
NetUI Web App Project Model

Table of contents

1 Introduction..2

2 Project Layout..2

2.1 Source Files peer to Web Content Root ... 2

2.2 Source Files in the Web Content Root.. 3

3 Creating a new NetUI Project.. 4

4 Runtime JARs / Resources...5

4.1 JARs.. 5

4.2 Other Resources...6

4.3 NetUI-enabled Web Projects and Source Control...6

5 Building a Web Project..6

6 Deploying a Web Project... 7

Java, J2EE, Servlet, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and

other countries.

1. Introduction

A NetUI enabled web application consists of the same resources as a Struts, servlet, or other
J2EE webapp. The elements that make a NetUI web application different are the build steps
for processing annotated Java files and the JARs / resources that comprise the NetUI webapp
runtime. This document discusses several topics including possible web project layouts, the
Ant tasks used to build Page Flows, the JARs / resources in a NetUI web application, and the
files that must be added to source control in order to commit a NetUI-enabled web project
into SCM.

2. Project Layout

J2EE web projects can be structured in a nearly limitless number of ways. Virtually all
webapps have both source files and web addressable content. In addition, there are a variety
of configuration files and deployment descriptors that are often stored in the WEB-INF/
directory. A fundamental difference in how web projects are structured is where the
web-addressable content and the source files live. One web project model stores the source
files in a sub-directory the web addressable content; another stores source files as a peer to
the web addressable content. When building Page Flows, the project layout affects the Ant
calls used to build the annotated Java files. Both project layouts and the Ant used to build are
discussed here.

2.1. Source Files peer to Web Content Root

The classic web project layout is described by Tomcat here and has the directories containing
web-addressable content and web project source in peer directories. For example, the
following directory structure uses this layout and stores the Ant build file in the project's root
directory:

fooWebProject/
build/
src/

Controller.java
web/

page1.jsp
page2.jsp
WEB-INF/

web.xml
build.xml
build.properties

When using this layout, the source files in src/ are often built into the build/ directory

NetUI Web App Project Model

Java, J2EE, Servlet, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and

other countries.

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/appdev/source.html

under WEB-INF/classes. Page Flows can be added to this project in either the src/ or
web/ directory. When Page Flows are added to the src/ directory, the following Ant can
be used to build them into build/WEB-INF/classes:

<import file="../../beehive-imports.xml"/>
<import file="${beehive.home}/ant/beehive-tools.xml"/>
<property file="build.properties"/>

...

<build-pageflows srcdir="src/"
webcontentdir="web/"
destdir="build/WEB-INF/classes/"
tempdir="build/WEB-INF/.tmpbeansrc"
classpathref="webapp.classpath"/>

While unconventional, because a Page Flow is URL addressable and "owns" its JSPs it is
sometimes useful to store Page Flow files in the web/ directory. This makes it easier to
visualize the Page Flow as both the pages and the controller source file. In this case, the Ant
build changes slightly:

<import file="../../beehive-imports.xml"/>
<import file="${beehive.home}/ant/beehive-tools.xml"/>
<property file="build.properties"/>

...

<build-pageflows srcdir="web/"
webcontentdir="web/"
destdir="build/WEB-INF/classes/"
tempdir="build/WEB-INF/.tmpbeansrc"
classpathref="webapp.classpath"/>

Be careful of the dependencies between the src/ and web/ directories when adding Page
Flows to the web/ directory as building both source roots separately can be difficult they
have circular dependencies on each other.

In both of the above project layouts, the tempdir is used as a destination for artifacts
generated by the Beehive annotation processors including both resources and Java source
files. These are then compiled by the annotation processor into the classes stored in
build/WEB-INF/classes. This behavior can be changed by tweaking the build files to
build into a different temporary directory or to create a JAR for the class files. Also, the
build/ directory is often deployed to an application container during development.

2.2. Source Files in the Web Content Root

NetUI Web App Project Model

Java, J2EE, Servlet, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and

other countries.

An alternate web project layout stores Java sources in the WEB-INF/src sub-directory.
This project layout might look like:

fooWebProject/
page1.jsp
page2.jsp
WEB-INF/

web.xml
src/

Controller.java
build.xml
build.properties

When building this type of web project, classes are often generated into the
WEB-INF/classes directory and the webapp deployed from the fooWebProject
directory. This is different from the previous project models which build and deploy an
external build/ directory. The Ant used to build Page Flows in this project structure might
appear as:

<import file="../../beehive-imports.xml"/>
<import file="${beehive.home}/ant/beehive-tools.xml"/>
<property file="build.properties"/>

...

<build-pageflows srcdir="fooWebProject/"
tempdir="fooWebProject/WEB-INF/.tmpbeansrc"
classpathref="webapp.classpath"/>

The difference between this <build-pageflows> call and the previous examples is that
the webcontentdir and destdir directories are implicitly set by only using the
srcdir attribute. This causes the web project to build directly into the fooWebProject/
directory and to generate classes into fooWebProject/WEB-INF/classes.

3. Creating a new NetUI Project

A new NetUI project can be created from a Beehive distribution by running two commands
to first create a NetUI-enabled web project and then copy the Beehive runtime JARs into that
project.

cp -r <beehive-root>/samples/netui-samples <project-directory>
ant -f <beehive-root>/ant/beehive-runtime.xml
-Dwebapp.dir=<project-directory> deploy.beehive.webapp.runtime

This command will create a webapp using the project layout described here. This webapp is

NetUI Web App Project Model

© 2005, Apache Software Foundation
Page 4

Copyright © 2004 The Apache Software Foundation. All rights reserved.

essentially a copy of the <beehive-root>/samples/netui-blank web application.

4. Runtime JARs / Resources

All web applications require runtime resources. Often, these are stored in a web project's
WEB-INF/lib directory. In order to use NetUI in a J2EE web application, a variety of
JARs must be stored in this directory.

4.1. JARs

Since NetUI is built atop Struts, the Struts JARs must be present in order for the web
application to function. This table lists both the Struts and Beehive JARs; all of these JARs
are available as part of the Beehive distribution.

Name JAR file Version Required

Beehive Controls beehive-controls.jar distribution Yes

Beehive NetUI beehive-netui-core.jar distribution Yes for NetUI JSP tag
support; no otherwise

Beehive NetUI beehive-netui-tags.jar distribution No

Jakarta Commons
Bean Utils

commons-beanutils.jar 1.6 Yes

Jakarta Commons
Codec

commons-codec-1.3.jar 1.3 Yes

Jakarta Commons
Collections

commons-collections.jar 2.1.1 Yes

Jakarta Commons
Digester

commons-digester.jar 1.6 Yes

Jakarta Commons
Discovery

commons-discovery-0.2.jar0.2 Yes

Jakarta Commons EL commons-el.jar 1.0 Yes

Jakarta Commons File
Upload

commons-fileupload.jar 1.0 Yes

Jakarta Commons
Logging

commons-logging.jar 1.0.4 Yes

Jakarta Commons
ORO

jakarta-oro.jar 2.0.7 Yes

NetUI Web App Project Model

© 2005, Apache Software Foundation
Page 5

Copyright © 2004 The Apache Software Foundation. All rights reserved.

http://struts.apache.org

Jakarta Commons
Validator

commons-validator.jar 1.1.4 Yes

JSTL 1.1 jstl.jar 1.1.0-D13 Yes for JSTL tag
support; no otherwise

JSTL 1.1 standard.jar 1.1.0-D13 Yes for JSTL support;
no otherwise

Log4J log4j-1.2.8.jar 1.2.8 No

Struts struts.jar 1.2.7 Yes

Note:
For the 1.0 release, the NetUI runtime can not be shared between multiple web applications; the runtime for every web
application must be isolated inside of its own web application classloader. This is because in some cases, NetUI caches
information in statics or class instances rather than in the ServletContext.

4.2. Other Resources

NetUI also uses several additional XML files used to configure various NetUI and Struts
sub-systems. These are detailed in the table below.

Name Location Required

beehive-netui-validator-rules.xml <beehive-root>/samples/netui-blank/web/WEB-INF/Yes

validator-rules.xml <beehive-root>/samples/netui-blank/web/WEB-INF/Yes

beehive-netui-config.xml See here for more information. No (unless modified)

Also, the NetUI runtime requires a set of web.xml entries to register the Page Flow servlet,
filters, and mappings. In any NetUI-enabled web project, be sure that these entries are
present.

4.3. NetUI-enabled Web Projects and Source Control

When adding a NetUI-enabled web project to source control, all resources marked Required
in the JAR table and the resources table should be checked into SCM. In addition, the
optional resources may be required for certain features to function correctly. If a web project
uses the Beehive System Controls, those JARs should also be checked into source control.

5. Building a Web Project

When a NetUI enabled web project builds, two processing steps happen to the Page Flow

NetUI Web App Project Model

Java, J2EE, Servlet, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and

other countries.

../netui/config/beehive-netui-config.html

annotated Java files. The first is annotation processing which produces a Struts module
config file and the second is a Java class file for the Controller class. For example, given a
Page Flow in some directory:

foo/
Controller.java
page1.jsp
page2.jsp

in any of the project models above, the following artifacts will be produced by the build:

WEB-INF/classes/
foo/

Controller.class
_pageflow/

struts-config-foo.xml

By default, the Struts module config file is placed in the
WEB-INF/.pageflow-struts-generated directory and the Java class file is placed
in WEB-INF/classes/. In cases where these values need to change, the Beehive Ant
build macros are documented here.

6. Deploying a Web Project

Once built, a Beehive web project can be deployed to a Servlet container just as with any
other J2EE web application. On Tomcat, this can be done by copying the web project
directory to $CATALINA_HOME/webapps or by using the Tomcat deployer to deploy the
webapp. See your application container's documentation for details on how to deploy web
applications.

Java, J2EE, Servlet, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and

other countries.

© 2005, Apache Software Foundation

NetUI Web App Project Model

Java, J2EE, Servlet, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and

other countries.

../infra/beehive-ant-macros.html

	1 Introduction
	2 Project Layout
	2.1 Source Files peer to Web Content Root
	2.2 Source Files in the Web Content Root

	3 Creating a new NetUI Project
	4 Runtime JARs / Resources
	4.1 JARs
	4.2 Other Resources
	4.3 NetUI-enabled Web Projects and Source Control

	5 Building a Web Project
	6 Deploying a Web Project

