The JMS Control Developer's Guide

Table of contents

1 Overview: Messaging SysStems and JMS.........ooo it 2
1.1 Understanding MeSsaging SYSIEIMS.......cocuvieeierieeiereee et 2
1.2 Using IMS Queues for Point-to-Point MeSSaging..........cccveieeiiieeiiesiieesee e esree e 2
1.3 Using IMS Topics for Publish-and-Subscribe Messaging...........ccccecveveeieicesecciecneene 3
1.4 Connection Factories and TranSaCliONS..........ccueeeieriererere s 3

W2 \V/ IS Y @0 g 11 £0] I AN g1] = 1 o o 1SN 3
2.1 IMS Control Class-level ANNOLELIONS..........c.oieereeierierie e 3
2.2 IMS Control Method ANNOLALIONS.........ccoierirreereee et see e ees 4
2.3 IJMS Control Method Parameter ANNOLALIONS..........coeeiereerieneeie e 5

3 IMS CONLIOl MELNOGS.......cuiiieiiiiesiiriieiee e b e e 6

i =20 G Y/ oSSR 7

5Creating @JMS CONEIOL.........coiiiiiieiee e ens 7

6 Specifying the MeSSage BOGY..........coeiiriiieieeesie e 9
6.1 SElECtiNG the MESSAGE TYPE.....eeiueeieeieeie ettt ee sttt sae et sbe et e sreenneeneens 9
6.2 Sending and Recelving a Simple TeXt MESSAgE.........covvuvrieeiieeiie e 9
6.3 Sending and Receiving an XML Message using XMLBeans...........ccccceeveeveeiieceennens 9

7 Specifying Message Headers and Properties..........cocveveveeneeceesiesese e 11
7.1 ACCESSING MESSAZE HEAHENS........eiiieieieee et e 11

7.2 ACCESSING MESSAZE PrOPENTIES......c.eiiieieeieie ettt 11

The JMS Control Developer's Guide

1. Overview: Messaging Systemsand JM S

A JMS control makesit easy for your application to communicate with messaging systems.
To better understand how to use a JMS control, it helps to understand messaging systems and
how JM S control interact with them.

1.1. Under standing M essaging Systems

Messaging systems provide communication between software components. A client of a
messaging system can send messages to, and receive messages from, any other client. Each
client connects to a messaging server that provides facilities for sending and receiving
messages. Codehaus's ActiveM Q which is a component of the Apache Geronimo project, is
an example of a messaging server.

Messaging systems provide distributed communication that is asynchronous. This means that
a component sends a message to a destination and a message recipient can retrieve messages
from a destination, but the sender and receiver do not communicate directly. The sender only
knows that a destination exists to which it can send messages, and the receiver also knows
there is a destination from which it can receive messages. Aslong as they agree what
message format and what destination to use, the messaging system manages the actual
message delivery.

Messaging systems also provide reliability for message delivery. The specific level of
reliability istypically configurable on a per-destination or per-client basis, but messaging
systems are capable of guaranteeing that a message will be delivered, and that it will be
delivered to each intended recipient exactly once.

JM S supports two basic styles of message-based communications: point-to-point and
publish-and-subscribe. Each is described in greater detail below.

1.2. Using JM S Queuesfor Point-to-Point M essaging

Point-to-point messaging is accomplished with JIM S queues, which are specific named
resources configured inaJM S server. A IMS client, of which the IMS control is an example,
sends messages to a queue or receives messages from a queue.

Point-to-point messages have a single consumer. Multiple receivers can listen for messages
on the same queue, but once any receiver retrieves a particular message from the queue that
message is consumed and is no longer available to other potential consumers.

The messaging system continues to resend a particular message until a predetermined
number of retries have been attempted. Once the message is received, a message consumer

Page 2

The JMS Control Developer's Guide

acknowledges receipt.

1.3. Using IMS Topicsfor Publish-and-Subscribe M essaging

Publish-and-subscribe messaging is accomplished with IM S topics. A topic is a specific
named resource configured in aJM S server.

A IMS client, of which the IMS control is an example, publishes messages to atopic, or
subscribes to a topic. Published messages have multiple potential subscribers. All current
subscribersto atopic receive all messages published to that topic after the subscription
becomes active.

1.4. Connection Factories and Transactions

Before aJM S client can send or receive messages to a queue or topic, it must obtain a
connection to the messaging system, via a connection factory. A connection factory isa
resource that is configured by the message server administrator. The names of connection
factories are stored in a JNDI directory, where clients wishing to make a connection can look
them up.

Unless otherwise specified the default initial context is used. This may be overridden by
settng thej ndi Cont ext Fact ory andj ndi Provi der Ur | properties, either
programically using theset Jndi Cont ext Fact ory() andset Jndi Provi der Url ()
setters or viathe corresponding @est i nat i on attributes.

2. JIM S Control Annotations

2.1. IMS Control Class-level Annotations

The IMSCont r ol . Dest i nat i on annotation defines the destination of the message, the
message type and connection related attributes. The attributes defined for this annotation are:

Attribute Value Required Description

sendJndiName String Yes JNDI name of the
gueue or topic.

sendCorrelationProperty String No The correlation
property to be used for
message sent. Default
is empty, which
signifies that the IMS
correlation header is to
be used.

Page 3

The JMS Control Developer's Guide

connectionFactoryJndiN

String

Yes

JNDI name of the
connection factory.
Required

transacted

boolean

No

True if en-queuing is
under transactional
semantics of the
enclosing container.
Default is true.

acknowledgeMode

enum
AcknowledgeMode

No

The acknowledgement
strategy, one of Auto,
Client, DupsOk.
Default is Auto.

sendType

JMSControl.Destination’

No

Values are Auto,
Queue and Topic. If
Auto, then the type is
determined by the
destination named by
the sendJndiName
attribute. Default is
Auto.

jndiContextFactory

String

No

The class name of the
jndi-context-factory.
Default is none.

jndiProviderURL

String

No

The provider URL for
JNDI. Default is none.

2.2. IMS Control M ethod Annotations
Methods added to a JM S control that send messages may be annotated with the following

annotations:
Annotation Value Description
JMSControl.Message JMSControl.MessageType Enum values are: Auto, Text,
(enum) Bytes, Object, Map and

JMSMessage

JMSControl.Priority int A JMS priority (0-9). Defaults to
provider's default priority.

JMSControl.Expiration long A JMS expiration in
milliseconds. Default's to
provider's default expiration.

Page 4

The JMS Control Developer's Guide

JMSControl.Delivery JMSControl.DeliveryMode This attribute determines the
(enum) delivery mode of the message.
Defaults to the JMS provider's
default delivery mode. Enum
values are: NonPersistent,
Persistent and Auto

JMSControl. Type String Specifies the JMS type.

JMSControl.Correlationld String Specifies the JMS correlation
id.

JMSControl.Properties JMSControl.PropertyValue[] One or more string/int/long

valued properties to be added
to the message.

Pr opert yVal ue has the string
valued attributes 'name’, 'value'
and class valued 'type'. The
allowed values for 'type' are
String.class, Integer.class and
Long.class. If type is not
specified, then String is
assumed.

Notes for the IWSControl.MessageType enumerated value:

« If not specified or no message-type string, then the default is Auto.
« If Auto, then the type of IMS message is determined by the type of the body passed in;
rules for determining these types are:
» If thebody isa String or XmIObject, a TextMessage is sent.
* If thebody isabyte]], a StreamMessage is sent.
* If thebody isaMap, aMapMessageis sent
* If thebody isaJMSMessage, a IM SMessage is sent
» Otherwiseif the body is Serializable, an ObjectMessage is sent.
* Any other type resultsin a control exception.

2.3. IMS Control Method Parameter Annotations

These annotations denote which parameter is to be the body of the message and zero or more
properties to be set in the message respectively. The following annotations my be used on
method parameters:

Annotation Description

JMSControl.Property String The parameter contains the
value of the property.

Page 5

The JMS Control Developer's Guide

JMSControl.Priority int A JMS priority (0-9). If not
specifed the method-level
annotation is used; if
method-level annotation has
not been specified the default
for the JMS provider is used.

JMSControl.Expiration long JMS expiration in milliseconds.
If not specified the
method-level annotation is
used; if method-level
annotation has not been
specified the default for the
provider is used.

JMSControl.Delivery JMSControl.DeliveryMode The DeliveryMode valued
parameter determines the
delivery mode of the message.
If not specified, then the
method-level annotation is
used; else the default for the
provider is used.

JMSControl.Type String The JMS type.

JMSControl.Correlationld String The JMS correlation id.

3. JM S Control Methods
A IMS control always includes the following methods:

Method Description

getSession() Get the queue/topic session.

getDestination() Get the queue/topic destination.

getConnection() Get the queue/topic connection.
setHeaders(Map) Sets the JMS headers to be assigned to the next

JMS message sent. Note that these headers are
set only on the next message, subsequent
messages will not get these headers. Also note
that if the body is a message itself, then any
header set through this map will override
headers set in the message. The keys should be
of type HeaderType or equivalent strings. See
table below for valid values.

Page 6

The JMS Control Developer's Guide

setHeader(HeaderType,Object)

Sets a JMS header to be assigned to the next
JMS message sent. Note that this header is set
only on the next message, subsequent
messages will not get this header. Also note that
if the body is a message itself, then the header
set here will override the header set in the
message.

setProperties(Map)

Sets the JMS properties to be assigned to the
next JMS message sent. Note that these
properties are set only on the next message,
subsequent messages will not get these
properties. Also note that if the next message is
sent through a publish method, then any
property set through this map will override
properties set in the message itself.

setProperty(String,Object)

Set the given JMS property to be assigned to
the next JMS message sent. Note that this
property is set only on the next message,
subsequent messages will not get this property.
Also note that if the body is a message itself,
then the property set here will override the
property set in the message.

The methods of the extension control-classes correspond to sending a message to a

topic/queue, e.g.
send<nmessage-type>(...)

4. Header Types

The table below defines the valid values for header types passed into setHeader() or

setHeaders():
JMS Message Method
setIMSType()

HeaderType/String

JMSType

Allowed Value Types
String

setJMSCorrelationID()

JMSCorrelationID

String or byte[]

setJMSExpiration()

JMSEXxpiration

String valued long or Long

setJMSPriority()

Priority

String valued int or Integer

5. Creatinga JM S Control

The IMS control is an extensible control. Before aJM S Control can be used in an

Page 7

The JMS Control Developer's Guide

application, a sub-interface of the
or g. apache. beehi ve. control s. system jns. JnsCont r ol interface must be
created and annotated with @ont r ol Ext ensi on.

@cont r ol Ext ensi on
public interface Sanpl eQueue
ext ends JMsControl {

A JMS control needs to know the destination of the messagesit will send. Thisis
accomplished using a INDI context. Unless otherwise specified the default initial context is
used. This may be overridden by settng the @est i nat i on annotation's

j ndi Cont ext Fact ory andthej ndi Provi der Ur | attributes.

The queue/topic destination is then obtained using the value of the sendJndi Nane
attribute of the @est i nat i on annotation. A queue/topic connection is obtained using by
thej ndi Connect i onFact ory attribute. In most cases the same connection factory is
used for both queues and topics.

The @est i nati on. sendType attribute may be used to constrain the use of the control
to either atopic or aqueue. By default its value is Aut o which allows for run-time
determination of whether the sendJndi Name names a queue or atopic. By setting it to
Queue or Topic arun-time check is made to seeif the connection factory and destination is
of the correct type.

The extension interface can include one or more methods that send messages. These methods
must have at |east one parameter that corresponds to the body of the message. Other
annotated parameters can defined to provide property values and other information at
run-time to the message. The method itself can be annotated as well.

In the example below, the OrderQueue control class has one submitOrder() method that takes
an Order object as the body and a string that sets the 'DeliverBy' property in the
javax.jms.ObjectM essage to be sent to the queue.orders IM S queue.

@ont r ol Ext ensi on
@MSControl . Desti nati on(sendJndi Name="queue. orders", j ndi Connect i onFact or y="webl ogi c. j ws
public interface O der Queue extends JMSContr ol

public class Order inplenments java.io. Serializable

Fublic O der ()

Page 8

The JMS Control Developer's Guide

public Order(int buyer,String[] list)
buyerld = buyer;
itenmlist = list;

private int buyerld;
private String[] itenlist;

}

public void subm tOrder (O der order, @roperty(name="DeliverBy") String
del i ver By) ;
}

6. Specifying the M essage Body

This section describes some of the ways in which you can specify the body of a message sent
viathe JMS control.

6.1. Selecting the M essage Type

A IJMS control can send text messages (including XML messages), byte array messages,
object messages, and javax.jms.Message (JM S Message) objects. These are the types defined
by the IM S messaging service specification.

When you create a IM S control, you can specify which type of message it sends and receives
with the JMSCont r ol . Message. nessageType() annotation.

Y ou have complete control over the send methods, as long as you are sending a message of a
supported type; you can modify method signatures as you need to, including adding
additional parameters to handle message headers and properties. However, you can only
specify one parameter in the method for the message body.

6.2. Sending and Receiving a Simple Text M essage

The simplest message body is atext message. The following example shows a simple text
message sent to the messaging service viaa JMS control:

public void sendString(String nmsg) throws Exception

nmyJMSCont r ol . sendText Message(nsQ) ;
}

6.3. Sending and Receiving an XML M essage using XML Beans

Page 9

The JMS Control Developer's Guide

If you need to send a set of values in the message body, you can construct the message body
using an XML Beans object type. Apache XML Beans technology generates a set of Java
classes from an XML schema (.xsd) file. Y ou can then use these classes to work with XML
documentsin your code.

If you don't already have a schemafile, you can construct one by hand, or you can generate
one from an XML document or fragment using a third-party authoring tool. Once you've
generated the XML Beans classes from the schemafile, you can import those classes into
your IM S control class. Y ou can then modify the send method or receiving callback on the
JMS control to send or receive a message of the appropriate type.

Note that XML Beans messages are transmitted as JIM S text messages. When you create a
JMS control that will use an XMLBeans type for the message body, specify the type as with
the JMSCont r ol . Message. nessageType() annotation as Text'.

The following isasimple JWS Control which sends an XML message:

i mport java.util.Date;

i mport org. apache. beehi ve. control s. api . bean. Cont r ol Ext ensi on;
i mport org. apache. beehi ve. control s. system j ms. JMsCont r ol ;
i mport org. apache. xnl beans. Xnl Qbj ect ;

@ont r ol Ext ensi on
@MsControl . Desti nati on(sendJndi Name="j ns. Sanpl eQueue", j ndi Connect i onFact or y="webl ogi c.
public interface Sanpl eQueue extends JMsContr ol

/**
* Submt an xm object (org.apache.xnl beans) as a text nessage.

* @ar am docunent the docunent.
* @aramtype the message JMS type.
*/

public void subm t Xm (Xm Qbj ect docunent, @ype String type);

/**
* Submit an xm object (org.apache.xm beans) with JMS type
"xm Obj ect™.
*/ @ar am docunent the docunent.
@kssage(MessageType. Text)
@ype("xm Chj ect")
public void subm tXm (Xm Cbj ect docunent);

/**
* Submit an already constructed nessage
* @aram nessage the jns-nessage.
*/
public void subm t Message(Message nessage) ;

Page 10

The JMS Control Developer's Guide

7. Specifying M essage Header s and Properties

The JMS control includes properties for setting and retrieving headers and properties on a
JMS message.

7.1. Accessing M essage Header s

A IM S message includes a number of header fields that contain information used to identify
and route messages. Y ou can set the message headers for an outgoing message using the IMS
control by using the JMs5Cont r ol . set Header s(Map) method or the

JMSCont r ol . set Header (Header Type, Obj ect) method. The supported headers
for an outgoing message are:

JMSCorrelationlD
JM SExpriation
Priority

JMSType

For more information on these headers, see the Sun JM S specification.

7.2. Accessing M essage Properties

A JMS message can also include properties that you or the message sender can add to send
additional information about the message. Y ou can think of them as optional, custom
headers. Properties can be of type boolean, byte, short, int, long, float, double, or string. They
can be set when a message is sent. Y ou can add as many properties to the message as you
need to.

Y ou can set the properties of messages sent using the IM S control by using the
JMsSCont rol . set Properti es(Map) orthe
JMsSControl . set Property(String, Object) methods.

When the IM S control is sending a message, the JIM S control adds the properties specified to
the outgoing message. Y ou can optionally specify that a parameter passed to the method that
sends the message should be substituted as a property value on the message.

Page 11

	1 Overview: Messaging Systems and JMS
	1.1 Understanding Messaging Systems
	1.2 Using JMS Queues for Point-to-Point Messaging
	1.3 Using JMS Topics for Publish-and-Subscribe Messaging
	1.4 Connection Factories and Transactions

	2 JMS Control Annotations
	2.1 JMS Control Class-level Annotations
	2.2 JMS Control Method Annotations
	2.3 JMS Control Method Parameter Annotations

	3 JMS Control Methods
	4 Header Types
	5 Creating a JMS Control
	6 Specifying the Message Body
	6.1 Selecting the Message Type
	6.2 Sending and Receiving a Simple Text Message
	6.3 Sending and Receiving an XML Message using XMLBeans

	7 Specifying Message Headers and Properties
	7.1 Accessing Message Headers
	7.2 Accessing Message Properties

