NetUI State Management and Lifecycle

Table of contents

I 1 11 0o 1T i o 1O
1.1 SEAEE MANAGEIMENT.ottt e e b e ae e et e e sae e enseesae e eabeesaeeennas
2 I 1oy o [SRR

NetU| State Management and Lifecycle

1. Introduction
1.1. State Management

1.1.1. Page Flow State M anagement

When you hit the URL for a page flow (or any of its actions, or any of its pages) for the first
time, an instance of the controller classis created and stored in the user session. By defaullt, it
staysin the session as the current page flow until you hit another page flow. This means that
while you continue to hit URLs in the page flow's URL space, it remains the current page
flow. When you do hit another page flow, the original controller instance is destroyed. In
other words, by default there is only asingle page flow controller stored in the session at one
time.

Nested page flows have special rules associated with them: when you hit a nested page flow, the current page flow is pushed
aside, and it is restored when you return from the nested page flow. Y ou can also abnormally exit a nested page flow by hitting
a"regular" (non-nested) page flow while you're still in the nested flow. In that case, the origina page flow (the one that was
pushed aside) is discarded.

The auto-cleanup of a controller instance is normally helpful in keeping your session small
and focused on the task at hand. In some cases, you may want to create a"long-lived" page
flow controller that never gets destroyed (until the session itself ends). In this case, you
simply set thel ongLi ved attributetot r ue on @pf . Control |l er:

@pf. Controller(longLived=true)
public class MyLongLi vedPageFl ow ext ends PageFl owControl | er

{

}

Now, whenever this page flow is hit for the first time, it is stored in the session, and is not
removed even when another page flow becomes the current page flow. Each time you hit the
URL for this page flow (or any of its actions, or any of its pages), the same instanceis
restored.

Y ou can remove this long-lived controller instance explicitly by calling itsr enove()
method.

1.1.2. Shared Flow State M anagement

Whenever you hit a page flow, each of its referenced shared flow controllersis created and

Page 2

../netui/nestedPageFlow.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html#longLived()
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/FlowController.html#remove
../netui/sharedFlow.html

NetU| State Management and Lifecycle

stored in the session. If a shared flow controller of the right type already exists in the session,
that instance is used instead. Once oneis created, it is not removed unless you call its
r enove() method, or PageFl owti | s. renoveShar edFl ow() .

1.1.3. State Management for JavaServer Faces" Backing Beans'

When you hit a JSF page (e.g., "/mydir/mypage.faces’), the NetUI runtime looks for a class
with the same name and package (e.g., nydi r . mypage). If this class exists, is annotated
with @ pf . FacesBacki ng, and extends FacesBacki ngBean, then aninstanceis
created and stored in the session. It is removed from the session on the next request that is
not for the same page.

See Java Server Faces for more details on JSF integration with NetUI.

1.2. Lifecycle

All NetUI-managed objects (page flow controllers, shared flow controllers, JavaServer Faces
"backing beans") are driven through alifecycle, with callbacks in the appropriate places. This
lifecycle always includes:

« 0onCreat e - when the object is created by the runtime.
« onDest r oy - when the object is"destroyed" (removed) by the runtime.

To run code at either of these pointsin the lifecycle, you simply override the appropriate
method (onCr eat e or onDest r oy), eg.,

@pf.Controller
public class MyPageFl ow ext ends PageFl owControl | er
{

protected voi d onCreate()

{

/[l do sonething to initialize this page flow controller

}
1.2.1. Controller Lifecycle

Flow controllers (page flow controllers and shared flow controllers) have additional methods
as part of their lifecycle:

 beforeAction - beforeany actionisrun.
« afterAction - after any actionisrun.

Again, to run code at either of these points, override the appropriate method, e.g.,

Page 3

apidocs/javadoc/org/apache/beehive/netui/pageflow/FlowController.html#remove
apidocs/javadoc/org/apache/beehive/netui/pageflow/PageFlowUtils.html#removeSharedFlow(java.lang.String, javax.servlet.http.HttpServletRequest, javax.servlet.ServletContext)
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.FacesBacking.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/FacesBackingBean.html
../netui/jsf.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/PageFlowManagedObject.html#onCreate
apidocs/javadoc/org/apache/beehive/netui/pageflow/PageFlowManagedObject.html#onDestroy
apidocs/javadoc/org/apache/beehive/netui/pageflow/FlowController.html#beforeAction
apidocs/javadoc/org/apache/beehive/netui/pageflow/FlowController.html#afterAction

NetU| State Management and Lifecycle

@pf.Controller
public class MyPageFl ow ext ends PageFl owControl | er

protected void beforeAction()

| og. debug("before action " + getCurrentActi onName() + ", request "
+ get Request (). get Request URI ())
}

}
Additionally, nested page flows have an additional lifecycle method:

e o0onExit Nesting - whenthe pageflow is exiting nesting (through ar et ur nAct i on
on @pf . Forward or @pf. Si npl eAction).

1.2.2. JavaServer Faces" Backing Bean" Lifecycle

JSF backing beans (extended from FacesBacki ngBean) have one additional lifecycle
method:

« onRest or e - when the backing bean is being restored (along with the page itself)
through navi gat eTo=cur r ent Page or navi gat eTo=pr evi ousPage on
@pf . Forwar d or @pf . Si npl eActi on.

Page 4

../netui/nestedPageFlow.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/PageFlowController.html#onExitNesting
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#returnAction()
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.SimpleAction.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/FacesBackingBean.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/FacesBackingBean.html#onRestore
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#navigateTo()
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.NavigateTo.html#currentPage
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#navigateTo()
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.NavigateTo.html#previousPage
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.SimpleAction.html

	1 Introduction
	1.1 State Management
	1.1.1 Page Flow State Management
	1.1.2 Shared Flow State Management
	1.1.3 State Management for JavaServer Faces "Backing Beans"

	1.2 Lifecycle
	1.2.1 Controller Lifecycle
	1.2.2 JavaServer Faces "Backing Bean" Lifecycle

