
Page Flow Controllers

Table of contents

1 Introduction..2

2 Starting the Controller Class..2

3 Fleshing Out the Controller... 2

3.1 Simple Actions.. 4

3.2 Action Methods... 4

3.3 Handling Forms... 8

3.4 Handling Exceptions... 11

4 Form Validation... 12

5 Next..13

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

1. Introduction

This topic explains the basics behind implementing controller files and actions. As
introduced in the previous topic (NetUI Overview) the following web application schematic
will be used.

implementation page flow

2. Starting the Controller Class

The first step to writing a controller class is to create a new basic class named
Controller.java.
public class Controller
{
}
import org.apache.beehive.netui.pageflow.PageFlowController;

public class Controller
extends PageFlowController

{
}

Additionally, Beehive weaves magic into controller classes using metadata annotations. The
@Jpf.Controller annotation is a required marker on any NetUI controller class. The
@Jpf.Controller annotation alerts the compiler that this class is a special Page Flow
controller class, instead of a typical Java class.

import org.apache.beehive.netui.pageflow.PageFlowController;
import org.apache.beehive.netui.pageflow.annotations.Jpf;

@Jpf.Controller
public class Controller

extends PageFlowController
{
}

Now we have the beginnings of a controller implementation.

3. Fleshing Out the Controller

Now that the boilerplate Controller.java is in place, we can begin to implement the
actions that determine which JSP should actually be displayed. In the above model, there are
5 actions, plus one more action required by all Controller classes, the begin method.
(Details about the begin method appear below.)

• begin

Page Flow Controllers

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

../netui/overview.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html

• login
• myPage
• signUp
• processLogin
• processSignUp

There are two basic ways to implement actions: you can implement an action either as a (1)
simple action or as an (2) action method.

Simple Actions are class-level annotations, that is, annotations that decorate the controller
class. (You can also think of simple actions as configurations of the controller class. If you
are familiar with Struts, it might help you to know that simple actions turn into <action>
elements in the struts-config.xml file that is automatically generated when a controller class
is compiled.) Syntactically they appear as follows:
@Jpf.Controller(

simpleActions={
@Jpf.SimpleAction(name="someName", path="somePage.jsp", [...other

properties...])
}

)
public class Controller
{
...
}

Simple actions can handle navigation, form submission, and form validation. If that is all
your action needs to accomplish, you should implement the action as a simple action. What
simple actions can't do is handle decision logic. If your action needs to make a decision and
conditionally execute code based on that decision, you should implement the action as an
action method.

Action Methods are Java methods that have been endowed with all of the magic of actions:
that is, they can navigate users around the page flow, handle form submissions, validate form
data, handle decision logic, etc. (You can also think of the action methods as configurations
of individual methods, in contrast to simple actions, which configure the entire class. Again,
if you are familiar with Struts, know that action methods, just like simple actions, are
complied as <action> elements in the struts-config.xml file.) Syntactically speaking, an
action method is a Java method that (1) returns the type Forward and (2) is decorated with
the @Jpf.Action annotation:
@Jpf.Action(

forwards = {
@Jpf.Forward(name="someName", path="somePath.jsp", [...other

properties...])
}

)
public Forward someMethod()

Page Flow Controllers

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

apidocs/javadoc/org/apache/beehive/netui/pageflow/Forward.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Action.html

{
...

}

3.1. Simple Actions

Three of our five actions are purely navigational, and, as such, implementable as simple
actions. Those actions are begin, login, and signUp. The remaining actions require
object oriented programming, so they will be implemented as action methods.

The simple action implementations appear below. The following @Jpf.SimpleAction
annotations define a set of mappings between action names and JSP destinations. When a
particular action is invoked, the user is carried to the corresponding JSP.

Note:
Each Controller class requires a simple action or action method named begin--without it the class will not compile. The
begin action functions as the entry-point into the page flow. In this case the begin action simply navigates the user to the
index.jsp page.

import org.apache.beehive.netui.pageflow.PageFlowController;
import org.apache.beehive.netui.pageflow.annotations.Jpf;

@Jpf.Controller(
simpleActions={

@Jpf.SimpleAction(name="begin", path="index.jsp"),
@Jpf.SimpleAction(name="login", path="login.jsp"),
@Jpf.SimpleAction(name="signUp", path="signup.jsp"),

}
)
public class Controller

extends PageFlowController
{
}

3.2. Action Methods

Now it is time to re-implement the three action methods: login, processLogin, and
processSignUp.

The myPage action must determine if the user has already authenicated himself or not and
the action must behave differently depending on the result of that determination. If the user
has already been authenticated, then the page myPage.jsp will be displayed; if the user
has not been authenticated yet, then the page login.jsp will be displayed.

We will implement this behavior in two steps: (1) first will implement a rudimentary action
method, (2) second we will add the conditional navigational behavior to the method.

Page Flow Controllers

© 2004, Apache Software Foundation
Page 4

Copyright © 2004 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.SimpleAction.html

3.2.1. Rudimentary Action Methods: Constant Forwards

An action method must have two features: (1) it must the type Forward and (2) must be
decorated with the @Jpf.Action annotation.

The first step in the re-implementation process is to remove the simple action named
mypage and replace it with a method named myPage(). By returning a Forward object,
the method indicates which page to display to the user.
import org.apache.beehive.netui.pageflow.Forward;
import org.apache.beehive.netui.pageflow.PageFlowController;
import org.apache.beehive.netui.pageflow.annotations.Jpf;

@Jpf.Controller(
simpleActions={

@Jpf.SimpleAction(name="begin", path="index.jsp"),
@Jpf.SimpleAction(name="login", path="login.jsp"),
@Jpf.SimpleAction(name="signUp", path="signup.jsp"),
@Jpf.SimpleAction(name="processLogin", path="mypage.jsp"),
@Jpf.SimpleAction(name="processSignUp", path="thanks.jsp")

}
)
public class Controller

extends PageFlowController
{

public Forward myPage()
{

...
}

}

To help with configuration and to avoid having JSP names within the body of a controller
method, Beehive once again uses annotations. The Jpf.Action and Jpf.Forward
annotations are used on each action method to build a mapping between forward names and
JSPs. The method then works only in terms of the forward name, and doesn't directly refer to
the JSP path.

The general form the of Jpf.Action/Jpf.Forward annotations are:

@Jpf.Action(
forwards = {
@Jpf.Forward(name="...", path="..."),
@Jpf.Forward(name="...", path="..."),
@Jpf.Forward(name="...", path="...")

}
)

By convention, forward names such as success and failure are used, but by no means are

Page Flow Controllers

© 2004, Apache Software Foundation
Page 5

Copyright © 2004 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/netui/pageflow/Forward.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Action.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/Forward.html

required. It is good practice, though, to avoid naming the forward based upon the JSP name
since doing so would remove some of the decoupling that Beehive applications attempt to
achieve.

import org.apache.beehive.netui.pageflow.Forward;
import org.apache.beehive.netui.pageflow.PageFlowController;
import org.apache.beehive.netui.pageflow.annotations.Jpf;

@Jpf.Controller(
...

)
public class Controller

extends PageFlowController
{

@Jpf.Action(
forwards = {

@Jpf.Forward(name="success", path="mypage.jsp")
}

)
public Forward myPage()
{

...
}

}

All that is left is a return statement to return the appropriate Forward object. This is
accomplished simply by constructing a new Forward with the appropriate name.

import org.apache.beehive.netui.pageflow.Forward;
import org.apache.beehive.netui.pageflow.PageFlowController;
import org.apache.beehive.netui.pageflow.annotations.Jpf;

@Jpf.Controller(
...

)
public class Controller

extends PageFlowController
{

@Jpf.Action(
forwards = {

@Jpf.Forward(name="success", path="mypage.jsp")
}

)
public Forward myPage()
{

return new Forward("success");
}

}

Now we have re-implemented one of our simple actions as an action method. However, our
new action method doesn't do anything more than the original simple action. The new action
method remains a purely navigational action: it is not yet capable of any decision logic and

Page Flow Controllers

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

conditional execution. In the next section we will endow the action method with conditional
navigational behavior.

3.2.2. Advanced Action Methods: Conditional Forwards

The first step in adding conditional navigational behavior is to define two forwards named
authenticated and not_authenticated, which are mapped to mypage.jsp and login.do
respectively.

import org.apache.beehive.netui.pageflow.Forward;
import org.apache.beehive.netui.pageflow.PageFlowController;
import org.apache.beehive.netui.pageflow.annotations.Jpf;

@Jpf.Controller(
...

)
public class Controller

extends PageFlowController
{

@Jpf.Action(
forwards = {

@Jpf.Forward(name="authenticated", path="mypage.jsp"),
@Jpf.Forward(name="not_authenticated", path="login.do")

}
)
public Forward myPage()
{

...
}

}

But how does the method decide which forward to invoke? In this case, the determination of
authentication is performed by checking a session attribute to see if the
authenticated_user attribute has been set.

import org.apache.beehive.netui.pageflow.Forward;
import org.apache.beehive.netui.pageflow.PageFlowController;
import org.apache.beehive.netui.pageflow.annotations.Jpf;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

@Jpf.Controller(
...

)
public class Controller

extends PageFlowController
{

@Jpf.Action(
forwards = {

Page Flow Controllers

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

@Jpf.Forward(name="authenticated", path="mypage.jsp"),
@Jpf.Forward(name="not_authenticated", path="login.do")

}
)
public Forward myPage()
{

HttpServletRequest request = getRequest();
HttpSession session = request.getSession();

if (session.getAttribute("authenticated_user") != null)
{

return new Forward("authenticated");
}

return new Forward("not_authenticated");
}

}

Now that we have a method with two possible navigation outcomes, the flow diagram
appears as follows. Notice the two named arrows exiting the myPage() method.

conditional forwards

You may notice that the body of myPage() has no particular logic regarding the JSP
"myPage.jsp" itself. It simply operates in terms of authentication and generically named
Forward objects. This presents a possibility of sharing this logic with other controller
methods that are concerned with authentication. .

3.3. Handling Forms

Handling form data works similar to other controller methods. By providing a parameter to
the controller method the HTML form data is made available to the controller method. In the
above model, controller methods that process forms have been named with the
processXXX(..) convention.

• processLogin(...)
• processSignUp(...)

First, define a JavaBean to represent the HTML form to be submitted. This JavaBean can be
of any Java type, as long as it conforms to standard JavaBean syntax.

The JavaBean may be defined (1) as a static inner class of the controller itself (see
example below) or (2) as a stand-alone Java class in a separate file. The JavaBean class
follows normal JavaBean conventions and requires no special annotations.

import org.apache.beehive.netui.pageflow.Forward;
import org.apache.beehive.netui.pageflow.PageFlowController;
import org.apache.beehive.netui.pageflow.annotations.Jpf;

Page Flow Controllers

© 2004, Apache Software Foundation
Page 8

Copyright © 2004 The Apache Software Foundation. All rights reserved.

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

@Jpf.Controller
public class Controller

extends PageFlowController
{

...

...

public static class LoginForm implements java.io.Serializable
{

private String username;
private String password;

public void setUsername(String username)
{

this.username = username;
}

public String getUsername()
{

return this.username;
}

public void setPassword(String password)
{

this.password = password;
}

public String getPassword()
{

return this.password;
}

}
}

Defining the processLogin(...) method to take a LoginForm parameter is all that is
required to have a controller method that can operate upon the submitted form.

import org.apache.beehive.netui.pageflow.Forward;
import org.apache.beehive.netui.pageflow.PageFlowController;
import org.apache.beehive.netui.pageflow.annotations.Jpf;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

@Jpf.Controller
public class Controller

extends PageFlowController
{

...

...

Page Flow Controllers

© 2004, Apache Software Foundation
Page 9

Copyright © 2004 The Apache Software Foundation. All rights reserved.

public Forward processLogin(LoginForm form)
{

...
}

public static class LoginForm
{

...

...
}

}

Once again, processLogin(...) is a conditional forward controller method. If a user
has entered a correct username and password, then they should be directed to mypage.jsp,
otherwise they will be returned back to the login.jsp for another attempt. Checking
username and password is outside of the scope of Page Flow, and in this example, we rely
upon a mythical MyAppUtils class to perform this logic.

import org.apache.beehive.netui.pageflow.Forward;
import org.apache.beehive.netui.pageflow.PageFlowController;
import org.apache.beehive.netui.pageflow.annotations.Jpf;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

@Jpf.Controller
public class Controller

extends PageFlowController
{

...

...

@Jpf.Action(
forwards = {

@Jpf.Forward(name="login_success", path="mypage.jsp"),
@Jpf.Forward(name="login_failure", path="login.jsp")

}
)
public Forward processLogin(LoginForm form)
{

if (MyAppUtils.authenticate(form.getUsername(),
form.getPassword()))

{
HttpServletRequest request = getRequest();
HttpSession session = request.getSession();

session.setAttribute("authenticated_user",
form.getUsername());

return new Forward("login_success");
}

Page Flow Controllers

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

return new Forward("login_failure");
}

}

Having fleshed out the processLogin() action method, the diagram appears as follows.

implementation page flow

Similar implementation would be done for processSignUp(...), involving another
form class such as SignUpForm.

3.4. Handling Exceptions

Suppose a new user completes the signup form and submits her user profile. But when the
profile is processed, it is discovered that the username has already been taken by another
user. What then?

A natural design choice would be to have the processSignUp action throw an exception
and then have the controller class handle the exception by returning the user to the original
signup page. The following diagram shows how you can interweave exception handling into
the page flow to further refine the paths through the flow.

page flow exception handling

You can implement exception handling using the @Jpf.Catch and
@Jpf.ExceptionHandler annotations. The @Jpf.Catch defines some exception to
handle should it arise within the controller class. @Jpf.ExceptionHandler annotation
is used to define a dedicated method for handling the exception.
@Jpf.Controller(

catches={
@Jpf.Catch(type=AccountAlreadyExistsException.class,

method="handleAccountAlreadyExistsException")
},
simpleActions={

...
}

)
public class Controller

extends PageFlowController
{

...

...

@Jpf.ExceptionHandler(
forwards={

@Jpf.Forward(name="signup", path="signup.jsp")
}

)

Page Flow Controllers

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Catch.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.ExceptionHandler.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Catch.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.ExceptionHandler.html

protected Forward
handleAccountAlreadyExistsException(AccountAlreadyExistsException ex,
String actionName, String message, Object form)

{
return new Forward("signup");

}

}

To protect a method with this error handling system, you only need to specify that the
method throws the appropriate sort of exception, in this case,
AccountAlreadyExistsException.
@Jpf.Controller(

catches={
@Jpf.Catch(method="handleAccountAlreadyExistsException",

type=AccountAlreadyExistsException.class)
},
simpleActions={

...
}

)
public class Controller

extends PageFlowController
{

...

...

public Forward processSignUp(SignUpForm form)
throws AccountAlreadyExistsException

{
...

}

@Jpf.ExceptionHandler(
forwards={

@Jpf.Forward(name="signup", path="signup.jsp")
}

)
protected Forward

handleAccountAlreadyExistsException(AccountAlreadyExistsException ex,
String actionName, String message, Object form)

{
return new Forward("signup");

}

}

4. Form Validation

For details on form validation see the topic Data Validation

Page Flow Controllers

© 2004, Apache Software Foundation
Page 12

Copyright © 2004 The Apache Software Foundation. All rights reserved.

../netui/validation.html

5. Next...

Next, learn about linking this controller class to the JSPs to allow for the interception to
occur.

• JSP Files

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

© 2004, Apache Software Foundation

Page Flow Controllers

© 2004, Apache Software Foundation
Page 13

Copyright © 2004 The Apache Software Foundation. All rights reserved.

../netui/jspOverview.html

	1 Introduction
	2 Starting the Controller Class
	3 Fleshing Out the Controller
	3.1 Simple Actions
	3.2 Action Methods
	3.2.1 Rudimentary Action Methods: Constant Forwards
	3.2.2 Advanced Action Methods: Conditional Forwards

	3.3 Handling Forms
	3.4 Handling Exceptions

	4 Form Validation
	5 Next...

