Testing Controls

Table of contents

L OVEIVIEIW. ...t etee et et e et e et e e e e e beesateeabeeeaseeaseeease e beeeaseeseesaseeseeaaseeseesateenseeannenneesn 2
2 The JUNit CoNtrolS CONLAINEY..........ccceeiieeeiee e eiee et sre e sa e e sre e eaaeeaeesnnas 2
3 CONrOl INSLANETALTON.eiiieeiiie et e e s e e re e sreeebeesreeenree e 3
4 UsSING @NOLher BASE ClaSS........ccuieiiiiieciieite ettt sttt s re s e e sneenne s 3

5 RUNNING the JUNIT TESES......coiiieiecee ettt st ae e sneeseeneennens 3

Testing Controls

1. Overview

A Beehive Control can be tested either inside of an application container or outsidein a
standalone Java environment. The latter can be particularly useful running unit tests or during
test driven development (TDD). This document describes how to unit test a Beehive Control
using Junit.

2. The JUnit Controls Container

The Controls JAR filebeehi ve- cont r ol s. j ar providesbuild time, run time, and test
time support for developing Controls. This makes it very easy to begin unit testing Controls
that are built as part of an application. Out of the box, Controls provides integration into the
JUnit test framework viathe Control TestCase base class. This base class provides a Control
container that hosts a Control for the duration of a Control test. It also provides helpin
instantiating a Control declaratively viathe @Control annotation.

To author a JUnit Controls test using the base class, the test case should be declared as:

public class FooTest
ext ends Control Test Case {

For each test case with a name method matching the JUnit naming convention test*, the
JUnit container will start and stop the Control TestContainerContext. The begi nCont ext
method will be called at the beginning of each test inthe set Up() method, and the
endCont ext method will be called at the end of each test inthet ear Down() method.
Thiswill simulate ainteraction lifetime with the control where multiple Control instances
can be invoked multiple times. The Control will hold any resources it acquires for the
duration of the test method. As an example, this begin/ end Context lifetime represents the
same lifetime as that for a single HttpServletRequest in the web tier. Any resources loaded
from the Cont r ol Test Cont ai ner Cont ext areloaded from the current thread's
context class loader.

For asingletest, once the Cont r ol Test Cont ai ner Cont ext hasbeeninitialized, the
controlsin the JUnit test class are declaratively instantiated viatheCl i ent I ni ti al i zer
that was generated for the test case.

InordertouseaCl i ent | nitializer,theJUnit test cases must have been processed with the Controls annotation
processor viathe <bui | d- cont r ol s> Ant macro.

Page 2

overview.xml
http://junit.org
apidocs/javadoc/org/apache/beehive/controls/test/junit/ControlTestCase.html
apidocs/javadoc/org/apache/beehive/controls/api/bean/Control.html
apidocs/javadoc/org/apache/beehive/controls/test/junit/ControlTestCase.html

Testing Controls

In cases where atest needs to provide a custom implementation of a Controls container, a
new container implementation will be created by overriding the
initializeControl ContainerContext() method.

In cases where atest needs to override the base set Up and t ear Down JUnit lifecycle
methods, the test author should remember to call super . set Up() and
super . t ear Down() from the overridden methods.

3. Control I nstantiation

Controls declared with the @ont r ol annotation will be declaratively instantiated by the
JUnit container. These references will be valid for the duration of the JUnit test.

4. Using another Base Class

In cases where tests are unable to extend the Cont r ol Test Case base class, the Control
container and its lifecycle can be implemented using utilities available in the class

Control ContainerContextManager. This class provides methods to begin and end a Context,
to instantiate controls, and to get the Context object itself. To implement a

Cont r ol Cont ai ner Cont ext for asingletest case, the following code can be added to a
test case method:

public void testFoo() {
Cont r ol Cont ai ner Cont ext ccc = new Control Test Cont ai ner Cont ext () ;
Cont r ol Cont ai ner Cont ext Manager cccManager =

Cont r ol Cont ai ner Cont ext Manager Fact ory. get | nst ance(ccc) ;
cccManager . begi nCont ext () ;
cccManager . i nstanti at eControl s(this);

test code ..

cccManager . endCont ext () ;
}

The same Cont r ol Cont ai ner Cont ext methods could be added to the JUnit test
lifecycle methodsset Up() andt ear Down() .

5. Running the JUnit Tests

The JUnit tests for a Control can be executed in a variety of waysincluding via Ant or from
and IDE like IntelliJ or Eclipse. Ant can run these JUnit tests in the usual means by executing
them directly or by using the optional Ant tasks to support running and reporting results for
JUnit tests.

Page 3

apidocs/javadoc/org/apache/beehive/controls/test/junit/ControlTestCase.html#initializeControlContainerContext()
apidocs/javadoc/org/apache/beehive/controls/test/junit/util/ControlContainerContextManager.html

Testing Controls

To run Controls JUnit tests from an IDE, the command line build to code generate the
Controls support classes often needs to be run so that the Control support classes are
available in classpath. Once these classes have been generated, an IDE's JUnit integration
should successfully. While thisis inconvenient, as support for annotations and APT improves
in IDEs, this process should become easier.

Page 4

	1 Overview
	2 The JUnit Controls Container
	3 Control Instantiation
	4 Using another Base Class
	5 Running the JUnit Tests

