
Shared Flow vs. Inheritance

Table of contents

1 Introduction..2

2 When to Use Shared Flow... 2

2.1 Accessing shared state...2

2.2 Shared actions and exception handlers for shared user interface 3

2.3 You cannot change the inheritance hierarchy for your page flow controller................ 4

Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

1. Introduction

Page Flow supports both inheritance and Shared Flow. At first glance the two seem similar;
both allow you to share actions and exception handlers. The general guideline for which to
use is simple: use Page Flow inheritance whenever you can. It allows you to share more than
just actions and exception handlers (e.g., you inherit everything in the base class
@Jpf.Controller annotation), and it uses a familiar Java concept in order to do it. This
document mainly explains the (important) cases where you would want to use Shared Flow.

2. When to Use Shared Flow

There are three main cases where you would want to use Shared Flow: for accessing shared
state, for shared/templated user interface, and when you cannot change your controller class
hierarchy.

2.1. Accessing shared state

You want to share actions or exception handlers that use a single copy of some shared state.
For example, the following shared flow action switchToLargePictures sets a single
flag that can be used by many page flows:

@Jpf.Controller
public class MySharedFlow extends SharedFlowController
{

private boolean _usingLargePictures = false;

@Jpf.Action(
forwards={

@Jpf.Forward(name="cur", navigateTo=Jpf.NavigateTo.currentPage)
}

)
public Forward switchToLargePictures()
{

_usingLargePictures = true;
return new Forward("cur");

}

public boolean isUsingLargePictures()
{

return _usingLargePictures;
}

}

There is only one instance of a given shared flow per user, so any page flow which references
MySharedFlow will have access to the single value of this flag. For example, the following

Shared Flow vs. Inheritance

Page 2
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

../netui/pageFlowInheritance.html
../netui/sharedFlow.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html

page flow references MySharedFlow under the name "mySharedFlow":

@Jpf.Controller(
sharedFlowRefs={

@Jpf.SharedFlowRef(name="mySharedFlow", type=MySharedFlow.class)
}

)
public class ExamplePageFlow extends PageFlowController
{
}

It can access the shared flow's usingLargePictures property in one of two ways:

• In its JSPs, through databinding, e.g.,

<c:if test="${sharedFlow.mySharedFlow.usingLargePictures}">
...

</c:if>

• Directly, through an annotated field in the page flow controller class:

@Jpf.SharedFlowField(name="mySharedFlow")
private MySharedFlow _mySharedFlow; // This field is
auto-initialized.

@Jpf.Action(...)
public Forward someAction()
{

if (_mySharedFlow.isUsingLargePictures())
{

...
}

}

There is a simple reason you would not want to put a flag like isUsingLargePictures
in a base class. If you did, you would end up with a separate copy of the value in each
derived controller class, thus making it more difficult to share the flag.

2.2. Shared actions and exception handlers for shared user interface

Say you are sharing some bit of user interface, like a menu bar. You may be using the NetUI
Template tags, or you may be using Page Flow's support for Tiles. In either case, the user
interface you're sharing will likely have its own actions (and possibly exception handlers)
associated with it. It usually does not make sense to be forced to extend a different page flow
controller, just to get the shared actions for something like a menu bar. You may be
including lots of shared user interface (navigation bar, header, footer, etc.), and it would be
bad for each one to require its own base class. Instead, each one can have an associated

Shared Flow vs. Inheritance

Page 3
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/netui/tags/template/Template.html
http://struts.apache.org/userGuide/dev_tiles.html

shared flow, which you reference in your page flow using a @Jpf.SharedFlowRef.

Note:
The NetUI Samples show shared flows being used with both the Template tags and with Tiles.

2.3. You cannot change the inheritance hierarchy for your page flow controller

In some cases, you simply cannot change the base class for your page flow controller. You
may have a prescribed base class, yet you still want to share some separate group of actions.
When this happens, you can always reference a shared flow, using a
@Jpf.SharedFlowRef.

Is this a sneaky way to support multiple inheritance? We leave it for you to decide.

Shared Flow vs. Inheritance

Page 4
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.SharedFlowRef.html
../netui/samples/index.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.SharedFlowRef.html

	1 Introduction
	2 When to Use Shared Flow
	2.1 Accessing shared state
	2.2 Shared actions and exception handlers for shared user interface
	2.3 You cannot change the inheritance hierarchy for your page flow controller

