Controls Programming

Table of contents

@Y VT 3
P2 N Al = 0 o] =PRSS 3
3 The Control AUthOring MOEL...........cooiiiie e 4
4 The Control CHENt MOGEIS........ooiiiiiieieee e 6
5 DefiNiNg aNEW CONIOl TYPE....cvveieieeieeiesteeste ettt eee et eae e ste e e sreeaesreesseenee e 7
6 INSLANLILING 8 CONEIOL.......couiiiieieeeeee e 9
6.1 Declarative INSEANTIAHION.........ccveieeieeiese et e s ee e e sseeneesneenseas 9
6.2 ProgrammatiC INStANtIAtiON.cccueierrieieseee e 10
AL 0= = (0] USSR 11
7.1 Declaring and Implementing Operations for a Controlcccccevveveeieeieeceeieennns 11
7.2 Invoking Operations 0N @ CONLIOL..........ccccviieieeie e 12
B EVENES....eee e ar e e ne e nnee s 13
8.1 DECIAING EVENES.......ooiiiiiii et 13
S e T aTo l Y R 15
8.3 LIStENiNG fOr EVENES........oiiieeieie ettt et be e 15
9 CONLEXLUBl SEIVICES.eiviiiiterieeieeiieiee ettt sb et s b et sae et et e e e sbente e e 17
9.1 Declarative Access to ConteXtual SENVICES........ccuvieiererere e 18
9.2 Programmatic ACCeSS t0 CoNteXtUal SEIVICES.........cccurirriererireriesiesieeee e 19
9.3 Tradeoffs between Declarative and ProgrammatiC ACCESS..........ccceereereereererereneniens 20
Ol o 0 0= g 1= 20
10.1 Declaring Properties for a Control TYPE.........eccueeveeiiieiiie e 21
10.2 Accessing Properties from Client Code..........oovvieeieeieceesece e 22
10.3 Accessing Properties from Control Implementation code............ccocevvevviceereeciennnnn, 23

10.4 External Configuration of Control Properties............ccuevevereeieenenenese e 24

Controls Programming

10.5 Defining Property CONSITAINTS........c.oiiiiiriiriesiee et ee e 25
g = 1 o 2SS 26
11.1 Defining an Extended Interface for a Control TYPe.......ccccvveeeevieveeieseece e 26
11.2 Defining Extension Semantics for a Control TYPe.......cccovveeveeiesieeneesie e seeee s 28
11.3 Authoring an Extensible CONntrol TYPE........coeeeeirierirere e 29
11.4 Client Moddl for Using an Extended Control TYPe........ccooeverierienenenereseseeeeee 31
i @00 0 01070’ 1 o] o OSSR R 32
12.1 Composition Using Declarative INstantiation............ccceeveeeiieiieiiie e 32
12.2 Internal Architecture for Composition and SErVICES..........cccvevevieeseesesceese e 34
T 0101 1= (ot ST PRPRR 36
14 Context and RESOUICE EVENLS.........ccceiieieiierie ettt see st ee e sne e s 36
14.1 Lif@ CYCIE EVENLS.......oieieieieeeeeeee et 37
14.2 RESOUICE EVENLS.......iiiieiiie ettt s sre e ne e 38
14.3 Receiving Life Cycle or Resource EVENtS..........cccccveviecviee e 39
14.4 JavaBean CONLEXT EVENTS..........oooi e 40
15 Appendix A: The JmsMessageControl Public Interface..........ccoccvveveeceserecceceeee, 41
16 Appendix B: The JmsMessageControl Implementation Class...........cccceevveerencieneneens 44

Page 2

Controls Programming

1. Overview

The Control architecture is alightweight component framework based upon JavaBeans,
which exposes a ssmple and consistent client model for accessing a variety of resource types.
Controls take the base functionality of JavaBeans and add in the following unique new
capabilities:

« Enhanced authoring model: uses a public interface contract and an associated
implementation class to enable generation of a supporting JavaBean class for handling
the details of property management and initialization.

« Extensibility model: enables the construction of views and custom operations (with
implied semantics) on the Control using metadata-annotated interfaces.

» metadata attributes and external configuration data: provides an enhanced configuration
model for resource access.

This document focuses on the Controls programming and configuration model from two
distinct perspectives:

« Theauthoring and extensibility model for defining a new type of Control

« Theclient access model for declaring and using Controls

An overview of the Control architecture and toolable access models can be found in the
companion document entitled Control Overview: Providing Simplified and Unified Accessto
J2EE Resources

2. An Example

In the course of describing the programming model for Controls, this document builds upon
an example Control that simplifies the enqueueing of IMS messages with a specific format
and set of properties. Once completed, client code to accomplish this should be as
straightforward as:

Enqueueing using Order QueueBean (Client Code)
O der QueueBean orderBean = (O der QueueBean)
j ava. beans. Beans. i nst anti at e(" or g. apache. beehi ve. cont r ol s. exanpl es. Or der QueueBean") ;

Order order = new Oder(nylD, new String [] {"iteml", "itenR"});
Or der Bean. submi t Order (order, "01-28-2004");

This document starts with a brief overview of the Control Authoring and Client
Programming Models to establish some basic context, eventually building to enable the
example above.

Page 3

../controls/overview.html
../controls/overview.html

Controls Programming

3. The Control Authoring M odel

This section describes the basic authoring model for Controls. This includes a description of
the following elements:

e Control Public Interface: source file that defines the set of operations, events,
extensibility model, and properties associated with the Control type.

« Control Implementation Class: source file that provides the implementation of the
operations and extensibility model described by the Control Public Interface.

» ControlBean Generated Class. code-generated JavaBean class that is derived from the
Control Public Interface and the Control |mplementation Class by a Control compiler.

This authoring model is a departure from the traditional JavaBeans programming model,
whichislargely based upon a set of conventions that a bean author is expected to follow
when constructing a new JavaBean type. In the Controls model, the author defines
operations, events, and properties in an interface (Control Public Interface) and builds an
underlying implementation (Control Implementation Class). A Control compiler takes these
two elements and generates a specialized type of JavaBean (ControlBean Generated Class),
which represents the full client programmer’ s view of the Control.

There are two primary advantages of this model:

« Simplicity. A key goal of any ease-of-use programming model is to free the developer
from worrying about plumbing. Managing property values, event listener lists, and other
basic JavaBean functions are fairly rote from implementation to implementation. The
Controls architecture employs a unique variant of the Inversion of Control (IoC) design
pattern based on metadata annotations. This enables a Control |mplementation Class to
declaratively specify the events or servicesit requiresto provide its semantics. The
ControlBean Generated Class acts as alightweight container to provide contextual
hookup and implementation details.

« Consistency. Instead of trying to provide consistency through convention, the Control
compiler provides both verification and code generation services to ensure that the
resulting implementation provides consistent APIs and behaviors for clients, tools, and
application deployers or administrators.

Diagram: Control Architecture Elementsand Flow

Page 4

Controls Programming

Olperations > - e
Actions=Data R
Events - R PSR S

Conitrol Controf
Public Implementation
Interfzce Class

The client will interact with the Control by invoking operations defined on the Control Public
Interface or dynamic property accessor methods on a ControlBean instance. The client can
also express interest in any events the Control might generate by registering alistener to
receive them.

The following diagram represents the rel ationship between the Control Public Interface, the
Control Implementation Class, and the ControlBean Generated Class:

Diagram: Relationships between Control Interface and Classes

Control Public Interface

Resorce Cperdions

7

ControlBean Generated Class Control Implementation Class
Dyvnamic propety valles REsoUCe ooy
Lacalcliert state
Property oetters
Property setters Operations implementation

Page 5

Controls Programming

The Control Public Interface defines the operations on the Control and will be implemented
by both the Control Implementation Class and the ControlBean Generated Class. The
ControlBean Generated Class will also define property accessor methods and internally will
maintain the state of property values. It will also maintain areference to one (and only one)
Control Implementation instance. The Control Implementation instance, wrapped by a bean
instance, provides the actual implementation of resource semantics for the Control.

The subsequent sections will outline the various characteristics of Controls:

Declaration / Instantiation
Operations

Events

Contextual Services
Properties

Extensibility
Composition

Context Events

Where applicable, the aspects of each of these characteristics will be explored in two
dimensions: from the perspective of a Control author who is defining a new type of Control,
and from the perspective of a Control client that is using the services of an available Control

type.

To make the descriptions more concrete, the characteristics will be presented within the
context of a sample Control: the JnsMessageControl. This Control will provide asimplified
client access model for enqueuing messages to a JM'S queue or topic, freeing the client from
having to learn the nuances of JM S client programming.

4. The Control Client Models

There are actually two distinct programming models that may be available to clients of
Controls:

» Declarative Model. Uses a metadata-based variant of the Inversion of Control (10C)
design pattern to allow a component author to declare Control instances, contextual
services, and event handlers using annotated fields and methods. The declarative model
simplifies client programming, because many of the details of initialization and event
routing are left to an external container supporting the model. A declarative programming
styleis also more toolable, sinceit is much easier for tools to manage and manipulate
metadata rather than code.

* Programmatic Model. Uses the traditional JavaBean-style APIsfor acting as a client of
abean, including factory-based constructor and event listeners. The programmatic model

Page 6

Controls Programming

may be more comfortable to the traditional Java programmer, who wantsto see and be in
control of al the details. It also enables client use cases where there is no supporting
container for the declarative model.

The programmatic client model is generally availablein all contexts where Controls might be
used. It offersfull generality, but leaves many of the details up to the client programmer,
such as initialization, composition, and event handling wire-up.

The declarative model hides many of these details. Based upon its use of metadatait is also
more tool friendly, allowing toolsto present aview of the client code without code analysis.

The declarative model requires support of an outer container or construction-time code that
fulfills the contract implied by annotations on aclient class.

The ControlBean itself provides this support, so the Control Authoring Model is oriented
towards using the declarative model, although programmatic equivalents are generally
available.

5. Defining a New Control Type

Controls are designed to make it very easy for users (and tools) to define new types of
Controls. Control authors might be:

« System vendors exposing specific types of resources

« Application developers defining new types of logical resources (possibly based upon
physical ones)

« Third-party software vendors, using Controls as a mechanism to interface to components
or subsystems they provide.

In al instances, the goal of the Controls authoring model isto provide a basic set of
conventions and supporting tools to make it easy to author anew Control type.
To get started, a Control author would define the two basic artifacts:

« the Control Public Interface
the Control Implementation Class

For the JnsMessageControl, the declaration of the public interface might look like:

I nterface Declaration (Control Public Interface)
package org. apache. beehi ve. control s. exanpl es;

i mport org. apache. beehi ve. control s. api . bean. Control I nterface;

@ontrol I nterface
public interface JnsMessageContr ol

Page 7

Controls Programming

{

}

The only basic rule for a Control Public Interface is that it must be annotated by the
org.apache.beehive.controls.api.bean.Control | nterface marker interface.

The second source artifact a Control author would create to define anew type of Control is
the Control Implementation Class. This declaration of the implementation class for our
JmsMessageControl would look like:

Class Declaration (Control I mplementation Class)
package org. apache. beehi ve. control s. exanpl es;

i mport org. apache. beehi ve. control s. api . bean. Control | npl ement ati on

@control I mpl enent at i on(i sTransi ent =t rue)
public class JmsMessageControl | npl inplenments JnsMessageContr ol

}
The basic rules for a Control Implementation Class are:

e It must be annotated with

or g. apache. beehi ve. control s. api . bean. Control | npl enent ati on.
e It must implement its associated Control Public Interface.
o It must either (1) implement thej ava. i 0. Seri al i zabl e interface or (2) set the

i sTransi ent attribute of @Cont r ol | npl enent at i on to true.

From these two source files, the Control compiler will create athird artifact, the ControlBean
Generated Class. This class need not necessarily ever appear within an application in source
code form; but for the purposes of explaining the overall architecture and client model, we
will present source examples of the derived ControlBean Generated Class.

A Controls standard would focus only on the conventions for the external attributes of
ControlBean Generated Classes, not upon the internal implementation.

The ControlBean Generated Class for the JmsM essageControl would look like:

Class Declaration (ControlBean Generated Class)
package org. apache. beehi ve. control s. exanpl es;

public class JnmsMessageControl Bean i npl ements JnsMessageCont r ol

private JmsMessageControl I npl _i npl

Page 8

Controls Programming

As shown above, the ControlBean Generated Class will also implement the Control Public
Interface. The sample also shows that the bean will hold a private reference to an
implementation instance used to support the bean.

6. Instantiating a Control

This section covers the client mechanisms for creating a new instance of a Control. This can
be done either programmatically or declarative, if running inside a container that support
declarativeinitialization.

6.1. Declarative | nstantiation

The client model for Controls supports a declarative model for instantiating a Control
instance, when running in containers that support this model. In this model, the client class
can annotate fields on the class using a special marker annotation
(org.apache.beehive.controls.api.bean.Control) that indicates that the fields should be
initialized to a ControlBean instance of the requested type.

Hereis an example of declarative instantiation:

Declarative I nstantiation (Client Code)
package org. apache. beehi ve. control s. exanpl es;
i mport org.apache. beehi ve. control s. api . bean. Cont r ol

i mport org.apache. beehi ve. control s. api . bean. Cont rol | npl enent ati on
i mport org. apache. beehi ve. control s. exanpl es. JnsMessageCont r ol

@control I mpl enent ati on(i sTransi ent =true)
public class PublisherControllnpl inplenents PublisherControl
{

@cont r ol
public JnmsMessageControl Bean nyJnsBean

public void someQperation()

nmyJnsBean. sendText Message(" A Text Message");

}

This example shows a second Control Implementation Class (PublisherControlImpl) that
internally uses the services of JmsMessageControl to enqueue a JMS message. The child
Control field is not explicitly initialized within the PublisherControl implementation class; by
the time someOperation() is called, it is guaranteed that the myJmsControl reference has been
initialized by the wrapping PublisherControl that contains the implementation.

Page 9

Controls Programming

It is also possible to parameterize a Control at construction time, again using metadata
attributes. These attributes can be placed on the field declaration (in addition to the @Control
annotation) and will be used to do construction-time initialization.

The second example below shows initialization of the myJmsControl field again. In this case,
an initial value of the @Destination "name" attribute is also provided using metadata
annotations:

Declarative I nstantiation with Properties (Client Code)

@control | mpl enent ati on
public class PublisherControllnpl inplenents PublisherControl

@Cont r ol

@est i nati on(nane="1 nvoi ceQueue")

publ i c JnmsMessageContr ol Bean myJnsBean;
This example performs exactly the same initialization as the earlier declarative example, but
does so using annotation attribute syntax instead of passing parameters to a factory-based
constructor.

The Controls architecture includes a mechanism for defining the expected set of annotations
that might appear on a Control field. This mechanism is described in greater detail in the
section on Properties.

6.2. Programmatic I nstantiation

The client model for Controls supports instantiation of a new Control instance using the same
factory-based model supported by JavaBeans. For example, the following code could be used
to create a new instance of the JmsM essageControl Bean generated class:

Programmatic I nstantiation (Client Code)

JnmsMessageCont r ol Bean nyJnsBean =
(JnsMessageCont r ol Bean) java. beans. Beans. i nstanti at e(
cl, "org.apache. beehi ve. control s. exanpl es. JnsMessageCont r ol Bean"
IE

The Control runtime also provides an extended factory model that allows metadata attributes
to be passed into the factory constructor:

Programmatic I nstantiation with Properties (Client Code)

i mport org. apache. beehi ve. control s. api . bean. Control s;

i mport org.apache. beehi ve. control s. api . properti es. PropertyKey;

i mport org.apache. beehi ve. control s. api . properti es. PropertyMap;

i mport org.apache. beehi ve. control s. api . properti es. BeanPr opert yMap;

PropertyMap jnsAttr = new BeanPropertyMap(JmsControl . Destination. cl ass);
jmsAttr.set Property(new PropertyKey(JnmsControl.Destination.class, "name"),

Page 10

Controls Programming

"I nvoi ceQueue") ;
JnsMessageCont r ol Bean nyJnsBean = (JnsMessageCont r ol Bean)
Control s.instanti at e(
cl, "org.apache. beehive. control s. exanpl es. JnsMessageCont r ol Bean"
j mBAttr

In this example, the JnsMessageControl Bean is being constructed with the Destination
"name" property set to "InvoiceQueue". The AttributeMap classis a simple helper class that
can hold a set of name-value pairs of a Control’ s properties, which areinitialized by the
factory-based constructor. More details on Controls properties are provided in alater section.

7. Operations

Operations are actions that can be performed by a Control at the client’s request. This section
describes the authoring model for declaring and implementing a Control operation, aswell as
the client model for invoking operations on a ControlBean instance.

7.1. Declaring and I mplementing Operations for a Control

All methods declared or inherited (via extension) by the Control Public Interface are
considered to be Control operations. The following example shows the definition of two
operations on the JInsM essageControl that will enqueue messages when invoked:

Declaring Operations (Control Public I nterface)
package org. apache. beehi ve. control s. exanpl es;

i mport java.io.Serializable;
i mport org. apache. beehi ve. control s. api . bean. Control I nterface

@ontrol I nterface
public interface JnsMessageContr ol

public void sendText Message(String text);
public void sendObj ect Message(Seri al i zabl e obj ect);

}

The Control Implementation Class implements the public interface for the Control, defining
the operation methods, and the body of these methods.

I mplementing Operations (Control | mplementation Class)
package org. apache. beehi ve. control s. exanpl es;

i mport java.io.Serializable;
i mport org. apache. beehi ve. control s. api . bean. Cont rol | npl enent ati on

Page 11

Controls Programming

@control I mpl enent ati on(i sTransi ent =true)
public class JnmsMessageControl | npl inplenments JnsMessageContr ol

public void sendText Message(String text)
// Code to send a Text Message to the destination
} e
public void sendObj ect Message(Seri al i zabl e obj ect)
// Code to send an Obj ect Message to the destination

}
}

Finally, the ControlBean Generated Class will also implement all operations (since it also
implements the Control Public Interface). It will always delegate to the implementation class
for the actual implementation of the operation; it might also perform additional

contai ner-specific pre/post invocation processing.

Hereis a skeleton of what the generated ControlBean code might look like for an operation:

I mplemented Operations (ControlBean Generated Class)
package org. apache. beehi ve. control s. exanpl es;

public class JnmsMessageControl Bean i npl ements JnsMessageCont r ol
private JmsMessageControl I npl _i nmpl
public void sendText Message(String text)

;inpl.sendTextNEssage(text);
} .

public void sendObj ect Message(Seri al i zabl e obj ect)

;iﬁpl.sendijecthssage(object);
, o
7.2. Invoking Oper ations on a Control

The client model for invoking an operation on a Control isvery straightforward: simply call
the method on a held ControlBean instance as demonstrated by the following example:

Invoking an Operation (Client Code)
package org. apache. beehi ve. control s. exanpl es;

Page 12

Controls Programming

i mport org.apache. beehi ve. control s. api . bean. Cont r ol
i mport org. apache. beehi ve. control s. api . bean. Control | npl enent ati on
i mport org. apache. beehi ve. control s. exanpl es. JnsMessageCont r ol

@control I npl enent at i on(i sTransi ent =t r ue)
public class PublisherControllnpl inplenents PublisherControl

{
@ont rol
public JnmsMessageControl Bean nyJnsBean
public void sonmeQperation()
nyJnsBean. sendText Message(" A Text Message");
}

The invocation model for operations is the same, whether the Control instance was created
using declarative or programmatic mechanisms.

8. Events

Events are notifications sent by the Control back to its client whenever some condition has
been met or internal event has taken place. A client can expressinterest in a Control’ s events
by registering (either explicitly or implicitly) to receive them, and can write event handler
code to be called when the event has taken place.

This section describes the declaration model for events, how an authored Control delivers
them to aregistered client, and the client code necessary to register and receive events.

8.1. Declaring Events

Events are declared on an inner interface of the Control Public Interface, which is annotated
with the org.apache.beehive.controls.api.events.EventSet annotation. The following example
shows the declaration of an event interface for the JnsMessageControl, with a single event
(onMessage):

Declaring Events (Control Public I nterface)

package org. apache. beehi ve. control s. exanpl es;
i mport java.io.Serializable;
i mport | avax. | nms. Message;

i mport org. apache. beehi ve. control s. api . events. Event Set ;
i mport org. apache. beehi ve. control s. api . bean. Control I nterface;

@ontrol I nterface

Page 13

Controls Programming

public interface JnsMessageContr ol

public void sendText Message(String text);
public void sendObj ect Message(Seri al i zabl e obj ect);

@vent Set
public interface Call back

voi d onMessage(Message m;

}

If aControl Public Interface has defined an EventSet interface, then the associated
ControlBean Generated Class will have two public methods supporting client listener
management:

Event Listener Registration Methods (ControlBean Generated Class)
package org. apache. beehi ve. control s. exanpl es;

i mport java.util.TooManyLi stenersException

public class JnmsMessageControl Bean i npl enents JnsMessageCont r ol

{

/** Registers a new client [istener for this bean instance */
public void addCal | backLi st ener (Cal | back |i st ener)

t hrows TooManyLi st ener sExcepti on
{

}

/** Deregisters a client listener for this bean instance */
public void renoveCal | backLi st ener (Cal | back |i stener)

}
}
The name of the listener registration methods are based upon the name of the associated
EventSet interface. In the previous example, the EventSet interface was named Callback, so
the associated listener registration method was addCallbackListener(), and the deregistration
method was removeCallbackL istener().

A Control Public Interface can have more than one inner interface that is annotated as an
EventSet interface. Each declared EventSet will have its own independently managed list of
registered listeners.

Page 14

Controls Programming

8.2. Firing Events

This section describes the mechanism available to a Control author to deliver eventsto any
registered client listener. An initialized event proxy is created when the Control
Implementation Class declaresafield of an EventSet interface type, and annotates it
with the or g.apache.beehive.controls.events.Client annotation type. The containing
ControlBean will initialize this reference to a valid proxy implementing the EventSet
interface, and the Control Implementation Class can use this proxy to fire events back to any
registered client.

Thisis demonstrated in the following sample code from the JmsControl Bean implementation
class, which will fire an onMessage event back to any registered client any time amessage is
enqueued:

Firing Events (Control I mplementation Class)
package org. apache. beehi ve. control s. exanpl es;

i nport java.io.Serializabl e;

i mport javax. | ms. Text Message;

i mport org. apache. beehi ve. control s. api . bean. Control | npl ement ati on
i mport org. apache. beehi ve. control s. api . events.dient;

@control I mpl enent ati on(i sTransi ent =true)
public class JnmsMessageControl | npl inplenments JnsMessageContr ol

{ @l ient Callback client;
public void sendText Message(String text)
[/l Code to construct and send a Text Message to the destination
Text Message m = .. .;
} biient.onwbssageUﬁ;
} .

8.3. Listening for Events

The client of a Control can express an interest in receiving events from a Control and write
client event handlers to service them once delivered. Two basic event handling mechanisms
are supported: Java event listeners or declarative event handlers (where supported by the
client container).

8.3.1. Declarative Implementation of Event Handling

Page 15

Controls Programming

If the client code isimplemented in a container that supports the declarative programming
model for Controls (such as the Control Implementation Classitself), it can use asimplified
convention for authoring event handlers for a declared Control instance.

If aControl is declared using the @Control marker interface, then the user can declare
event handlersfor the Control by using the EventHandler annotation type. These
annotated methods will be considered an event handler for the Control event, and the
container will automatically register for events and deliver them to this handler.

The previous example could be rewritten using the declarative event handling style as:

Declarative Handling of Events (Client Code)
package org. apache. beehi ve. control s. exanpl es;

i mport j avax. | ms. Message;

i mport org.apache. beehi ve. control s. api . bean. Cont r ol

i mport org. apache. beehi ve. control s. api . bean. Cont rol | npl ement ati on
i mport org. apache. beehi ve. control s. api . event s. Event Handl er

i mport org.apache. beehi ve. control s. exanpl es. JnsMessageCont r ol

@control | mpl enent at i on(i sTransi ent =true)
public class PublisherControllnpl inplenents PublisherControl
{

@Cont r ol
publ i c JnsMessageControl Bean nyJnsBean

@tvent Handl er (
fiel d="myJnmsBean",
event Set = JmsMessageCont r ol . Cal | back. cl ass,
event Nane="onMessage")

public void nyJnsBeanMessageHandl er (Message n)

} /1 Code inplenenti ng onMessage event handl er
-
8.3.2. Programmatic Implementation of Event Handling

The programmatic style follows the traditional Java event listener pattern. The client
expresses itsinterest in receiving the event and also authors a (often anonymous inner) class
that implements the event interface to receive events when delivered.

Thisis shown by the following sample code:

Programmatic Handling of Events (Client Code)

nyJmsBean. addCal | backLi st ener (
new JnsMessageControl . Cal | back()
{

Page 16

Controls Programming

public void onMessage(Message m

/1 Code inplenenting on Message event handl er

}

}
)
Thereis no requirement that an anonymous inner class be used. One aternative would be to
delegate to an instance of another class (aslong as that class implements the Callback
interface). In the preceding example, if event listening was implemented for the purposes of
logging sent messages, and Messagel. ogger class could be declared (implementing the
Callback interface), multiple beans could delegate to a single instance of thislogging listener.

9. Contextual Services

The Control authoring model makes use of contextual services to provide access to services
from the current runtime environment of the ControlBean. The model for contextual services
is based upon the existing standards for servicesin JavaBeans. The JavaBeans Runtime
Containment and Services Protocol. This protocol provides a base mechanism for a JavaBean
to locate and use services from the runtime environment, as well as an extensible service
provider model to enable new (or environment-specific) types of servicesto be authored and
made available to JavaBeans/Controls.

A key aspect of this service model isthat it can be contextual; for example, it might be
possible to write a basic security service interface that provides logical role-checking
functionality. The actual implementation of thisinterface might vary for different runtime
contexts: for example, the role check might be done differently for a Control running within
the context of an EJB container (by delegating to the containing EJBContext) vs. a Control
running within the Web tier (by delegating to ServletHttpRequest services).

Having an extensibility and service provider location model isimportant to enable the
following scenarios:

« The Control’simplementation is designed to run in awide variety of environments. It
uses the contextual service mechanism to declare its prerequisites and receive a provider
implementation that is appropriate to the current runtime context.

« The Control’simplementation is designed to run in avery specific context (for example,
only in the http servlet tier) and wants access to services that are very specific to that
context (for example, session state or request query parameters). It should not be possible
to instantiate this Control in other contexts (for example, from within an EJB).

Onekey contextual servicefor Controlsthat isguaranteed to be availablein all contexts
isthe org.apache.beehive.controls.api.context.Contr olBeanContext service interface.
This service provides a common set of generic servicesthat are available to Control authors,

Page 17

Controls Programming

such as the ability to query property values on the current instance, or to receive a set of basic
lifecycle or resource management events. The Control BeanContext interface extends the
java.beans.beancontext.BeanContextServices interface, so it also provides access to services
provided by the JavaBeans bean context APIs. Later sections describe an overview of the
internal architecture for contextual services, APIsto support property resolution, and
lifecycle events.

9.1. Declarative Accessto Contextual Services
Suppose the following Destination property set was added to the control:

Declarative Accessto Context Services (Control Public I nterface)
package org. apache. beehi ve. control s. exanpl es;

i mport java.l ang. annot ati on. El enent Type;

i mport java.l ang. annot ati on. Retenti on

i mport java.l ang. annot ati on. Retenti onPol i cy;
i mport java.l ang. annot ati on. Tar get ;

i mport org.apache. beehi ve. control s. api . bean. Control I nterface;
i mport org. apache. beehi ve. control s. api . properties. PropertySet;

@ontrol I nterface
public interface JnsMessageContr ol

public enum Desti nati onType { QUEUE, TOPIC }

@°r opert ySet

@ret enti on(Ret enti onPol i cy. RUNTI MVE)

@rar get ({ El enent Type. FI ELD, El enent Type. TYPE})
public @nterface Destination

publ i c DestinationType type() default DestinationType. QUEUE
public String name();

}
}

To signal the desire to access a contextual service, a Control author only needs to declare a
field of the desired context interface and annotate it with the
org.apache.beehive.controls.api.context.Context marker annotation. The following example
shows how the JmsM essageControl Impl class would use the declarative model to accessits
Control BeanContext:

Declarative Accessto Context Services (Control Implementation Class)
package org. apache. beehi ve. control s. exanpl es;

i mport org. apache. beehi ve. control s. api . bean. Cont rol | npl ement ati on

Page 18

Controls Programming

i mport org. apache. beehi ve. control s. api . cont ext . Cont ext ;
i mport org.apache. beehi ve. control s. api . cont ext. Cont r ol BeanCont ext ;

@control I mpl enent ati on(i sTransi ent =true)
public class JnsMessageControl | npl inplenments JnsMessageContr ol

@Cont ext Contr ol BeanCont ext cont ext ;
public voi d sendText Message(String text)

JnmsMessageControl . Destination destProp =
cont ext . get Contr ol PropertySet (JnsMessageCont rol . Desti nati on. cl ass);

}
}

In this example, the ImsM essageControl implementation class expresses its desire to access
ControlBeanContext services via the annotated declaration of the context field; when code in
sendTextM essage operation is invoked, this contextual service has already been initialized by
the containing Control Bean instance.

The ControlBeanContext for an authored Control is always accessed using the declarative
mechanism. Other contextual services may be accessed declaratively, or using the
programmatic mechanisms described in the following section.

9.2. Programmatic Accessto Contextual Services

The ControlBeanContext service also provides the base mechanism to discover and use other
services programmatically. The following code fragment shows an example of how to use
this APl to obtain accessto a service provider that provides the javax.servlet.ServletContext
interface.

Programmatic Accessto Context Services (Control Implementation Class)
package org. apache. beehi ve. control s. exanpl es;

i mport j avax.servl et. Servl et Cont ext ;

i mport org.apache. beehi ve. control s. api . bean. Cont rol | npl enent ati on
i mport org.apache. beehi ve. control s. api . cont ext . Cont ext ;

i mport org. apache. beehi ve. control s. api . cont ext. Cont r ol BeanCont ext ;

@ontrol | npl enent ati on(i sTransi ent =tr ue)
public class JnmsMessageControl I npl inplements JnsMessageCont r ol

{
@Cont ext Contr ol BeanCont ext cont ext ;

public void sendText Message(String text)
Servl et Cont ext servl et Cont ext =

cont ext . get Servi ce(Servl et Context.class, null);
if (servletContext == null)

Page 19

Controls Programming

/1 no Servl etContext provider is avail able

}
}

The code in the sampl e uses the Control BeanContext.getService API to request that it
provide a ServletContext service. The parameters to this method are the Class of the
requested service, and an (optional) service-specific selector that can be used to parameterize
the service.

The ServletContext service is contextual because it is available only to controls running in
the web tier. If the above sample control was running anywhere else, the call to
ControlBeanContext.getService() would return null.

9.3. Tradeoffs between Declar ative and Programmatic Access

Declarative access to context services is always available to a Control Implementation Class,
and generally resultsin less code associated with accessing services. Why then, would using
programmatic access ever be useful ? There is a key difference between the two:

» When using the declarative model for accessing a contextual service, the Control is
effectively saying that the serviceisrequired for it to function; if not availablein a
particular runtime environment, then construction of an instance of the Control will fail.
Essentially, the annotated context acts as a notification to the runtime factory that this
prerequisite must be satisfied.

e Useof the programmatic model allows a Control Implementation Class to implement
conditional behavior based upon whether a contextual serviceisor isnot available. The
Control Implementation Class can use the programmatic accessor, and then make a
decision how to proceed based upon whether the requested service is available.

10. Properties

This section describes Control properties. Properties provide the basic mechanism for
parameterizing the behavior of a Control instance.

The Controls architecture takes the basic JavaBeans notion of properties and extendsiit to
support two new capabilities:

« A declarative annotation model where properties can be preconfigured on a ControlBean
using metadata annotations

« Anadministrative model where the value of ControlBean properties can be externally
defined or overridden.

Page 20

Controls Programming

The external configuration and administrative model for Controls will be described in a
separate document.

10.1. Declaring Propertiesfor a Control Type

For Controls, the set of propertiesis explicitly declared on the Control Public Interface. This
makes the available parameterization of a Control type readily visible to both code and tools.

Properties are grouped together into related groups called PropertySets. All Properties within
a PropertySet will have a common set of attributes (such as where they can be declared, the
access model for JavaBean accessors, etc) and will have property names based upon a
common naming convention.

A PropertySet is declared as a metadata attribute interface within the Control Public
Interface, which is also decorated with the
org.apache.beehive.controls.api.properties.Property Set meta-attribute. Each of the members
within a PropertySet will refer to a distinct property within the set, and the return value of the
member defines the property type.

Here is a sample declaration of the Destination PropertySet for the JmsM essageControl,
which can be used to configure the target JIM S destination for the Control:

Declaring Properties (Control Public Interface)
package org. apache. beehi ve. control s. exanpl es;

i nport org. apache. beehi ve. control s. api . bean. Control I nt erface
i mport org. apache. beehi ve. control s. api . properties. PropertySet;

i mport java.l ang. annot ati on. El enent Type;

i mport] ava.l ang. annot ati ons. Ret enti on;

i mport | ava.l ang. annot ati ons. Ret enti onPol i cy;
i mport java.l ang. annot ati ons. Tar get ;

@ontrol I nterface
public interface JnsMessageContr ol

{

public enum Desti nati onType { QUEUE, TOPIC }

@r opertySet (prefix="Destination")

@rar get ({ El enent Type. Fl ELD, El enent Type. TYPE})
@ret enti on(Ret ent i onPol i cy. RUNTI MVE)

public @nterface Destination

public DestinationType type() default DestinationType. QUEUE;
public String name();

Page 21

Controls Programming

}

This declaration defines the PropertySet named ‘ Destination’ that includes two properties:
type and name. The type property is based upon the DestinationType enumerated type, which
is also defined in the public interface. The name attribute is a simple String property.

M eta-attributes on a PropertySet or property declaration can be used to provide additional
details about the properties and how they may be used. In the above example, the standard
javalang.annotations. Target annotation is used to define the places where the @Destination
property set can appear (in this casein either an extension class or field declaration).

The full set of meta-attributes that can decorate PropertySet or Property declarations are
TBD. They can be used to define constraint models for property values, or relationships
between properties (such as exclusive or, where oneis set or the other, but never both). These
meta-attributes can be read and used by development or administrative toolsto aid in the
selection of property values. They can also be used by the runtime for runtime validation of
property values when set dynamically. The current set of property constraint mechanismsis
implemented by the @A\nnot at i onConst r ai nt s annotation. See Defining Property
Constraints below for details.

10.2. Accessing Propertiesfrom Client Code

The properties defined in the Control Public Interface will be exposed to the client
programmer using traditional JavaBean setter/getter methods on the ControlBean Generated
Class. These methods will follow a simple naming pattern based upon the Property Set
interface name, and optional PropertySet prefix, and property member name.

The basic pattern for these accessorsis:

Property Accessor Generation (Conventions)

publ i c voi d set <PropertySet Prefix><Menber Name>(<Menber Type>) ;
publ i c <Menber Type> get <Pr opert ySet Prefi x><Menber Name>() ;

The Property SetPrefix refers to the optional prefix attribute of the PropertySet annotation. If
unspecified, it will default to an empty string (no prefix). The MemberName refers to the
PropertySet method name that declares the property, with the first character converted to
uppercase, and the MemberType refers to the return value type of this method declaration.

So for the Destination PropertySet interface shown in the example above, the resulting
ControlBean Generated Class would expose the following accessors.

Property Accessor s (ControlBean Generated Class)
package org. apache. beehi ve. control s. exanpl es;

Page 22

Controls Programming

i mport java.util.TooManyLi stenersException

public class JnmsMessageControl Bean i npl enents JnsMessageContr ol

{

bhblic voi d setDestinationType(Destinati onType type) { ... }
public Destinati onType getDestinationType() { }
public void setDestinationNane(String nanme) { ...}

public String getDestinationName();

Client code to set the Destination properties on a JnsM essageControl Bean instance would
look like:

Using Property Accessors (Client Code)
@ontrol JnsMessageControl Bean j nsBean

j msBean. set Desti nati onType(Desti nati onType. QUEUE) ;
j msBean. set Desti nat i onName(" nyTar get Queue") ;

10.3. Accessing Properties from Control | mplementation code

The Control Implementation class contains code that executes from within the context of the
Control JavaBean that is generated to host the control. The generated bean will automatically
manage the resolution of properties values from annotations, external configuration, or
dynamic values set by the client.

Access to these propertiesis provided by the ControlBeanContext instance associated with
the Control Implementation Class. This interface provides a set of property accessors that
allow the implementation to query for property values:

ControlBeanContext APIsfor Property Access
package org. apache. beehi ve. control s. api . cont ext ;

public interface Control BeanCont ext
ext ends j ava. beans. beancont ext . BeanCont ext Ser vi ces

{
public <T extends Annotation> T
get Control PropertySet (Cl ass<T> propertySet);
public <T extends Annotation> T
get Met hodPr opert ySet (Met hod m Cl ass<T> propertySet);
public <T extends Annotation> T
get Par anet er PropertySet (Method m index |, C ass<T> propertySet);
}

The propertySet argument passed to these methods must be avalid PropertySet interface

Page 23

Controls Programming

associated with the Controll nterface. The ControlBeanContext will return the current value
for properties in the PropertySet, or will return null if no PropertySet value has been
associated with this control instance.

Hereis a simple example of using Control BeanContext.getControl PropertySet() to query a
property set:

Acccessing Control Properties (Client Implementation Class)
package org. apache. beehi ve. control s. exanpl es;

i mport org. apache. beehi ve. control s. api . bean. Cont rol | npl enent ati on
i mport org. apache. beehi ve. control s. api . cont ext . Cont ext ;
i mport org. apache. beehi ve. control s. api . cont ext. Cont r ol BeanCont ext ;

@control I npl enent at i on(i sTransi ent =t rue)
public class JmsMessageControl I npl inplements JnsMessageContr ol

{
@ont ext Control BeanCont ext cont ext ;

public void sendText Message(String text)
{

Desti nati on dest Property = (Destination)
cont ext . get Control PropertySet (Destination.class);
i f(destProperty == null) {
System out. println("Dest Property NOT Set");
} else {
System out.println("Dest Property Set");

}
}

This code above queries for the value of the JmsM essageControl.Destination PropertySet on
the current JmsM essageControl instance.

These query methods will return the value of resolved properties for the Control instance,
method, or method argument, respectively. Control implementations should never use Java
reflection metadata accessors directly on Control classes or methods; these accessors won't
reflect any property values that have been set dynamically by ControlBean client accessor
methods or externally using administrative configuration mechanisms. The

Control BeanContext provides a consistent resolution of source annotation, client-provided,
and external values.

A simple example of using the ControlBeanContext property accessor methods for accessing
Method and Parameter propertiesis provided in the section on Extensibility.

10.4. External Configuration of Control Properties

Page 24

Controls Programming

Controls also support an administrative model that allows Control property values to be
bound using external configuration syntax. The enables Control behavior to be parameterized
externally to the code, and using a consistent mechanism that is well-defined and structured
to enable tooling.

The specifics of this administrative model are not covered within this document.

10.5. Defining Property Constraints

Y ou can set up constraints on control properties using the @Annot at i onConstrai nts
annotation. @Annot at i onConst r ai nt s allowsyou to set up rules related to (1) the
instantiation of the control properties by client code, (2) external overriding of the control,
and (3) the Beehive runtime version required by the control.

Note: the constraint rules are enforced at build time, when controls are declared in client
code by @Cont r ol . Thereis no runtime enforcement of the rules.

For example the following constraints require that

« al attributes must be referenced when declaring the control BookControl
« thevauesof the"title" and "subject” attributes must not exceed 10 charactersin length
« thevaue of the "content” attribute must not exceed 200 charactersin length

i mport java.l ang. annotati on. *;

i mport

or g. apache. beehi ve. control s. api . bean. Annot at i onCont strai nts. Menber shi pRul e;

i mport

or g. apache. beehi ve. control s. api . bean. Annot at i onCont strai nts. Menber shi pRul eVal ues;
i nport org. apache. beehi ve. control s. api . properties. PropertySet;

@ontrol I nterface
public interface BookControl

/**

* The user must set all attribute val ues when
*/ instantiating controls declaratively.
*
@°r opert ySet
@rarget ({El enent Type. FI ELD, El enent Type. TYPE})
@ret enti on(Ret ent i onPol i cy. RUNTI ME)
@\nnot at i onConstr ai nt s. Merrber shi pRul e(
Annot at i onConst r ai nt s. Menber shi pRul eVal ues. ALL_| F_ANY)
public @nterface Intro

@\nnot at i onMenber Types. Text (maxLengt h=10)
public String title();

Page 25

Controls Programming

@\nnot at i onMenber Types. Text (maxLengt h=10)
public String subject();

@\nnot at i onMenber Types. Text (maxLengt h=200)
public String content();

}

The following client code will cause a compile error, because it violates two of the
constraints:

« The"al if any" constraint on the BookControl.Intro annotation is violated because only
two (title and subject) of the three attributes (title, subject, and content) are referenced.
» The subject attribute's value exceeds 10 charactersin length.
@ont rol
@ookControl . Intro(title="title", subject="subject of the book")
BookCont r ol Bean myBook
Not all Javatypes are supported by @Annot at i onMenber Types. For alist of the
supported types see | nterface AnnotationM emberTypes.

11. Extensibility

The Controls architecture supports an extensibility model that enables the declarations of
user-defined operations or events, based upon a predefined set of semantics defined by the
author of the Control type. The extensibility mechanism enables the definition of an interface
to the resource where operations (or events) have very specific context.

For example, in the JnsMessageControl sample, the extensibility mechanism will be used to
raise the level of abstraction: instead of alow-level mechanism to enqueue messagesto a
topic or queue, the Control enables extensibility where operations can be defined that
correspond to enqueuing messages with avery specific format and set of properties, and
where message or property content is derived from method parameters. This creates alogical
view of the resource (in this case a queue or topic) where the operations available on it have
very specific (and constrained) semantics.

For this section, we'll start with the how an extension is defined, look at the authoring model
for defining an extensible Control type, and finally show the client view of using an extended

type.

11.1. Defining an Extended Interface for a Control Type

An extension to a base Control type that defines a specific resource use case is created by
defining a new Control type that derives from the original type and is annotated with the
Control Extension annotation type:

Page 26

apidocs/javadoc/org/apache/beehive/controls/api/bean/AnnotationMemberTypes.html

Controls Programming

Declaring a Control Extension (Control Extension I nterface)
package org. apache. beehi ve. control s. exanpl es;

i mport org. apache. beehi ve. control s. api . bean. Cont r ol Ext ensi on;
i mport org. apache. beehi ve. control s. exanpl es. JnsMessageControl . *;

@ont r ol Ext ensi on
@estination(type=Destinati onType. QJEUE, name="queue. orders")
public interface O der Queue extends JnsMessageContr ol

}

This example shows how property values can be configured on the extended interface to
further parameterize the use case. In this case, the InvoiceQueue interface is being designed
for avery specific use case: to enable orders to be enqueued to a IM S queue named
"queue.orders’.

Once defined, the Control extension author can now begin to define additional operations on
it, in this case the ability to enqueue messages to the OrderQueue by calling methods on it.

Declaring Extended Operationswith Properties (Control Extension I nterface)
package org. apache. beehi ve. control s. exanpl es;

i mport org. apache. beehi ve. control s. api . bean. Cont r ol Ext ensi on;

@ont r ol Ext ensi on
@estination(type=JnmsMessageControl . QUEUE, name="queue. orders")
public interface O der Queue extends JnsMessageContr ol

public class Order inplenments java.io. Serializable

public Oder(int buyer, String[] list){
buyer| D = buyer;
itenmlist |ist;

private int buyerl D
private String[] itenlist;

}

@kssage (MessageType. OBJECT)
public void submnitOrder(
@ody O der order,
@roperty (nanme="DeliverBy") String deliverBy

}

This interface defines a single operation, submitOrder, that enqueues an ObjectM essage
containing a new order. The body of the message will be a single instance of the Order class,
and it will have a single StringProperty with the expected delivery date (enabling message

Page 27

Controls Programming

selector-based queries for orders that are past due).

The message format (in this case an ObjectMessage) and the mapping of operation
parameters to message content and/or properties are all defined using metadata annotations
on the method or its parameters. This format makes it very easy for toolsto assist in the
creation and presentation of extension interfaces.

How does the extension author (or tool) know about the set of annotations that can be used
on the extension interface? Thisis the topic of the next section.

11.2. Defining Extension Semanticsfor a Control Type

A Control author isresponsible for defining the extensibility semantics for a particular type,
since ultimately they are responsible for providing the implementation that fulfills the
semantics.

The extension semantics for a Control are part of the public contract for the Control, and thus
are defined on the Control Public Interface as well. Aswith Control properties, these are
defined in the form of metadata annotation interfaces, as show in the following sample code
from the ImsMessageControl Public Interface:

Declaring Extension Semantics (Control Public I nterface)
package org. apache. beehi ve. control s. exanpl es;

i nport java.io.Serializabl e;

j ava. | ang. annot at i on. El ement Type

i mport java.l ang. annot ati ons. Ret enti on;

i mport | ava.l ang. annot ati ons. Ret enti onPol i cy;
i mport java.l ang. annot ati ons. Tar get ;

i mport org. apache. beehi ve. control s. api . bean. Control I nterface;
@ontrol I nterface
public interface JnsMessageContr ol
publ i ¢ enum MessageType { BYTES, MAP, OBJECT, STREAM TEXT }
@rar get ({ El ement Type. METHOD})
@=et enti on(Ret ent i onPol i cy. RUNTI ME)
public @nterface Message
public MessageType val ue() default MessageType. TEXT;
@rar get ({ El enent Type. PARAMVETER}

@ret enti on(Ret ent 1 onPol i cy. RUNTI ME)
public @nterface Body {}

Page 28

Controls Programming

@rar get ({ El enent Type. PARAMVETER})
@ret enti on(Ret ent 1 onPol i cy. RUNTI ME)
public @nterface Property

public String name();

}

The JmsM essageM essageControl defines three annotation types. Message, Body, and
Property. The @Target annotation on the M essage declaration specifies that Message can be
placed on the method declaration to indicate the type of IMS message that will be enqueued
by the operation. The Body annotation is used to indicate the method parameter that contains
the contents of the message (and must have a type that is compatible with the specified
MessageType). The Property annotation on a method parameter indicates that the

parameter’ s value should be stored as a property on the enqueue message, with the property
name coming from the value of the annotation and the property type derived from the type of
the method parameter.

The key is that the Control Public Interface contains sufficient details about the expected
annotations that atool can support the construction. It also makesiit possible for the Control
compiler (that converts the extended interface to an associated bean implementation) to
perform validation of interface and method annotations.

More details on how these extension semantics are implemented are described in the next
section.

11.3. Authoring an Extensible Control Type

The author of a Control typeis responsible for providing the code that implements the
extension semantics for the Control. Support for extensibility isoptional; so a Control author
indicates extensibility of atype by declaring that that the Control Implementation Class
implements the org.apache.beehive.controls.api.bean.Extensible interface. Thisinterface has
a single method named invoke().

The skeleton of this code for the JmsMessageControl Impl class is shown below:

I mplementing Extended Operations (Control | mplementation Class)
package org. apache. beehi ve. control s. exanpl es;

i mport org.apache. beehi ve. control s. api . bean. Cont rol | npl enent ati on;
i mport org.apache. beehi ve. control s. api . cont ext . Cont ext ;

i mport org.apache. beehi ve. control s. api . cont ext. Cont r ol BeanCont ext ;
i mport org. apache. beehi ve. control s. api . bean. Ext ensi bl e;

i nport java.l ang.refl ect. Mt hod;

@control I npl enent ati on(i sTransi ent =t rue)

Page 29

Controls Programming

public class JnmsMessageControl | npl inplenments JnsMessageControl, Extensible
@ont ext Contr ol BeanCont ext cont ext;
public Object invoke(Method m Object [] args) throws Throwabl e
{ /1 Extensibility inplementation

}
}
The invoke() method on the Control Implementation Class will be called any time an
operation defined on an extension interface is called on the Control by itsclient. The
implementation of this method has responsibility for examining the current set of properties
for the Control instance, methods, and parameters and using them to parameterize the
behavior of the Control.

Thisis demonstrated by the code below, which shows a portion of the implementation of
invoke() for the JmsM essageControl Impl class:

Accessing Method Properties Using the Context (Control |mplementation)
?Jj ect invoke(Method m noject [] args) throws Throwabl e

i nt bodyl ndex = 1;
for (int i=0; i < args.length; i++)
i f (context.getArgunentPropertySet(m i,
JMvessageCont rol . Body. cl ass) != null)
bodyl ndex = i;

/1
/Il Create a nmessage of the appropriate type
/1
Message nmsg = nul | ;
JVsSMessageCont rol . Message nsgProp =
cont ext . get Met hodPr opertySet (m JMsSMessageControl . Message. cl ass);
swi t ch(nmsgProp. val ue())

case MessageType. OBJECT:

nsg = session. creat eCbj ect Message(ar gs[bodyl ndex]) ;
br eak;

Decorate the nmessage with properties defined by any argunents
r (int i=0; i < args.length; i++)
JVsMessageControl . Property jnmsProp =

cont ext . get Par anet er PropertySet (m i,
JnsMessageControl . Property. cl ass);

Page 30

Controls Programming

if (jmsgProp !'= null)
{

String nane = j nsProp. val ue();
if (args[l] instanceof String)

nsg. set StringProperty(nane, ((String)args[i]);
else if (args[l] instanceof Integer)

el se
nsg. set Cbj ect Property(nane, args[l);
}
}

In the sample code above, the Control Implementation Class uses the ControlBeanContext
getMethodProperty and getParameterProperty APIsto query properties of the invoked
method and its argument. These query methods will return null if the property is not found
and no default was defined for the attribute member.

11.4. Client Model for Using an Extended Control Type

The client model for using an extended Control type is exactly the same as the model for
using a base Control type. The same set of declarative and programmatic instantiation
mechanisms (described in the previous section) will be used, and operations or events are
handled the same way.

Below is sample code that uses the OrderQueue extended type (using declarative client
model):

Using a Control Extension (Client Code)
@ontrol org.apache. beehi ve. control s. exanpl es. Or der QueueBean or der Bean;

Order order = new O der Queue. Order();

order. buyerI D = nyl D

order.itenList = new String [] {"iteml", "itenR"};
or der Bean. subni t Order (order, "12-31-2004");

Looking closely at the example, you'll notice that a derived ControlBean type
(OrderQueueBean) is generated by the Control compiler, just asit isfor a base Control type.
The skeleton of this ControlBean Generated Class is shown below:

I mplementation of Extended Oper ations (ControlBean Generated Class)
package org. apache. beehi ve. control s. exanpl es;
public class O der QueueBean
ext ends JnsMessageCont r ol Bean
i mpl ements Or der Queue
JnsMessageControl | mpl _inpl;

bhbl ic void submtOrder(Object order, String deliveryBy)

Page 31

Controls Programming

_inpl.invoke(subm t Order Met hod, new Object [] {order, deliveryBy};

}
}

There are several attributes worth noting about the extended Control Bean Generated Class:
« Itsimplementation will be a subclass of the base type ControlBean, so implementation of
base type operations is inherited.

» The extended bean will implement the extended Control interface, meaning all extended
operations will be implemented by the bean.

The implementation of these extended operations will always delegate down to the base
Control Implementation Class by calling the Extensible.invoke() method.

12. Composition

The Controls architecture supports a composition model, based upon the JavaBeans Runtime
Containment and Services Protocol. This means that it is possible for new types of
ControlBeans to be defined that are built through composition of one or more other types.

12.1. Composition Using Declar ative I nstantiation

Additionally, the Control Beans authoring model makes composition very simple based upon
the declarative instantiation model. Within any Control Bean implementation, any @Control
fieldswill automatically be initialized as children of the local bean’s context.

Here' s a simple example based upon our previous OrderQueue example. Let’s say that we
want to create alogical Control that can be used to submit orders. This Control will submit to
one of two different queues, depending upon whether the order needs to ship in less than 30
days, or greater than 30 days.

The implementation of this Control could look like:

Composition Using Declar ative I nstantiation (Control | mplementation Class)
package org. apache. beehi ve. control s. exanpl es;

@control I mpl enent at i on(i sTransi ent =true)
public class OrderRouterlnpl inplenents O der Router
{

@control @esti nati on(Name="RushOrders")
O der QueueBean rushOrders;

@ontrol @esti nation(Name="0Crders")
Or der QueueBean or ders;

Page 32

Controls Programming

public void submtOrder(Order order, String deliverBy)

i f (needsRushDel i very(deliveryBy))
rushOrders. submt Order (order, deliverBy);
el se
orders. submit Order(order, deliverBy);
}
}

In this example, the OrderRouterlmpl Control itself uses the services of two different
OrderQueue Controls referencing two different queues, and uses a hel per method
(needsRushDelivery) to decide where to enqueue a particular order. The new Control has the
same operations exposed as the original Controls; but now uses the services of one or the
other of its children to satisfy the request.

The next section describes doing an equivalent composition using mechanisms to instantiate
and build the Control hierarchy.

12.1.1. Composition using Programmatic M echanisms

Because the Control Beans architecture is built using the JavaBeans Runtime Containment
protocol, which defines a base composition model for JavaBeans, it is also possible to
manually instantiate and Controls using the APIs it defines. The ControlBeanContext API
extends the java.beans.beancontext.BeanContext API, which provides support for adding
children to the current bean’ s context.

Here' s the previous sample, rewritten to use programmatic composition:

Composition Using Programmatic I nstantiation (Control | mplementation Class)
package org. apache. beehi ve. control s. exanpl es;

@control I npl enent ati on(i sTransi ent =t rue)
public class OrderRouterlnmpl inplenents O derRouter
{

// no @ontrol annotation, so no auto-init

O der QueueBean rushOrders;

// no @ontrol annotation, so no auto-init

O der QueueBean orders;

@ont ext Control BeanCont ext cont ext ;

public void context onCreate()
Cl assLoader cl = Thread. current Thread() . get Cont ext Cl assLoader () ;

rushOrders =
(Or der QueueBean) Beans. i nstanti ate(cl ,

Page 33

Controls Programming

"or g. apache. beehi ve. cont rol s. exanpl es. Or der QueueBean") ;
rushOrders. set Desti nati onNane(" RushOrders");
cont ext . add(rushCOrders);
orders =
(Or der QueueBean) Beans. i nstanti at e(cl
"or g. apache. beehi ve. cont rol s. exanpl es. Or der QueueBean") ;
orders. set Desti nati onNanme(" Orders");
cont ext . add(orders);

}
public void subnmitOrder(Order order, String deliverBy)
{

}

12.2. Internal Architecturefor Composition and Services

The JavaBeans Runtime Containment and Services Protocol provides the base composition
model for Control composition and containment. In this model, JavaBeans are associated
with a BeanContext that manages the composition hierarchy and also manages any
contextual services requested by the contained beans.

In the Control architecture, a ControlBean will potentially be related to two different
BeanContexts. a parent context that represents the outer container for the bean, and a peer
context that provides containment and services to other beans nested within that Control.

These context relationships from the previous sample are shown in the following diagram:

Page 34

Controls Programming

ContainerBeanlContext
ar
ContralBeanlontext

OrderRouterBean ControlBeanContext

OrderQueueBean
forders)

OrderJueueBean
rushCrders)

In the diagram, the two OrderQueueBean instances created by OrderRouterBean are nested
within the Control BeanContext; while not shown, these two beans would aso have a peer
ControlBeanContext providing them with contextual services.

The peer ControlBeanContext provides localized generic services to the associated Control
Implementation instance, such as ability to resolve property values from the local bean
instance or externalized configuration, and the delivery of lifecycle events. The ControlBean
architecture uses a delegation model for service discovery. If an implementation instance
requests a service that is not implemented by the peer BeanContext, it will delegate up to the
parent context to find a provider for the service.

At the root of the bean composition hierarchy is an instance of a ContainerBeanContext. This
context represents the external runtime environment, within which the ControlBean is
running. This might represent an EJB, servlet, web service, Java application, or any

Control Bean-capable container. The ContainerBeanContext is responsible for the
initialization and provisioning of service providers that are specific to runtime environment
with which it is associated.

Whether ContainerBeanContext or ControlBeanContext, the BeanContext instances also
provide the basic hierarchy of composition, as shown by the parent-child relationships above.

Page 35

Controls Programming

13. Inheritance

The Controls architecture also makes it possible to extend the functionality of existing
Controls using standard Java inheritance. While more complex scenarios are possible, a
common model for extending a Control type using inheritance involves extending both
public interface and the implementation to extend base functionality by adding new
operations, events, or properties.

The following code sample shows the basic structure:

Basic Inheritance Sample Code

/1 A java: The base control interface
@ontrol I nterface
public interface A{ ... }

/1 Alnpl.java: The inplenentation of the base control interface
@control | mpl enent ati on
public class Alnpl inplements A{ ... }

/1l B.java: The extension of the base interface that adds
/] operations, properties, and/or events
@ontrol I nterface

public interface B extends A { ... }

/1 Blnpl.java: The inplenentation of the extended control interface
@control | mpl enent ati on

public class Blnpl inplenents B{ ... }

In the example above, the BBean JavaBean class that results from processing of B.java will
expose the operations, properties, and events defined by both the A and B control interfaces.
The BImpl class would need to implement all operations defined by the B interface, and
could aso choose to override some, all, or none of the operations defined by A.

Inheritance is also supported for extensible control types. If Almpl implements the
Extensible interface, then BImpl could choose to define additional extensibility PropertySets
and implement a new Extensible.invoke() method to provide their semantics (delegating to
Almpl.invoke() as appropriate). It could also choose not to extend the extensibilty semantics
and allow all operations defined within a Control Extension derived from B to be handled by
Almpl.invoke().

14. Context and Resour ce Events

The Controls programming model includes two contextual services that provide a set of
supporting life cycle and resource events to assist the author of a Control Implementation.
This section describes the events exposed by these services:

Page 36

Controls Programming

14.1. Life Cycle Events

The ControlBeanContext life cycle events provide notification to the associated ControlBean
derived class and Control Implementation Class (and potentially other interested listeners) of
significant events related to the peer bean instance.

The Control programming model exposes a basic set of lifecycle events to enable the Control
to perform efficient initialization and state management. These events are delivered by the
peer Control BeanContext associated with a ControlBean instance. A listener can register to
receive these events using the addLifeCycleListener API on Control BeanContext; the actual
LifeCycle event interface itself is defined there as well:

Context Life Cycle Events
package org. apache. beehi ve. control s. api . cont ext ;

public interface Control BeanCont ext
ext ends j ava. beans. beancont ext . BeanCont ext Ser vi ces

{
@EVentSet
public interface LifeCycle
public void onCreate();
public void onPropertyChange(PropertyChangeEvent pce);
public void onVet oabl ePropertyChange(PropertyChangeEvent pce)
t hrows PropertyVet oException
}
public void addLifeCycl eLi stener (LifeCycle |istener);
public void renovelLifeCycl eLi stener(LifeCycle |istener);
}

The specific life cycle and resource events are described in the following section:

14.1.1. The onCreate Event

The onCreate event is delivered when the Control |mplementation instance associated with
the ControlBean has been constructed and all declarative initialization has been completed.
This provides an opportunity for the implementation instance to perform any additional
initialization required; implementation instances should generally use the onCreate event
instead of writing constructor code.

14.1.2. The onPropertyChange Event

The onPropertyChange event is delivered to aregistered listener any time a bound property is
changed on the ControlBean. This provides an opportunity for the Control Implementation to

Page 37

Controls Programming

change any internal state that might be dependent upon a property value.

14.1.3. The onVetoableChange Event

The onV etoableChange event is delivered to aregistered listener any time a constrained
property is changed on the ControlBean. This provides an opportunity for the Control
Implementation to validate the set value and veto any client-initiated change if necessary (by
throwing a VetoException

14.2. Resour ce Events

The Control programming model exposes a set of resource events to enable the control to
manage external resources (connections, sessions, ...) that it needs to provide its services. The
model enables resources to be acquired and held for a resource scope that is determined by
the container in which the Controls are executing. For example, in the servlet container, the
scope might enable resources to be held for the duration of processing a single http request.

package org. apache. beehi ve. control s. api . cont ext ;

public interface ResourceContext

@EVentSet
public interface ResourceEvents

public void onAcquire();
public void onRel ease();

public void addResour ceEvent sLi st ener (Resour ceEvents |i stener);
public void renoveResour ceEvent sLi st ener (ResourceEvents |i stener);

}
14.2.1. The onAcquire Event

The onAcquire event is delivered to aregistered listener the first time a ControlBean
operation is invoked within a particular resource scope. It provides an opportunity for the
Control Implementation instance (or other related entities, such as a contextual service
provider) to acquire any short-term resources (connections, sessions, etc) needed by the
ControlBean.

The onAcquire event is guaranteed to be delivered once (and only once) prior to invocation
of any operation within aresource scope; it is also guaranteed that a paired onRelease event
will be delivered when the resource scope ends.

For more details on resource management, refer to the Control Overview.

Page 38

../controls/overview.html

Controls Programming

14.2.2. The onRelease Event

The onRelease event is the companion event to onAcquire. It is guaranteed to be called once
(and only once) on any bean instance that has received an onAcquire event, when its
associated resource scope has ended. It acts as the signal that any short-term resources
(connections, sessions, etc) acquired by the Control should be released.

14.3. Receiving Life Cycle or Resour ce Events

For a Control Implementation Class, the model for receiving context life cycle or resource
eventsis consistent with the general client model for event registration and delivery. Both
declarative and programmatic mechanisms are supported.

14.3.1. Declar ative Access to events

A Control Implementation Class can receive Life Cycle or Resource Events simply by
declaring the annotated @Context Context interface and then defining event handlers that
follow the <contextFieldName> <eventName> convention.

The following sample code shows the JnsMessageControl registering to receive onAcquire
and onRelease events:

Declarative Handling of Life Cycle Events (Control Implementation Class)
package org. apache. beehi ve. control s. exanpl es;

i mport org. apache. beehi ve. control s. api . bean. Control | npl enent ati on
i mport org. apache. beehi ve. control s. api . cont ext . Cont ext ;

i mport org. apache. beehi ve. control s. api . cont ext . Resour ceCont ext ;

i mport org. apache. beehi ve. control s. api . event s. Event Handl er

@control | mpl enent ati on(i sTransi ent =true)
public class JnmsMessageControl | npl inplenments JnsMessageContr ol
{

@ont ext Resour ceCont ext resour ceCont ext ;
@&tvent Handl er (
field="resourceContext",
event Set =Resour ceCont ext . Resour ceEvent s. cl ass,
event Nane="onAcqui r e"
public void onAcquire()
/1 Code to acquire JMS connection/session/destination/witers

}
@tvent Handl er (

Page 39

Controls Programming

fiel d="resour ceCont ext",
event Set =Resour ceCont ext . Resour ceEvent s. cl ass,
event Nane="onRel ease"

)
public void onRel ease()

/] Code to rel ease JM5 connection/ session/destination/witer

}
}

When using the declarative mechanism, a Control Implementation Class is free to implement
only a subset of the events; it is not necessary that it provide a handler for all events.

14.3.2. Programmatic Access to Events

An external entity (such as contextual service provider or even aclient) isalso able to
register for life cycle events on a ControlBean instance as well. Thisis done by obtaining a
reference to the peer ControlBeanContext for the instance using the getControlBeanContext
API, and then using the addLifeCycleListener API to register alifecycle event listener.

Thisis shown by the following code:

Programmatic Handling of Life Cycle Events (Control I mplementation Class)
JnmsMessageCont r ol Bean nyJnsBean = ... ;
Cont r ol BeanCont ext peer Cont ext = nyBean. get Cont r ol BeanCont ext () ;

peer Cont ext . addLi f eCycl eLi st ener (
new Contr ol BeanCont ext . Li f eCycl e()
{

public void onCreate() { ... };
public void onPropertyChange(PropertyChangeEvent pce) { ... };
public void onVet oabl eChange(PropertyChangeEvent pce) { ... };

)
14.4. JavaBean Context Events

The org.apache.beehive.control s.api.context.ControlBeanContext APl extends the following
standard JavaBean context APIs:

 javabeans.BeanContextChild
+ java.beans.BeanContext
« javabeans.BeanContextServices

These APIs provide access to a standard set of JavaBean events that the Control
Implementation Class can register an interest in.

Page 40

Controls Programming

14.4.1. PropertyChange Events

The java.beans.BeanContextChild interface provides the addPropertyChangel istener() and
addV etoableChangel istener() APIsto register for notification when a property is modified.

14.4.2. Member ship Events

The java.beans.BeanContext interface provides the addM embershipChangeL istener() API to
register for notification whenever a child is added or removed from the BeanContext.

14.4.3. Context Services Events

The java.beans.BeanContextServices interface provides the addBeanContextServicesListener
API to register for notification when new contextual services become available or are
revoked.

15. Appendix A: The JmsM essageControl Public Interface

package org. apache. beehi ve. control s. exanpl es;

i mport org. apache. beehi ve. control s. api . bean. Control I nterface;
i mport org.apache. beehi ve. control s. api . events. Event Set ;
i mport org. apache. beehi ve. control s. api . properties. PropertySet;

i mport javax.j ns. Session

i mport java.l ang. annot ati on. El enent Type;

i mport java.l ang. annot ati on. Retenti on

i mport java.l ang. annot ati on. Retenti onPol i cy;
i mport java.l ang. annot ati on. Tar get ;

/

*

The JnsMessageControl defines a basic Control to enabl e messages

to be enqueued to a JM5 queue or topic. Usi ng Control properti es,
you can configure the connection, session, and destination attributes
t hat shoul d be used to connect to the JMS provider. The Control

will transparently connect to the JMS provider and obtain any
necessary resources to enqueue the nmessages. The Control wll

al so sure that the resources are properly rel eased at the end of the
current resource scope associated with the Control’s runtimnme

envi ronnent .

The Control provides a basic set of operations that allow a sinple text
or object nmessage to be witten to the configured destination. It al so
provi des an extensibility mechanismthat allows new operations to be
defined by extending this interface. Extended operations define the
enqueuei ng of nessage with a specific type

(Text Message, Obj ect Message, ...) where operation paranmeters can be

% ok 3k X Ok X X 3k X X X X X X F* *

Page 41

Controls Programming

* mapped to nmessage properties or content.
*/

@ontrol I nterface
public interface JnsMessageContr ol

/| OPERATI ONS

/**

* Sends a sinple Text Message to the Control’s destination
* @aramtext the contents of the Text Message
*/
public void sendText Message(String text) throws
j avax. j ms. JMSExcepti on;

/**

* Sends a sinple Ohject Message to the Control’s destination
* @aram obj ect the object to use as the contents of the nessage
*/
public void sendObj ect Message(j ava.io. Seri alizable object) throws
j avax. j ms. JMSExcept i on;

/| EVENTS
/**
* The Cal | back interface defines the events for the JnsMessageContr ol
*/
@vent Set
public interface Call back

/**
* The onMessage event is delivered to a registered
* client |istener whenever a
* nmessage has been sent by the Control
*/@haran1nsg t he nessage that was sent
*

public void onMessage(javax.j ns. Message mnsg);

}
/| PROPERTI ES

/**
* The Connection property defines the attributes of the connection
* and session used to enqueue the nessage. Thi s annot ati on

* can appear on both class and Control type declarations.
*/

@r opert ySet

@ret enti on(Ret enti onPol i cy. RUNTI MVE)

@rar get ({ El enent Type. FI ELD, El enent Type. TYPE})
public @nterface Connection

public String factoryNane();
public bool ean transacted() default true;
public int acknow edgeMode() default Session. CLI ENT_ACKNOALEDGE

Page 42

Controls Programming

/** An enuneration that defines the value set of destination types */
public enum Destinati onType { QUEUE, TOPIC }

/**
* The Destination property defines the attributes
* of the JMS destination that should
* be the target of any enqueued nessages.
*
/
@°r opert ySet
@ret enti on(Ret enti onPol i cy. RUNTI MVE)
@rar get ({ El enent Type. FI ELD, El enent Type. TYPE})
public @nterface Destination

public DestinationType type() default DestinationType. QUEUE
public String name();

}

/] EXTENSI Bl LI TY ATTRI BUTES

/**
* The set of supported nessage types for extended operations
*/

publ i c enum MessageType { TEXT, OBJECT, BYTES }
/**

* The Message attribute can be placed on an
ext ended operation to describe the fornat

of the nessage that should be enqueued when
the operation is invoked. The nmethod is
expected to have a | east paraneter annot ated
with the Body attribute, and zero or nore
paraneters with the Property attribute
defi ni ng message properties.

* Ok X X ¥ X

*

*/
@rar get ({ El ement Type. METHOD})
public @nterface Message

public MessageType val ue() default MessageType. TEXT

/**

* The Body attribute indicates that the associ ated
* met hod parameter on an extended operation

* contains the nmessage body.

*/

@rar get ({ El enent Type. PARAVETER})

public @nterface Body {}

/**
* The Property attribute can be used to define
operation paraneters that should be used to

* set properties on the nessage. The type of
* property to set will be inferred based upon

Page 43

}

16.

Controls Programming

* the type of the paraneter
*/

@rar get ({ El enent Type. PARAMVETER})
public @nterface Property

public String name();

Appendix B: The JmsM essageControl Implementation Class

package org. apache. beehi ve. control s. exanpl es;

i mport org. apache. beehi ve. control s. api . bean. Control | npl ement ati on
i mport org.apache. beehi ve. control s. api . bean. Ext ensi bl e;

i mport org.apache. beehi ve. control s. api . cont ext . Cont ext ;

i mport org. apache. beehi ve. control s. api . cont ext. Cont r ol BeanCont ext ;
i mport org. apache. beehi ve. control s. api . cont ext. Resour ceCont ext ;

i mport org.apache. beehi ve. control s. api . Cont r ol Excepti on

i mport org. apache. beehi ve. control s. api . events. dient;

i mport org. apache. beehi ve. control s. api . event s. Event Handl er

i mport j avax.
i nport | avax.
i mport | avax.
i mport | avax.
i mport | avax.
i mport | avax.
i mport | avax.
i mport | avax.
i mport | avax.
i mport | avax.
i mport | avax.

. JMSExcepti on;

. Queue;

. QueueConnecti on;

. QueueConnect i onFact ory;
. QueueSessi on;

. QueueSender ;

. Topi c;

. Topi cConnecti on

. Topi cConnecti onFact ory;
. Topi cPubl i sher

. Topi cSessi on;

33333333333

i mport | avax.nam ng. | nitial Context;
i mport | avax.nam ng. Nam ngExcepti on

i mport java.l ang.refl ect. Met hod;

~
*

* Ok X X 3k X F X

~

The JnsMessageControl I npl class is the

Control Inplenmentation Class for the JnsMessageContr ol
It inplenents two basic operations

(sendText Message and sendObj ect Message)

as well as an extensibility nodel that enables custom
nessage formats to be defined and associated with

ext ended net hod si gnat ur es.

@ontrol | npl enent ati on(i sTransi ent =tr ue)
public class JnmsMessageControl I npl inplenments JnsMessageControl, Extensible

{

/**

* The peer BeanContext instance associated with the Contr ol
*/

@ont ext Cont r ol BeanCont ext cont ext ;

Page 44

Controls Programming

/**

* The client call back event router for this Control
=

@l ient Callback client;

/**

* The fields are used to hold transient JMS resources
* that are acquired and held for
*/the resource scope associated with the Control
*
transi ent javax.jns.Connection _connection
transi ent javax.] ns. Session _session
transi ent javax.] ns. MessageProducer _producer
transi ent javax.]ns.Destination _dest;

/**

* The Resour ceont ext instance associated with the Contr ol
*/

@Cont ext Resour ceCont ext resour ceCont ext ;

/*

* The onAcquire event handl er

* This nmethod will be called prior to any operation with

* a given resource scope. It is responsible for

* obtaining the connection, session, destination, and appropriate
* witer instance, for use within the operation

*

/
@tvent Handl er (
field="resourceContext",
event Set =Resour ceCont ext . Resour ceEvent s. cl ass,
event Nane="onAcqui r e"

public void onBeanAcquire()

/
/
/

~

Acquire the property val ues needed for initialization

Destinati on destProp =

(Desti nation) cont ext . get Control PropertySet (Destination.class);
Connecti on connProp =

(Connecti on) cont ext . get Cont r ol PropertySet (Connecti on. cl ass);

try
{
/1

/] Cbtain the JMS Destination instance based upon the
Desti nation property
/1

Initial Context jndi Context = new I nitial Context();
dest =
(j avax. j ms. Desti nati on)j ndi Cont ext .| ookup(dest Prop. name());

/1

Page 45

Controls Programming

/1 Obtain Connection, Session, and MessageProducer resources
based upon the

/1 destination type and the values in the Connection
Pr opert ySet

if (destProp.type() == JnmsMessageControl . Desti nati onType. QUEUE)
{

j avax. j ms. QueueConnect i onFact ory connFactory =
(QueueConnect i onFact ory) j ndi Cont ext . | ookup(connPr op. f act or yName()) ;
_connection = connFactory. creat eQueueConnecti on();
_session =
((QueueConnecti on) _connecti on). creat eQueueSessi on(
connProp. transact ed(),
connPr op. acknowl edgeMode()) ;
_producer =
((QueueSessi on) _sessi on). cr eat eSender ((Queue) dest);

el se

{
j avax. j ms. Topi cConnect i onFact ory connFactory =
(Topi cConnect i onFact ory) j ndi Cont ext . | ookup(connPr op. f act or yName());
_connection = connFactory. creat eTopi cConnection();
_session =
((Topi cConnecti on) _connecti on).createTopi cSessi on(
connProp. transact ed(),
connPr op. acknowl edgeMode()) ;
_producer =
((Topi cSessi on) _sessi on). creat ePubl i sher ((Topi c) _dest);

}

cat ch (j avax. nam ng. Nam ngExcepti on ne)

t hr ow new Control Exception("Unable to | ocate JNDI object", ne);
}
catch (C assCast Excepti on ce)

t hr ow new Control Exception("JNDI object did not match expected
type", ce);

catch (JMSException jnse)

_ t hr ow new Control Excepti on("Unable to acquire JMS resources”,
j mse);

}

/*
* The onRel ease event handl er for the associ ated context
* This method will release all resource acquired by onAcquire.
*/

@tvent Handl er (
fiel d="resour ceCont ext",
event Set =Resour ceCont ext . Resour ceEvent s. cl ass,

Page 46

Controls Programming

event Nane="onRel ease"

public void onRel ease()
{

try

{

if (_producer != null)

_producer. cl ose();
_producer = null

if (_session != null)

_session. close();
_session = null

if (_connection != null)

_connection. cl ose();
_connection = null;

}
catch (JMSException jnse)

. t hr ow new Control Excepti on("Unable to rel ease JM5 resource"
jse);

}
/**
* Hel per nethod used to send a nmessage once constructed
*/
private void sendMessage(j avax.j ms. Message nmsg) throws JMSException

client.onMessage(nsq);

i f (_producer instanceof javax.jns.QueueSender)
((QueueSender) producer).send(nsg);

el se
((Topi cPubl i sher) producer). publish(nsg);

/**

* Sends a sinple Text Message to the Control’s destination

* @aramtext the contents of the Text Message

*/

public void sendText Message(String text) throws JVSException

j avax. j ms. Text Message msg = _sessi on. creat eText Message(text);
sendMessage(neQ) ;

/**

* Sends a sinple Object Message to the Control’s destination

Page 47

Controls Programming

* @aram obj ect the object to use as the contents of the nessage
*/
public void sendbj ect Message(j ava.io. Seri alizable object) throws
JVBExcept i on
{

javax. j ns. Cbj ect Message nsg = _session. creat eObj ect Message(obj ect) ;
sendMessage(nsgQ) ;

}

/**

* | npl ements the Extensible.invoke() interface for this Control
* This met hod uses the Message property to determ ne the type

* of nessage to construct, and then uses the Body and Property
attributes of nethod paraneters to supply nessage

content and properties.

*

*/
public Object invoke(Method m Object [] args) throws Throwabl e
i nt bodyl ndex = -1;

for (int i=0; i < args.length; i++)
{
i f (context.getParaneterPropertySet(m i,
JmsMessageControl . Body. class) != null)
bodyl ndex = i;
br eak;
} }
i f (bodyl ndex == -1)

t hr ow new Cont rol Excepti on(
"No @ody argunent defined for operation:
+ m get Nane()

I

/1

/l Create a nessage based upon the val ue of the Message property of
t he met hod

/1

j avax. j ns. Message nsg = nul | ;

Message msgProp = context.get Met hodPr opertySet (m
JnsMessageCont rol . Message. cl ass) ;

try
swit ch(nsgProp. val ue())

case TEXT:
nsg =

_session. creat eText Message((Stri ng) args[bodyl ndex]) ;
br eak;

case OBJECT:
nsg =
_session. creat eObj ect Message((j ava. i o. Seri al i zabl e) ar gs[bodyl ndex]) ;
br ;

Page 48

Controls Programming

case BYTES:
j avax. j ns. Byt esMessage bnsg;
nsg = bnsg = _session. creat eByt esMessage() ;
angkwwiteBytes((byte [1) args[bodyl ndex]);
reak;

}
}
catch (Cl assCast Excepti on cce)

t hrow new Control Exception("lnvalid type for Body paraneter",
cce);

/
/ Now decorate the nessage with any Property-annotated paraneters
/

or (int i=0; i < args.length; i++)

P~~~

JnsMessageControl . Property prop =
cont ext . get Par anet er PropertySet(m i,
JnsMessageControl . Property. cl ass);
if (prop !'= null)

String propNanme = prop. nane();
if (args[i] instanceof String)
nsg. set Stri ngProperty(propNane, (String)args[i]);
else if (args[i] instanceof Integer)
nsg. set | nt Propert y(propNane,
((Integer)args[i]).intValue());
else if (args[i] instanceof Short)
nsg. set Short Property(propNane,
((Short)args[i]).shortVal ue());
else if (args[i] instanceof Bool ean)
nsg. set Bool eanPr operty(propNane,
((Bool ean)args[i]). bool eanVal ue());
else if (args[i] Instanceof Float)
nsg. set Fl oat Propert y(propNane,
((Float)args[i]).fl oatValue());
else if (args[i] instanceof Doubl e)
nsg. set Doubl ePr opert y(pr opNane,
((Doubl e)args[i]).doubl eval ue());
el se
nsg. set Obj ect Property(propNane, args[i]);

Send it

~— — — —
~

sendMessage(nsQ) ;
return nsg

Page 49

	1 Overview
	2 An Example
	3 The Control Authoring Model
	4 The Control Client Models
	5 Defining a New Control Type
	6 Instantiating a Control
	6.1 Declarative Instantiation
	6.2 Programmatic Instantiation

	7 Operations
	7.1 Declaring and Implementing Operations for a Control
	7.2 Invoking Operations on a Control

	8 Events
	8.1 Declaring Events
	8.2 Firing Events
	8.3 Listening for Events
	8.3.1 Declarative Implementation of Event Handling
	8.3.2 Programmatic Implementation of Event Handling

	9 Contextual Services
	9.1 Declarative Access to Contextual Services
	9.2 Programmatic Access to Contextual Services
	9.3 Tradeoffs between Declarative and Programmatic Access

	10 Properties
	10.1 Declaring Properties for a Control Type
	10.2 Accessing Properties from Client Code
	10.3 Accessing Properties from Control Implementation code
	10.4 External Configuration of Control Properties
	10.5 Defining Property Constraints

	11 Extensibility
	11.1 Defining an Extended Interface for a Control Type
	11.2 Defining Extension Semantics for a Control Type
	11.3 Authoring an Extensible Control Type
	11.4 Client Model for Using an Extended Control Type

	12 Composition
	12.1 Composition Using Declarative Instantiation
	12.1.1 Composition using Programmatic Mechanisms

	12.2 Internal Architecture for Composition and Services

	13 Inheritance
	14 Context and Resource Events
	14.1 Life Cycle Events
	14.1.1 The onCreate Event
	14.1.2 The onPropertyChange Event
	14.1.3 The onVetoableChange Event

	14.2 Resource Events
	14.2.1 The onAcquire Event
	14.2.2 The onRelease Event

	14.3 Receiving Life Cycle or Resource Events
	14.3.1 Declarative Access to events
	14.3.2 Programmatic Access to Events

	14.4 JavaBean Context Events
	14.4.1 PropertyChange Events
	14.4.2 Membership Events
	14.4.3 Context Services Events

	15 Appendix A: The JmsMessageControl Public Interface
	16 Appendix B: The JmsMessageControl Implementation Class

