
NetUI State Management and Lifecycle

Table of contents

1 Introduction..2

1.1 State Management... 2

1.2 Lifecycle.. 3

Copyright © 2004 The Apache Software Foundation. All rights reserved.

1. Introduction

1.1. State Management

1.1.1. Page Flow State Management

When you hit the URL for a page flow (or any of its actions, or any of its pages) for the first
time, an instance of the controller class is created and stored in the user session. By default, it
stays in the session as the current page flow until you hit another page flow. This means that
while you continue to hit URLs in the page flow's URL space, it remains the current page
flow. When you do hit another page flow, the original controller instance is destroyed. In
other words, by default there is only a single page flow controller stored in the session at one
time.

Note:
Nested page flows have special rules associated with them: when you hit a nested page flow, the current page flow is pushed
aside, and it is restored when you return from the nested page flow. You can also abnormally exit a nested page flow by hitting
a "regular" (non-nested) page flow while you're still in the nested flow. In that case, the original page flow (the one that was
pushed aside) is discarded.

The auto-cleanup of a controller instance is normally helpful in keeping your session small
and focused on the task at hand. In some cases, you may want to create a "long-lived" page
flow controller that never gets destroyed (until the session itself ends). In this case, you
simply set the longLived attribute to true on @Jpf.Controller:

@Jpf.Controller(longLived=true)
public class MyLongLivedPageFlow extends PageFlowController
{

...
}

Now, whenever this page flow is hit for the first time, it is stored in the session, and is not
removed even when another page flow becomes the current page flow. Each time you hit the
URL for this page flow (or any of its actions, or any of its pages), the same instance is
restored.

You can remove this long-lived controller instance explicitly by calling its remove()
method.

1.1.2. Shared Flow State Management

Whenever you hit a page flow, each of its referenced shared flow controllers is created and

NetUI State Management and Lifecycle

Page 2
Copyright © 2004 The Apache Software Foundation. All rights reserved.

../netui/nestedPageFlow.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html#longLived()
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Controller.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/FlowController.html#remove
../netui/sharedFlow.html

stored in the session. If a shared flow controller of the right type already exists in the session,
that instance is used instead. Once one is created, it is not removed unless you call its
remove() method, or PageFlowUtils.removeSharedFlow().

1.1.3. State Management for JavaServer Faces "Backing Beans"

When you hit a JSF page (e.g., "/mydir/mypage.faces"), the NetUI runtime looks for a class
with the same name and package (e.g., mydir.mypage). If this class exists, is annotated
with @Jpf.FacesBacking, and extends FacesBackingBean, then an instance is
created and stored in the session. It is removed from the session on the next request that is
not for the same page.

See Java Server Faces for more details on JSF integration with NetUI.

1.2. Lifecycle

All NetUI-managed objects (page flow controllers, shared flow controllers, JavaServer Faces
"backing beans") are driven through a lifecycle, with callbacks in the appropriate places. This
lifecycle always includes:

• onCreate - when the object is created by the runtime.
• onDestroy - when the object is "destroyed" (removed) by the runtime.

To run code at either of these points in the lifecycle, you simply override the appropriate
method (onCreate or onDestroy), e.g.,

@Jpf.Controller
public class MyPageFlow extends PageFlowController
{

protected void onCreate()
{

// do something to initialize this page flow controller
}

...
}

1.2.1. Controller Lifecycle

Flow controllers (page flow controllers and shared flow controllers) have additional methods
as part of their lifecycle:

• beforeAction - before any action is run.
• afterAction - after any action is run.

Again, to run code at either of these points, override the appropriate method, e.g.,

NetUI State Management and Lifecycle

Page 3
Copyright © 2004 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/netui/pageflow/FlowController.html#remove
apidocs/javadoc/org/apache/beehive/netui/pageflow/PageFlowUtils.html#removeSharedFlow(java.lang.String, javax.servlet.http.HttpServletRequest, javax.servlet.ServletContext)
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.FacesBacking.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/FacesBackingBean.html
../netui/jsf.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/PageFlowManagedObject.html#onCreate
apidocs/javadoc/org/apache/beehive/netui/pageflow/PageFlowManagedObject.html#onDestroy
apidocs/javadoc/org/apache/beehive/netui/pageflow/FlowController.html#beforeAction
apidocs/javadoc/org/apache/beehive/netui/pageflow/FlowController.html#afterAction

@Jpf.Controller
public class MyPageFlow extends PageFlowController
{

protected void beforeAction()
{

log.debug("before action " + getCurrentActionName() + ", request "
+ getRequest().getRequestURI());

}

...
}

Additionally, nested page flows have an additional lifecycle method:

• onExitNesting - when the page flow is exiting nesting (through a returnAction
on @Jpf.Forward or @Jpf.SimpleAction).

1.2.2. JavaServer Faces "Backing Bean" Lifecycle

JSF backing beans (extended from FacesBackingBean) have one additional lifecycle
method:

• onRestore - when the backing bean is being restored (along with the page itself)
through navigateTo=currentPage or navigateTo=previousPage on
@Jpf.Forward or @Jpf.SimpleAction.

NetUI State Management and Lifecycle

Page 4
Copyright © 2004 The Apache Software Foundation. All rights reserved.

../netui/nestedPageFlow.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/PageFlowController.html#onExitNesting
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#returnAction()
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.SimpleAction.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/FacesBackingBean.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/FacesBackingBean.html#onRestore
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#navigateTo()
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.NavigateTo.html#currentPage
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html#navigateTo()
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.NavigateTo.html#previousPage
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.Forward.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.SimpleAction.html

	1 Introduction
	1.1 State Management
	1.1.1 Page Flow State Management
	1.1.2 Shared Flow State Management
	1.1.3 State Management for JavaServer Faces "Backing Beans"

	1.2 Lifecycle
	1.2.1 Controller Lifecycle
	1.2.2 JavaServer Faces "Backing Bean" Lifecycle

