NetUI Control Container

Table of contents

I 1 11 0o 1T i o 1O
2 Description of the Control CONLAINES............coiriiereriereere e e
2.1 SCOPE Of the CONLIOL.......ccueiiiiecie et r e
2.2 Single Threaded Page FIOW COdE..........cccooueiieieiie et
2.3 Programatic Creation Of CONLIOIS..........ccveiueiieiieicee e

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

NetUI Control Container

1. Introduction

This document describes how the NetUI page flow runtime implements the container for
hosting controls. Controls run within a runtime container which provides services to controls.
Within the page flow runtime, the

org.apache.beehive.controls.api.context. Control BeanContext is the base class that provides
the extended services to contained controls. The container is managed by the page flow
runtime. This document describes the details of the contract that is maintained for controls
hosted in page flows by the implementation.

2. Description of the Control Container

This section describes the implementation of the Control container within the page flow
runtime.

2.1. Scope of the Control

There are three scopes that the control container implementation provides for controls. The
first is at the page flow level. Each page flow, PageFl owCont r ol | er, providesits own
Cont r ol BeanCont ext to the controls which are defined within the scope of that page
flow. The second scope is the shared flows, Shar edFl owCont r ol | er . All shared flows
and the G obal App shareasingle Cont r ol BeanCont ext . Thefinal scopeisfor JSF
Backing Beans, FacesBacki ngBean. Just as with page flows, faces backing beans have a
Cont r ol BeanCont ext that is scoped to their lifetime. The result is that the

Cont r ol BeanCont ext containing controls has the same lifetime as the object that
defines and uses the control instances.

2.2. Single Threaded Page Flow Code

There are three places in the handling of arequest where page flow code provides
synchronization of multiple threads. Page flows and shared flows are scoped into a

Ser vl et Sessi on. It is possible to have multiple threads running. This can happen if you
have multiple browser windows sharing a session, or if you have multiple requests from a
single page containing frames. Multiple requests can be generated through HTML frames or
AJAX calls. The page flow runtime insures that multiple threads are not executing code
inside of apage flow. A shared flow can potentially have multiple threads running through it
which will be described below.

There are three synchronization pointsin the page flow runtime:
« onCreate-- TheonCr eat e event is synchronized and only one thread will ever pass

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

../apidocs/classref_controls/org/apache/beehive/controls/api/context/ControlBeanContext.html

NetUI Control Container

through this method during the life of the page flow.

» beforeAction / action / after Action -- These three methods are runin asingle
synchronization block meaning these method will run together within one thread, without
another thread running through the page flow.

e JSP Rendering -- The page flow runtime synchronizes on the current page flow during
JSP rendering. This prevents a thread from running and action on a page flow while
another thread is rendering a JSP which may be accessing page flow state.

Each of these synchronization points will run the resource events on the controls contained
inside of the container. Thiswill cause the onAcqui r e and onRel ease resources events
to be triggered on all of the controls within the container. These events will be run on the
current page flow and also the shared flow. In reality, the onAcqui r e method is run before
the first method invocation is done on acontrol. onRel ease will only berun if the
onAcqui r e mehtod has been run. The shared flow Cont r ol BeanCont ext hasalock
associated with it that must be obtained before user code can be run.

The synchronization point result in the following, all accessto a control is single threaded. If
acontrol acquires aresource such as a JDBC connection, it will only be used for asingle
request. Thismodel also ensures that shared flows are accessed in a single threaded model
when there is an instance of a control in any shared flow because of the lock associated with
the shared flow Cont r ol BeanCont ext . Finaly, if there is a shared flow

Cont r ol BeanCont ext we will serialize all threads within a session when they run
through user code. This ensures a single threaded model for controls defined in shared flows.

2.3. Programatic Creation of Controls

The ControlBeanContext islazily created when possible. When a page flow is created, the
page flow is searched for fields with @ ont r ol annotations. If any of these are found, the
Cont r ol BeanCont ext iscreated. The shared flow Cont r ol BeanCont ext iscreated
when the first shared flow containing a control annotation is created.

For page flows that want to create a control programmatically using

j ava. beans. Beans. i nst ant i at e, you must ensure that the context has been created.
The following two lines of code will create the Cont r ol BeanCont ext and make sure the
begi nCont ext method is called correctly.

PageF| owCont r ol Cont ai ner pfcc =
PageFl owCont r ol Cont ai ner Fact ory. get Cont r ol Cont ai ner (get Request (), get Servl et Context ());
pf cc. cr eat eAndBegi nCont r ol BeanCont ext (t hi s, get Request (), get Response(), get Ser vl et Cont ext

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.
© 2006, Apache Software Foundation

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

	1 Introduction
	2 Description of the Control Container
	2.1 Scope of the Control
	2.2 Single Threaded Page Flow Code
	2.3 Programatic Creation of Controls

