAST_NAME");

c.setCustomerName(fName, lName);

final int aCode = resultSet.getInt("AREA_CODE");
final int phone = resultSet.get("PHONE_NUMBER");

c.setCustomerPhoneNumber(aCode, phone);

return c;
}

Jdbc Control Developer's Guide

Page 30
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

}

and finally the method and SQL annotation to invoke:

@SQL(statement="SELECT FIRST_NAME,LAST_NAME,AREA_CODE,PHONE_NUMBER FROM
customers WHERE userId={userId}",

resultSetMapper=CustomerXResultSetMapper.class)
public CustomerX getCustomer(String userId);

5.6.4. Additional Examples

See the Jdbc Control Rowset Mapping topic for an example of using a ResultSet mapper to
support the RowSet return type.

5.7. Database -> Java Type Mapping Tables

5.7.1. PointBase 4.4 Type Mappings

The following table lists the relationships between database types and Java types for the
PointBase Version 4.4 database.

Java Data Types JDBC Data Types PointBase SQL Data Types
(Version 4.4)

boolean BIT boolean

byte TINYINT smallint

short SMALLINT smallint

int INTEGER integer

long BIGINT numeric/decimal

double FLOAT real

double DOUBLE double

float FLOAT float

java.math.BigDecimal NUMERIC numeric

java.math.BigDecimal DECIMAL decimal

String CHAR char

String VARCHAR varchar

Jdbc Control Developer's Guide

Page 31
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

String LONGVARCHAR clob

java.sql.Date DATE date

java.sql.Time TIME time

java.sql.Timestamp TIMESTAMP timestamp

byte[] BINARY blob

byte[] VARBINARY blob

byte[] LONGVARBINARY blob

java.sql.Blob BLOB blob

java.sql.Clob CLOB clob

5.7.2. Oracle Type Mappings

Type Mappings for Oracle 8i

The following table lists the relationships between database types and Java types for the
Oracle 8i database.

Java Data Types JDBC Data Types Oracle SQL Data Types
(Version 8i)

boolean BIT NUMBER

byte TINYINT NUMBER

short SMALLINT NUMBER

int INTEGER NUMBER

long BIGINT NUMBER

double FLOAT NUMBER

float REAL NUMBER

double DOUBLE NUMBER

java.math.BigDecimal NUMERIC NUMBER

java.math.BigDecimal DECIMAL NUMBER

String CHAR CHAR

String VARCHAR VARCHAR2

Jdbc Control Developer's Guide

Page 32
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

String LONGVARCHAR LONG

java.sql.Date DATE DATE

java.sql.Time TIME DATE

java.sql.Timestamp TIMESTAMP DATE

byte[] BINARY NUMBER

byte[] VARBINARY RAW

byte[] LONGVARBINARY LONGRAW

java.sql.Blob BLOB BLOB

java.sql.Clob CLOB CLOB

5.7.3. Derby Type Mappings

Type Mappings for Derby 10

Java Data Types JDBC Data Types Derby SQL Data Types
(Version 4.4)

long BIGINT BIGINT

java.sql.Blob BLOB BLOB

String CHAR CHAR

java.sql.Clob CLOB CLOB

java.sql.Date DATE DATE

java.math.BigDecimal DECIMAL DECIMAL,NUMERIC

double DOUBLE DOUBLE [PRECISION]

float FLOAT float

int INTEGER integer

String LONGVARCHAR LONG VARCHAR

short SMALLINT SMALLINT

java.sql.Time TIME time

java.sql.Timestamp TIMESTAMP timestamp

String VARCHAR VARCHAR

Jdbc Control Developer's Guide

Page 33
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

5.8. New Features and Enhancements

JDBC 3.0 feature support as well as other new features are being added to the JdbcControl on
a regular basis. Here some of the latest features which have been added:

• Support for custom mapping of SQL UDTs
• Support for ResultSet holdability (connection and statement level support)
• Support for fetchSize and direction
• Support for scrollable ResultSets
• Retrieval of auto-generated keys
• BOOLEAN and DATALINK data types
• Blob and Clob type support
• Batch Update support

Jdbc Control Developer's Guide

Page 34
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

	1 Jdbc Control Annotation's Reference
	1.1 The ConnectionDataSource Annotation
	1.2 The ConnectionDriver Annotation
	1.3 The ConnectionOptions Annotation
	1.4 The SQL Annotation

	2 Parameter Substitution in the SQL Annotation's Statement Member
	2.1 Substitution Criteria
	2.2 Substituting Simple Parameters
	2.3 Treatment of Curly Braces Within Literals
	2.4 Substituting Indirect Parameters
	2.5 Generic Substitution
	2.6 Referring to Functions in Substitution Statements
	2.7 SQL Escapes Support

	3 Invoking Stored Procedures with the Jdbc Control
	3.1 Calling Stored Procedures with IN Parameters
	3.2 Calling Stored Procedures with OUT Parameters
	3.3 Wrapping Procedures in Functions
	3.4 Creating Strored Procedures

	4 Stored Functions
	4.1 Calling Stored Functions
	4.2 Creating Stored Functions

	5 Jdbc Control Return Type Mapping
	5.1 Mapping a Single Value
	5.1.1 Returning a Single Column
	5.1.2 Returning an Update Count

	5.2 Mapping a Single Row
	5.2.1 Returning an Object
	5.2.2 Handling Empty Values When Returning Objects
	5.2.3 Returning a HashMap or Map

	5.3 Returning Multiple Rows from a Jdbc Control Method
	5.3.1 Deciding How to Return Multiple Rows
	5.3.2 Returning an Array of Objects
	5.3.3 Returning an Array of User-Defined Objects
	5.3.4 Returning an Array of HashMaps
	5.3.5 Returning an Iterator
	5.3.6 Returning an Iterator with a User-Defined Object
	5.3.7 Returning an Iterator with HashMap
	5.3.8 Returning a ResultSet

	5.4 Returning Apache XMLBeans from a Jdbc Control
	5.4.1 Creating a Schema
	5.4.2 Editing Schemas to Create New "Document" Types
	5.4.3 Returning a XMLBean Types from Control Methods

	5.5 Mapping to a RowSet
	5.6 Creating Customer Result Set Mappers
	5.6.1 Overview
	5.6.2 Creating a custom ResultSet Mapper
	5.6.3 An Example
	5.6.4 Additional Examples

	5.7 Database -> Java Type Mapping Tables
	5.7.1 PointBase 4.4 Type Mappings
	5.7.2 Oracle Type Mappings
	5.7.3 Derby Type Mappings

	5.8 New Features and Enhancements

