
NetUI Overview

Table of contents

1 Introduction..2

2 Why Use NetUI?..2

3 NetUI Features... 2

4 The Logical Flow...5

5 The Implementation of the Flow: Controllers and Actions .. 5

6 Next..7

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

1. Introduction

NetUI is the piece of Beehive used to build the front-end of a web application. It contains
two pieces: Page Flow and a powerful set of JSP tags.

2. Why Use NetUI?

Simply put, NetUI (Page Flow and a powerful set of JSP tags) helps you build a
well-structured web application using a simple programming model.

First, because NetUI is an MVC framework (built on Apache Struts), it separates
navigational control from presentation. This avoids:

• Limited reuse of navigational/flow logic.
• Cluttered, hard-to-maintain JSP source code.
• Difficulty in understanding the flow of an application.
• Unintended exposure of controller-logic code to team members who focus on other

aspects of web development, such as content writers and visual designers.

Second, NetUI provides the Page Flow programming model which allows you to create
modular "page flows" that can be inserted (and reused) inside of other flows. At root, it
unifies the controller logic, state, and metadata for a piece of your application into a single
class. On the View side, it offers a rich set of tags, such as the Tree and the Datagrid .

3. NetUI Features

NetUI makes building Java web applications easy and intuitive. When building applications
with NetUI, the developer writes Java classes and pages --that's it. There is very little
occasion to work with configuration files, or other components. NetUI also excels at
separating presentation logic from data processing logic, resulting in uncluttered JSP code
which is easy to understand and edit. Data processing and the web application configurables
are handled in a single Java class using a simple declarative programming model.

Declarative Programming

Many common web app programming tasks are accomplished through a declarative
programming model using "annotations", a new feature in Java 5. Annotations put
configuration information (in general, "metadata") right alongside your code, alleviating the
need for independent configuration files. Navigation, exception handling, validation, and
other tasks are all defined in a single Java class: the Page Flow "controller" class that drives a
piece of your web application.

NetUI Overview

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

http://struts.apache.org
../netui/tags/tree.html
../netui/tags/datagrid.html

Stateful Page Flows

When a user enters a page flow (by hitting an URL in the page flow's URL space), an
instance of the page flow's controller class is created. While the user is in the page flow, the
controller instance simply stores the flow-related state in member variables. Methods within
the class -- particularly action methods and exception handlers -- have access to the member
state. By default, the state is automatically cleaned up when the user leaves the page flow to
enter another one. This behavior can be configured per-page flow, but auto-cleanup helps
keep your session small, and focused on the task at hand.

Modular Page Flows

A single web application can have multiple page flows within it, allowing you to break up
the application into separate, self-contained chunks of functionality. For an example, see the
Petstore Sample , which has different page flows for browsing the Petstore, buying products,
and handling user accounts.

Inheritance and Shared Flow

Page Flow inheritance is a powerful way to share actions, exception handlers, configuration,
etc. among controller classes. It is normal Java inheritance, plus the ability to inherit/merge
annotations.

Shared Flow provides an alternative way to make actions and exception handlers available to
multiple page flows. The feature is useful for accessing shared state, for shared/templated
user interface, and when you cannot change your controller class hierarchy.

Nested Page Flows

An entire page flow can be inserted, or "nested", inside of another page flow. At its heart,
nesting is a way of pushing aside the current page flow temporarily and transferring control
to another (nested) page flow with the intention of coming back to the original one. Nesting
is useful when you want to do one of the following tasks:

• gather data from the user, for use in the current page flow;
• allow the user to correct errors or supply additional information en route to executing a

desired action;
• show an alternate view of data represented in the current page flow;
• bring the user through a "wizard";
• show the user information that will be useful in the current page flow (e.g., help screens

can be easily implemented as nested page flows); and
• in general, to further break up your application into separate (and in many cases reusable)

pieces.

NetUI Overview

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

../samples/petstore.html
../netui/pageFlowInheritance.html
../netui/sharedFlow.html
../netui/nestedPageFlow.html

NetUI also offers special integration between nested page flows and popup windows.

Declarative Exception Handling and Validation

Exception handling and data validation are accomplished through a declarative programming
model. The desired exception handling and validation behaviors are declared in the controller
class (and additionally on form bean classes, for validation) alongside your Java code in the
form of metadata annotations. This allows for single file editing and eliminates the need for
separate configuration files.

Powerful JSP Tags

NetUI provides three tag libraries: (1) one library represents the core HTML tags, (2) another
renders data grids and complex data sets as HTML, and (3) a third library provides page
templating functionality.

The NetUI tags also support data binding (1) to JSP implicit objects (through the JSP 2.0
Expression Language) and (2) to other NetUI implicit objects. Note that many tags possess
read-write access to these implicit objects.

First-class Integration with JavaServer Faces

NetUI has solid integration with JavaServer Faces. It treats JSF as a first-class view tier,
where, for example, JSF components and command handlers can raise Page Flow actions,
can databind to NetUI implicit objects, etc.

Struts Integration

Page Flow is built on top of Apache Struts 1.1. Each Page Flow controller is compiled into a
Struts module. As a result, NetUI and Struts applications can work closely together.

Struts modules and page flows can co-habitate and interact with one another inside a web
app. To forward from a page flow to a (pure) Struts module, simply reference the desired
action within the Struts module. The same goes for the reverse direction: from a Struts
module, simply configure an action to point to the desired method in the page flow.

You can also use the Struts merge feature to read configuration data from a pure Struts app
into your Page Flow app's configuration files. Ordinarily, your Page Flow's configuration
files are generated entirely from your application's JAVA source files (specifically from the
metadata annotations that decorate the controller classes). But, in cases where you want to
integrate a Struts module into your application, you can specify that the configuration files be
generated from both the JAVA source files and the Struts module's configuration files,
allowing you to change or add any tag in the generated configuration file. For example,
suppose you want to override an action form's default scoping from request-scoping to

NetUI Overview

© 2004, Apache Software Foundation
Page 4

Copyright © 2004 The Apache Software Foundation. All rights reserved.

../netui/popupWindows.html
../netui/actions.html
../netui/validation.html
../netui/tags/index.html
../netui/databinding.html
../netui/jsf.html

session-scoping. To do this, you simply create a Struts configuration file that overrides the
appropriate parts of the Page Flow's configuration file, and then refer to this override file
from within the Page Flow's JAVA source file (= the controller class) using a special
annotation. In particular, you would specify the override file to state that such-and-such an
action form should have session-scope rather then request-scope (so that the action form can
now be shared with the Struts app).

4. The Logical Flow

Writing traditional web applications without a Page Flow controller class requires a fair
amount of logic to be applied within the application's pages. For example, a site that provides
a "My Page" functionality for logged in users would have to include logic on the home page
to determine if the "My Page" link should take the user to the login form or directly to their
customized page.

Using a page flow, the home page of the application would not link directly to either the
login page or the user's "My Page" location, but rather would point back into Java code that
makes the decision.

For the rest of this overview, the following logical page flow will be used:

logical page flow

This flow supports several routes from the home page of the application to the user's "My
Page":

1. The user may directly navigate from index.jsp to mypage.jsp (by clicking a link),
if the user is already logged in.

2. If the user is not already logged in, attempts to navigate from index.jsp to
mypage.jsp will be intercepted and the user will be taken to the login.jsp instead.
After successfully logging in, the user will be automatically taken to mypage.jsp

3. The user may directly navigate from index.jsp to login.jsp (by clicking a link).
After logging in, the user will be automatically taken to mypage.jsp .

In the event of a login failure, login.jsp will be redisplayed to give them another
opportunity to authenticate themselves.

4. If the user desires to register with the site, he can click a link that will take him to
signup.jsp . One signed up, the thanks.jsp will be displayed which offers a link
to the login.jsp page.

5. The Implementation of the Flow: Controllers and Actions

NetUI Overview

© 2004, Apache Software Foundation
Page 5

Copyright © 2004 The Apache Software Foundation. All rights reserved.

In the above logical flow there are several if statements that cause the user flow to vary
depending on their previous actions and other state.

• If the user is not logged in...
• If the user is logged in...
• If the user's login attempt fails...

NetUI moves this condition logic out of the JSPs and into a Java class that controls the
movement through the application. This Java class is the controller portion of the
Model-View-Controller (MVC) pattern. This allows a page to be written, for example, that
appears to link directly from the home page of the application to the user's "My Page". The
controller is given the opportunity to intercept the navigation between the two and redirect
the user to the login page, if required.

Each of the interception points is an action of the particular controller class. Actions perform
common application tasks. Here are some of the things that an action can do:

• navigate the user to a specified JSP
• perform conditional logic
• handle submitted data
• validate submitted data
• handle exceptions that arise in the application

Note that controller classes, and the actions they contain, are URL addressable . Hitting the
following URL creates an instance of the controller class foo.MyControllerClass and
runs its begin action. (When no other action is specified, the begin method is run by
default.)
http://some.domain.com/foo/MyControllerClass.java

Hitting the following URL creates an instance of foo.MyControllerClass (if it doesn't
already exist) and invokes the someAction action. Note that the controller class isn't
mentioned by name: it's assumed that only one controller class exists in the directory, so
there is only one candidate controller class to instantiate.
http://some.domain.com/foo/someAction.do

Note:
To make a Page Flow controller handle a default directory URL, e.g.,

http://some.domain.com/myApp/myPageFlow
you will need to add the page flow's URL to the welcome-file-list in /WEB-INF/web.xml :

<welcome-file-list>
<welcome-file>Controller.jpf</welcome-file>
<welcome-file>index.jsp</welcome-file>

</welcome-file-list>
This would cause the following URL to be hit for the above example:

http://some.domain.com/myApp/myPageFlow/Controller.jpf
On some servers (like Tomcat), you would also need to make sure that a file called Controller.jpf also exists in the web
content under /myPageFlow , even though the class myPageFlow.Controller actually handles the request. (The file

NetUI Overview

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

can be blank.)

Actions may perform any required complex logic. For example, if a user clicks on the "My
Page" link, the action may check if the user is logged in, and if so, navigate the user to the
mypage.jsp page; otherwise it will navigate the user to the login.jsp page.

With normal HTML pages, each page is linked directly to other pages.

• page > page > page > page

When using page flows, pages and actions are interwoven, transparently.

• page > action > page > action > page > action > page

The above logical page flow can be redrawn with Page Flow controller actions in mind, as:

implementation page flow

Now it is apparent that to navigate from index.jsp to mypage.jsp , the user traverses
across the myPage action. This action performs the necessary check to determine if the user
has already been authenticated. If the user has logged in already, it will direct the user
straight to mypage.jsp ; otherwise it will direct the user to login.jsp .

6. Next...

Next, learn about writing a controller class with actions.

• Controller Classes

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

© 2004, Apache Software Foundation

NetUI Overview

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

../netui/pageFlowControllers.html

	1 Introduction
	2 Why Use NetUI?
	3 NetUI Features
	4 The Logical Flow
	5 The Implementation of the Flow: Controllers and Actions
	6 Next...

