
Testing Controls

Table of contents

1 Overview..2

2 The JUnit Controls Container.. 2

3 Control Instantiation.. 3

4 Using another Base Class...3

5 Running the JUnit Tests...3

Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

1. Overview

A Beehive Control can be tested either inside of an application container or outside in a
standalone Java environment. The latter can be particularly useful running unit tests or during
test driven development (TDD). This document describes how to unit test a Beehive Control
using JUnit.

2. The JUnit Controls Container

The Controls JAR file beehive-controls.jar provides build time, run time, and test
time support for developing Controls. This makes it very easy to begin unit testing Controls
that are built as part of an application. Out of the box, Controls provides integration into the
JUnit test framework via the ControlTestCase base class. This base class provides a Control
container that hosts a Control for the duration of a Control test. It also provides help in
instantiating a Control declaratively via the @Control annotation.

To author a JUnit Controls test using the base class, the test case should be declared as:

public class FooTest
extends ControlTestCase {

...
}

For each test case with a name method matching the JUnit naming convention test*, the
JUnit container will start and stop the ControlTestContainerContext. The beginContext
method will be called at the beginning of each test in the setUp() method, and the
endContext method will be called at the end of each test in the tearDown() method.
This will simulate a interaction lifetime with the control where multiple Control instances
can be invoked multiple times. The Control will hold any resources it acquires for the
duration of the test method. As an example, this begin / end Context lifetime represents the
same lifetime as that for a single HttpServletRequest in the web tier. Any resources loaded
from the ControlTestContainerContext are loaded from the current thread's
context class loader.

For a single test, once the ControlTestContainerContext has been initialized, the
controls in the JUnit test class are declaratively instantiated via the ClientInitializer
that was generated for the test case.

Note:
In order to use a ClientInitializer, the JUnit test cases must have been processed with the Controls annotation
processor via the <build-controls> Ant macro.

Testing Controls

Page 2
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

overview.xml
http://junit.org
apidocs/javadoc/org/apache/beehive/controls/test/junit/ControlTestCase.html
apidocs/javadoc/org/apache/beehive/controls/api/bean/Control.html
apidocs/javadoc/org/apache/beehive/controls/test/junit/ControlTestCase.html

In cases where a test needs to provide a custom implementation of a Controls container, a
new container implementation will be created by overriding the
initializeControlContainerContext() method.

In cases where a test needs to override the base setUp and tearDown JUnit lifecycle
methods, the test author should remember to call super.setUp() and
super.tearDown() from the overridden methods.

3. Control Instantiation

Controls declared with the @Control annotation will be declaratively instantiated by the
JUnit container. These references will be valid for the duration of the JUnit test.

4. Using another Base Class

In cases where tests are unable to extend the ControlTestCase base class, the Control
container and its lifecycle can be implemented using utilities available in the class
ControlContainerContextManager. This class provides methods to begin and end a Context,
to instantiate controls, and to get the Context object itself. To implement a
ControlContainerContext for a single test case, the following code can be added to a
test case method:

public void testFoo() {
ControlContainerContext ccc = new ControlTestContainerContext();
ControlContainerContextManager cccManager =

ControlContainerContextManagerFactory.getInstance(ccc);
cccManager.beginContext();
cccManager.instantiateControls(this);

... test code ...

cccManager.endContext();
}

The same ControlContainerContext methods could be added to the JUnit test
lifecycle methods setUp() and tearDown().

5. Running the JUnit Tests

The JUnit tests for a Control can be executed in a variety of ways including via Ant or from
and IDE like IntelliJ or Eclipse. Ant can run these JUnit tests in the usual means by executing
them directly or by using the optional Ant tasks to support running and reporting results for
JUnit tests.

Testing Controls

Page 3
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/controls/test/junit/ControlTestCase.html#initializeControlContainerContext()
apidocs/javadoc/org/apache/beehive/controls/test/junit/util/ControlContainerContextManager.html

To run Controls JUnit tests from an IDE, the command line build to code generate the
Controls support classes often needs to be run so that the Control support classes are
available in classpath. Once these classes have been generated, an IDE's JUnit integration
should successfully. While this is inconvenient, as support for annotations and APT improves
in IDEs, this process should become easier.

Testing Controls

Page 4
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

	1 Overview
	2 The JUnit Controls Container
	3 Control Instantiation
	4 Using another Base Class
	5 Running the JUnit Tests

