NetUl Web App Project Model

Table of contents

I 1 11 0o 1T i o 1O 2
A (0] o B I Yo LU | RSP 2
2.1 Source Files peer to Web Content ROOLcccovieiiiiie i 2
2.2 Source Filesin the Webh Content ROOL...........ccouiiiiiinininieie e 3
3 Creating anew NEtUI PrOJECL........c.ccveiieecee ettt 4
4 RUNLIME JARS / RESDUITES......cueeiteeeeetiesieeieseesteesseeeesseetesseessesssesseessesssessesssenssesssessesnsens 5
T A S 5
4.2 ONEN RESDUITES......c.tieieitieeieeieseesteeeesee st e ee st e s beeeesaeesse e s e s aeesbeeneesseesseensesneenseeneesneenes 6
4.3 NetUI-enabled Web Projects and Source Control...........ccoocveveiieesiecieesie e 6
5BUIldiNg @WED PrOJECL.......c.ooieeeceee e 6
6 DEPloying aWED PrOJECL..........oceeeee et 7

Java, J2EE, Servlet, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and

other countries.

NetUl Web App Project Model

1. Introduction

A NetUI enabled web application consists of the same resources as a Struts, servlet, or other
J2EE webapp. The elements that make a NetUl web application different are the build steps
for processing annotated Javafiles and the JARS/ resources that comprise the NetUl webapp
runtime. This document discusses several topics including possible web project layouts, the
Ant tasks used to build Page Flows, the JARs/ resources in a NetUI web application, and the
files that must be added to source control in order to commit a NetUI-enabled web project
into SCM.

2. Project Layout

J2EE web projects can be structured in anearly limitless number of ways. Virtually all
webapps have both source files and web addressable content. In addition, there are avariety
of configuration files and deployment descriptors that are often stored in the WEB- | NF/
directory. A fundamental difference in how web projects are structured is where the
web-addressabl e content and the source files live. One web project model stores the source
filesin a sub-directory the web addressable content; another stores source files as a peer to
the web addressable content. When building Page Flows, the project layout affects the Ant
calls used to build the annotated Javafiles. Both project layouts and the Ant used to build are
discussed here.

2.1. Source Files peer to Web Content Root

The classic web project layout is described by Tomcat here and has the directories containing
web-addressable content and web project source in peer directories. For example, the
following directory structure uses this layout and stores the Ant build file in the project's root
directory:

f ooVebPr oj ect/

bui | d/
src/
Controller.java
web/
pagel.jsp
page2. | sp
VAEB- | NF/
web. xm
bui | d. xm

bui | d. properties

When using this layout, the sourcefilesinsr c/ are often built into the bui | d/ directory

Java, J2EE, Servlet, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and

other countries.

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/appdev/source.html

NetUl Web App Project Model

under VEB- | NF/ cl asses. Page Flows can be added to this project in either thesr ¢/ or
web/ directory. When Page Flows are added to the sr ¢/ directory, the following Ant can
be used to build them into bui | d/ VEEB- | NF/ cl asses:

<inport file="../../beehive-inports.xm"/>
<inmport file="${beehive. hone}/ant/beehive-tools.xm"/>
<property file="buil d.properties"/>

<bui | d- pagefl ows srcdir="src/"
webcont ent di r="web/ "
destdi r="bui | d/ VEB- | NF/ cl asses/ "
t enpdi r =" bui | d/ VEB- | NF/ . t npbeansr c"
cl asspat hr ef =" webapp. cl asspat h"/ >

While unconventional, because a Page Flow is URL addressable and "owns" its JSPsiit is
sometimes useful to store Page Flow filesin theweb/ directory. This makesit easier to
visualize the Page Flow as both the pages and the controller sourcefile. In this case, the Ant
build changes dlightly:

<inport file="../../beehive-inmports.xm"/>
<import file="${beehive.hone}/ant/beehive-tools.xm"/>
<property file="build. properties"/>

<bui | d- pagef | ows srcdir="web/"
webcont ent di r="web/ "
destdi r="bui | d/ VEB- | NF/ cl asses/ "
t enpdi r =" bui | d/ WEB- | NF/ . t npbeansr c"
cl asspat hr ef ="webapp. cl asspat h"/ >

Be careful of the dependencies between thesr ¢/ and web/ directories when adding Page
Flowsto theweb/ directory as building both source roots separately can be difficult they
have circular dependencies on each other.

In both of the above project layouts, thet enpdi r isused as adestination for artifacts
generated by the Beehive annotation processors including both resources and Java source
files. These are then compiled by the annotation processor into the classes stored in

bui | d/ VEB- | NF/ cl asses. This behavior can be changed by tweaking the build filesto
build into adifferent temporary directory or to create a JAR for the classfiles. Also, the

bui | d/ directory is often deployed to an application container during devel opment.

2.2. Source Filesin the Web Content Root

Java, J2EE, Servlet, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and

other countries.

NetUl Web App Project Model

An alternate web project layout stores Java sourcesin the VEB- | NF/ sr ¢ sub-directory.
This project layout might look like:

f ooWebPr oj ect /

pagel.jsp
page2.j sp
\EB- | NF/
web. xn
src/
Control ler.java
bui | d. xni

bui | d. properti es

When building this type of web project, classes are often generated into the

VAEB- | NF/ cl asses directory and the webapp deployed from the f ooV\ebPr oj ect
directory. Thisis different from the previous project models which build and deploy an
external bui | d/ directory. The Ant used to build Page Flows in this project structure might
appear as:

<inport file="../../beehive-inports.xm"/>
<import file="${beehive. hone}/ant/beehive-tools.xm"/>
<property file="buil d.properties"/>

<bui | d- pagef | ows srcdir="f ooWbProject/"
t enpdi r =" f ooWebPr oj ect / WVEB- | NF/ . t npbeansr c"
cl asspat hr ef =" webapp. cl asspat h"/ >

The difference between this<bui | d- pagef | ows> call and the previous examplesis that
thewebcont ent di r and dest di r directories areimplicitly set by only using the
srcdi r attribute. This causes the web project to build directly into thef ooV\ebPr oj ect /
directory and to generate classesinto f ooV\ebPr oj ect / VEB- | NF/ cl asses.

3. Creating a new NetUI Project

A new NetUI project can be created from a Beehive distribution by running two commands
to first create a NetUI-enabled web project and then copy the Beehive runtime JARs into that
project.

cp -r <beehive-root >/ sanpl es/ net ui - sanpl es <proj ect-directory>
ant -f <beehive-root>/ant/beehi ve-runti nme. xmn
- Dwebapp. di r=<pr oj ect - di rect ory> depl oy. beehi ve. webapp. runti ne

This command will create awebapp using the project layout described here. Thiswebapp is

© 2005, Apache Software Foundation
Page 4

NetUl Web App Project Model

essentially a copy of the <beehi ve-r oot >/ sanpl es/ net ui - bl ank web application.

4. Runtime JARs/ Resour ces

All web applications require runtime resources. Often, these are stored in aweb project's
VAEB- | NF/ | i b directory. In order to use NetUI in a J2EE web application, a variety of
JARs must be stored in this directory.

4.1. JARs

Since NetUI is built atop Struts, the Struts JARs must be present in order for the web
application to function. This table lists both the Struts and Beehive JARSs; all of these JARs

are available as part of the Beehive distribution.

Name JAR file Version Required
Beehive Controls beehive-controls.jar distribution Yes
Beehive NetUI beehive-netui-core.jar | distribution Yes for NetUl JSP tag
support; no otherwise
Beehive NetUI beehive-netui-tags.jar | distribution No
Jakarta Commons commons-beanutils.jar | 1.6 Yes
Bean Utils
Jakarta Commons commons-codec-1.3.jar | 1.3 Yes
Codec
Jakarta Commons commons-collections.jar| 2.1.1 Yes
Collections
Jakarta Commons commons-digester.jar | 1.6 Yes
Digester
Jakarta Commons commons-discovery-0.2} 0.2 Yes
Discovery
Jakarta Commons EL | commons-el.jar 1.0 Yes
Jakarta Commons File | commons-fileupload.jar | 1.0 Yes
Upload
Jakarta Commons commons-logging.jar 1.0.4 Yes
Logging
Jakarta Commons jakarta-oro.jar 2.0.7 Yes

ORO

Page 5

© 2005, Apache Software Foundation

http://struts.apache.org

NetUl Web App Project Model

Jakarta Commons commons-validator.jar | 1.1.4 Yes

Validator

JSTL 1.1 jstl.jar 1.1.0-D13 Yes for JSTL tag
support; no otherwise

JSTL 1.1 standard.jar 1.1.0-D13 Yes for JSTL support;
no otherwise

Log4J log4j-1.2.8.jar 1.2.8 No

Struts struts.jar 1.2.7 Yes

For the 1.0 release, the NetUI runtime can not be shared between multiple web applications; the runtime for every web
application must be isolated inside of its own web application classloader. Thisis because in some cases, NetU| caches
information in statics or class instances rather than in the Ser vI et Cont ext .

4.2. Other Resources

NetUI also uses several additional XML files used to configure various NetUI and Struts
sub-systems. These are detailed in the table below.

Name Location Required

beehive-netui-validator-rules.xml| <beehi ve-r oot >/ sanpl es/ n{ Yes

validator-rules.xml <beehi ve-r oot >/ sanpl es/ n{ Yes

beehive-netui-config.xml See here for more information. | No (unless modified)

Also, the NetUI runtime requires aset of web. xm entriesto register the Page Flow servlet,
filters, and mappings. In any NetUI-enabled web project, be sure that these entries are
present.

4.3. NetUl-enabled Web Projects and Sour ce Control

When adding a NetUI-enabled web project to source control, all resources marked Required
in the JAR table and the resources table should be checked into SCM. In addition, the
optional resources may be required for certain features to function correctly. If aweb project
uses the Beehive System Controls, those JARs should aso be checked into source control.

5. Building a Web Project
When a NetUI enabled web project builds, two processing steps happen to the Page Flow

Java, J2EE, Servlet, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and

other countries.

../netui/config/beehive-netui-config.html

NetUl Web App Project Model

annotated Javafiles. Thefirst is annotation processing which produces a Struts module
config file and the second is a Java classfile for the Controller class. For example, given a
Page Flow in some directory:

f oo/
Control l er.java

pagel.jsp
page2.jsp

in any of the project models above, the following artifacts will be produced by the build:

VEB- | NF/ cl asses/
f oo/
Controller.class
_pagef | ow
struts-config-foo. xmn

By default, the Struts module config file is placed in the

VEB- | NF/ . pagef | ow st r ut s- gener at ed directory and the Java classfileis placed
inVEB- | NF/ cl asses/ . In cases where these values need to change, the Beehive Ant
build macros are documented here.

6. Deploying a Web Project

Once built, a Beehive web project can be deployed to a Servlet container just as with any
other J2EE web application. On Tomcat, this can be done by copying the web project
directory to $CATALI NA_HOVE/ webapps or by using the Tomcat deployer to deploy the
webapp. See your application container's documentation for details on how to deploy web
applications.

Java, J2EE, Servlet, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries.
© 2005, Apache Software Foundation

Java, J2EE, Servlet, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries.

../infra/beehive-ant-macros.html

	1 Introduction
	2 Project Layout
	2.1 Source Files peer to Web Content Root
	2.2 Source Files in the Web Content Root

	3 Creating a new NetUI Project
	4 Runtime JARs / Resources
	4.1 JARs
	4.2 Other Resources
	4.3 NetUI-enabled Web Projects and Source Control

	5 Building a Web Project
	6 Deploying a Web Project

