
Controls Containment

Table of contents

1 Overview..2

2 Basic Architecture..2

2.1 The Foundation: JavaBeans Containment... 2

2.2 Building Up: Controls Containment..4

3 Control Container Services.. 7

Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

1. Overview

This document describes the basic architecture for how Beehive Controls interact with the
runtime container they are executing within. Examples of runtime containers for Controls
include:

• Servlet Container
• EJB Container
• Web Services (WSM)
• Client JVM
• JUnit Test Container (standalone testing)
• ...

The base runtime comes with a sample container integration for the servlet container, but the
container integration model is flexible enough to support any and all of the above containers,
as well as enabling the list above to be extended or customized in new and interesting ways.
The model makes it possible to author controls that run in a wide variety of containers, as
well as ones that expect and leverage the capabilities of a specific container (where
desirable).

This is possible because there is a basic architecture for how Controls will interact with their
container. This includes the interfaces for how a new type of container can be constructed, or
for how an existing runtime environment can be extended to act as a container of controls.

There are two target audiences for this document:

• A Control author who wants a deeper understanding of how controls interact with their
runtime environment for resource management, configuration, contextual services, etc.

• A Control container developer who wants to define a new type of Control container to
integrate support for Beehive Controls into an existing environment.

2. Basic Architecture

This section outlines the basic implementation architecture for Control containment.
Containment is based upon an existing JavaBean standard for bean composition and services,
and build atop this to provide additional features that are unique to Controls.

2.1. The Foundation: JavaBeans Containment

The basic foundation of Control Containment is the Extensible Runtime Containment and
Services Protocol For JavaBeans", a little known but useful containment model for
JavaBeans that has been part of J2SE since 1.2. The intent of the protocol (actually, a set of

Controls Containment

Page 2
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

interfaces and supporting implementation classes) was to add a simple containment model for
JavaBeans, as well as a mechanism for allowing beans to discover, request, and use services
provided by their container. All of the APIs defined by the protocol live in the
java.beans.beancontext package.

This diagram shows the basic architecture for this protocol:

The basic concepts shown in the diagram are:

• A JavaBean can be nested within a BeanContext that acts as a container for one (or more)
beans.

• A BeanContext can itself be nested within another BeanContext, enabling hierarchical
composition.

• A BeanContext can provide the JavaBean with access to services. These services may be
directly implemented by the BeanContext, or the BeanContext may simply act as a
discovery mechanism/bridge to services provided by the runtime environment of the
BeanContext.

Some of the key classes are described in the following sections:

2.1.1. BeanContext

Controls Containment

Page 3
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

http://java.sun.com/j2se/1.5.0/docs/api/java/beans/beancontext/package-summary.html

The java.beans.beancontext.BeanContext interface defines the basic interface for a container
of JavaBeans. It derives from the java.util.Collection interface, so the standard Collection
APIs can be used to add, remove, and iterate over the JavaBeans contained within the
context. It also extends the java.beans.beancontext.BeanContextChild interface (see next
section), meaning it is possible for one BeanContext to be nested within another
BeanContext, forming a hierarchical structure.

Whenever you see word "BeanContext" throughout this document or in API names, mentally
replace it with "JavaBeans Container".

2.1.2. BeanContextChild

The java.beans.beancontext.BeanContextChild interface defines the basic interface that will
be implemented (directly or indirectly via java.beans.beancontext.BeanContextProxy) by a
JavaBean that wants to be contained within/access the services of a BeanContext. It defines
the basic mechanism for setting/retrieving the parent BeanContext for a JavaBean, as well as
the APIs for listening to / vetoing property changes on the nested bean.

2.1.3. BeanContextServices

The java.beans.beancontext.BeanContextServices interface derives from the BeanContext
interface and defines a BeanContext that is capable of providing services to the JavaBeans
contained within it. It defines a model for how services can be discovered and used by the
contained JavaBeans, as well as a model for how service providers can register themselves
with the context so their services will be available.

Service discovery is hierarchical; if a particular BeanContext does not implement a service
requested by a contained JavaBean, but is itself contained within another BeanContext, it will
delegate the request upwards to see if any parent context can provide the requested service.

2.2. Building Up: Controls Containment

The Beehive Controls runtime builds atop the base JavaBeans BeanContext model by adding
a set of interfaces and support classes that provide containment and composition services that
are unique to Controls. This section provides an overview of this functionality, and a
subsequent section on Control Container Services will describe them in more detail.

2.2.1. ControlBeanContext

The org.apache.beehive.controls.api.context.ControlBeanContext interface extends the base
java.bean.BeanContextServices interface to add the unique services available to JavaBeans
that are Beehive Controls. These include access to control property values bound by

Controls Containment

Page 4
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

http://java.sun.com/j2se/1.5.0/docs/api/java/beans/beancontext/BeanContext.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/beans/beancontext/BeanContextChild.html
http://java.sun.com/j2se/1.5.0/docs/api/java/beans/beancontext/BeanContextChild.html
http://java.sun.com/j2se/1.5.0/docs/api/java/beans/beancontext/BeanContextProxy.html
http://java.sun.com/j2se/1.5.0/docs/api/java/beans/beancontext/BeanContextServices.html
apidocs/javadoc/org/apache/beehive/controls/api/context/ControlBeanContext.html

annotations, external configuration, or client invocation of property accessors, as well as a
unique set of lifecycle events.

Every Control is guaranteed to have an associated peer ControlBeanContext that can be used
to query Control properties, nest other controls (either declaratively or programmatically),
and to receive lifecycle events. This is true even if the Control is not itself nested within a
parent context.

This peer ControlBeanContext can be obtained by declaring:

@Context ControlBeanContext myContext;

within the Control Implementation class, or by calling the
org.apache.beehive.controls.api.bean.ControlBean.getControlBeanContext() API on a
Control bean instance.

2.2.1.1. Control Identifiers

The ControlBeanContext interface goes beyond the simple java.util.Collection collection
capabilities of the base BeanContext class to also manage a unique identifier associated with
each contained Control. This identifier can come from a number of different sources:

• An argument to the bean constructor
• The field name, for an instance field annotated with @Control. In the example above, the

Control ID would be "myContext"
• The ControlBeanContext will autogenerate a unique one, if none is provided

Because Controls can be hierarchically nested inside one another, a given Control instance
actually has two IDs: the local (or BeanContext relative) ID that was provided by one of the
mechanisms above and a full (or absolute) ID that is built by concatenating the IDs of all
Controls from the root BeanContext down to the control, using a forward slash ('/') as a
separator.

For example, the Control ID "foo/bar" refers to the Control with a local ID of "bar" that is
nested inside the control with a local ID of "foo" in the root context.

An absolute Control ID is effectively a unique address that allows a control within a
BeanContext hierarchy to be located by traversing the ownership path of Controls defined by
this composite identifier.

This is useful in a number of contexts:

• To enable external configuration based upon identifier (usage context) rather than just a
type.

Controls Containment

Page 5
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/controls/api/bean/ControlBean.html#getControlBeanContext()

• To locate a specific control instance within a hieararchy by navigating the BeanContext
tree based upon the ID. This can be useful in scenarios such as an external event dispatch.

The org.apache.beehive.controls.runtime.bean.ControlBeanContext class provides a concrete
implementation of the ControlBeanContext interface for the Controls runtime.

This class is used:

• To provide the basic set of services for Controls. Every instantiated Control will have an
associated ControlBeanContext to provide access to properties, or to contain nested
Controls.

• As a base class for other types of Control containers. These common services are also
available for other types of containers that want to support controls. A later section
describes this in more detail.

2.2.2. ControlBean

The org.apache.beehive.controls.api.bean.ControlBean interface defines a base interface
implemented by all Controls. It provides accessors for:

• The parent BeanContext of the Control
• The peer ControlBeanContext providing property access and containment for nested

controls
• The (absolute) Control ID of the Control
• The public interface (@ControlInterface or @ControlExtension) implemented by the

Control.

The org.apache.beehive.controls.runtime.bean.ControlBean class provides a concrete
implementation of the ControlBean interface, and is used as the base class for all
code-generated Control JavaBeans.

2.2.3. ControlContainerContext

The org.apache.beehive.controls.runtime.bean.ControlContainerContext class extends the
base ControlBeanContext class to define a base integration model (and default
implementation, where appropriate) of containment and services to integrate an external
container type with the Controls runtime. Examples of existing external containers for
controls are the Servlet container, the EJB container, the Spring bean container, ...

An external container can provide additional services to Controls that are running within its
scope, such as a definition of how long it is OK for Controls to acquire and hold resources,
the integration of a native container configuration model, or contextual services that are
unique and specific to the container.

Controls Containment

Page 6
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/controls/runtime/bean/ControlBeanContext.html
apidocs/javadoc/org/apache/beehive/controls/api/bean/ControlBean.html
apidocs/javadoc/org/apache/beehive/controls/runtime/bean/ControlBean.html
apidocs/javadoc/org/apache/beehive/controls/runtime/bean/ControlContainerContext.html

For any given container, a custom subclass of the ControlContainerContext class can be
provided that defines the unique attributes and semantics of the container for controls
executing within it. For example, the ServletBeanContext class provided as part of the
Controls runtime provides control containment for the web tier. The ServletBeanContext
defines the resource scope for Controls such that any control instance can hold a resource
(connection, session, ...) for the lifetime of a single http request (but no longer). Additionally,
it exposes web-tier-specific contextual services, such as access to the current ServletContext
or active HttpServletRequest instance.

The following section on Control Container Services describes many of the services and
behaviors that can be customized by a ControlContainerContext subclass.

A ControlContainer context is intended to be the root context which will contain (either
directly, or indirectly via nested BeanContexts) all Controls used within the scope of a
container instance. Generally speaking, the relationship between container instances and
ControlContainerContext instances will be one-to-one.

Impl Note: there really should be an
org.apache.beehive.controls.spi.context.ControlContainerContext interface that defines the
basic interface for Controls containment, with the above class acting as the concrete
implementation thereof. This follows the pattern used everywhere else, and decouples the
declaration of control container requirements from its implementation.

3. Control Container Services

The interactions between a control and its container are best expressed in terms of the set of
functional services that the container provides to the control. This provides a basic
framework for understanding what happens at runtime when a Control uses those services
(for the Control author) as well as the effort required to integrate these services into a specific
container (for the Control container developer).

Controls Containment

Page 7
Copyright © 2004-2006 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/controls/runtime/servlet/ServletBeanContext.html

	1 Overview
	2 Basic Architecture
	2.1 The Foundation: JavaBeans Containment
	2.1.1 BeanContext
	2.1.2 BeanContextChild
	2.1.3 BeanContextServices

	2.2 Building Up: Controls Containment
	2.2.1 ControlBeanContext
	2.2.1.1 Control Identifiers

	2.2.2 ControlBean
	2.2.3 ControlContainerContext

	3 Control Container Services

