
The JMS Control Developer's Guide

Table of contents

1 Overview: Messaging Systems and JMS...2

1.1 Understanding Messaging Systems...2

1.2 Using JMS Queues for Point-to-Point Messaging...2

1.3 Using JMS Topics for Publish-and-Subscribe Messaging.. 3

1.4 Connection Factories and Transactions...3

2 JMS Control Annotations.. 3

2.1 JMS Control Class-level Annotations... 3

2.2 JMS Control Method Annotations...4

2.3 JMS Control Method Parameter Annotations... 5

3 JMS Control Methods.. 6

4 Header Types... 7

5 Creating a JMS Control... 7

6 Specifying the Message Body..9

6.1 Selecting the Message Type.. 9

6.2 Sending and Receiving a Simple Text Message..9

6.3 Sending and Receiving an XML Message using XMLBeans....................................... 9

7 Specifying Message Headers and Properties... 11

7.1 Accessing Message Headers..11

7.2 Accessing Message Properties.. 11

Copyright © 2004 The Apache Software Foundation. All rights reserved.

1. Overview: Messaging Systems and JMS

A JMS control makes it easy for your application to communicate with messaging systems.
To better understand how to use a JMS control, it helps to understand messaging systems and
how JMS control interact with them.

1.1. Understanding Messaging Systems

Messaging systems provide communication between software components. A client of a
messaging system can send messages to, and receive messages from, any other client. Each
client connects to a messaging server that provides facilities for sending and receiving
messages. Codehaus's ActiveMQ which is a component of the Apache Geronimo project, is
an example of a messaging server.

Messaging systems provide distributed communication that is asynchronous. This means that
a component sends a message to a destination and a message recipient can retrieve messages
from a destination, but the sender and receiver do not communicate directly. The sender only
knows that a destination exists to which it can send messages, and the receiver also knows
there is a destination from which it can receive messages. As long as they agree what
message format and what destination to use, the messaging system manages the actual
message delivery.

Messaging systems also provide reliability for message delivery. The specific level of
reliability is typically configurable on a per-destination or per-client basis, but messaging
systems are capable of guaranteeing that a message will be delivered, and that it will be
delivered to each intended recipient exactly once.

JMS supports two basic styles of message-based communications: point-to-point and
publish-and-subscribe. Each is described in greater detail below.

1.2. Using JMS Queues for Point-to-Point Messaging

Point-to-point messaging is accomplished with JMS queues, which are specific named
resources configured in a JMS server. A JMS client, of which the JMS control is an example,
sends messages to a queue or receives messages from a queue.

Point-to-point messages have a single consumer. Multiple receivers can listen for messages
on the same queue, but once any receiver retrieves a particular message from the queue that
message is consumed and is no longer available to other potential consumers.

The messaging system continues to resend a particular message until a predetermined
number of retries have been attempted. Once the message is received, a message consumer

The JMS Control Developer's Guide

Page 2
Copyright © 2004 The Apache Software Foundation. All rights reserved.

acknowledges receipt.

1.3. Using JMS Topics for Publish-and-Subscribe Messaging

Publish-and-subscribe messaging is accomplished with JMS topics. A topic is a specific
named resource configured in a JMS server.

A JMS client, of which the JMS control is an example, publishes messages to a topic, or
subscribes to a topic. Published messages have multiple potential subscribers. All current
subscribers to a topic receive all messages published to that topic after the subscription
becomes active.

1.4. Connection Factories and Transactions

Before a JMS client can send or receive messages to a queue or topic, it must obtain a
connection to the messaging system, via a connection factory. A connection factory is a
resource that is configured by the message server administrator. The names of connection
factories are stored in a JNDI directory, where clients wishing to make a connection can look
them up.

Unless otherwise specified the default initial context is used. This may be overridden by
settng the jndiContextFactory and jndiProviderUrl properties, either
programically using the setJndiContextFactory() and setJndiProviderUrl()
setters or via the corresponding @Destination attributes.

2. JMS Control Annotations

2.1. JMS Control Class-level Annotations

The JMSControl.Destination annotation defines the destination of the message, the
message type and connection related attributes. The attributes defined for this annotation are:

Attribute Value Required Description

sendJndiName String Yes JNDI name of the
queue or topic.

sendCorrelationProperty String No The correlation
property to be used for
message sent. Default
is empty, which
signifies that the JMS
correlation header is to
be used.

The JMS Control Developer's Guide

Page 3
Copyright © 2004 The Apache Software Foundation. All rights reserved.

connectionFactoryJndiNameString Yes JNDI name of the
connection factory.
Required

transacted boolean No True if en-queuing is
under transactional
semantics of the
enclosing container.
Default is true.

acknowledgeMode enum
AcknowledgeMode

No The acknowledgement
strategy, one of Auto,
Client, DupsOk.
Default is Auto.

sendType JMSControl.DestinationTypeNo Values are Auto,
Queue and Topic. If
Auto, then the type is
determined by the
destination named by
the sendJndiName
attribute. Default is
Auto.

jndiContextFactory String No The class name of the
jndi-context-factory.
Default is none.

jndiProviderURL String No The provider URL for
JNDI. Default is none.

2.2. JMS Control Method Annotations

Methods added to a JMS control that send messages may be annotated with the following
annotations:

Annotation Value Description

JMSControl.Message JMSControl.MessageType
(enum)

Enum values are: Auto, Text,
Bytes, Object, Map and
JMSMessage

JMSControl.Priority int A JMS priority (0-9). Defaults to
provider's default priority.

JMSControl.Expiration long A JMS expiration in
milliseconds. Default's to
provider's default expiration.

The JMS Control Developer's Guide

Page 4
Copyright © 2004 The Apache Software Foundation. All rights reserved.

JMSControl.Delivery JMSControl.DeliveryMode
(enum)

This attribute determines the
delivery mode of the message.
Defaults to the JMS provider's
default delivery mode. Enum
values are: NonPersistent,
Persistent and Auto

JMSControl.Type String Specifies the JMS type.

JMSControl.CorrelationId String Specifies the JMS correlation
id.

JMSControl.Properties JMSControl.PropertyValue[] One or more string/int/long
valued properties to be added
to the message.
PropertyValue has the string
valued attributes 'name', 'value'
and class valued 'type'. The
allowed values for 'type' are
String.class, Integer.class and
Long.class. If type is not
specified, then String is
assumed.

Notes for the JWSControl.MessageType enumerated value:

• If not specified or no message-type string, then the default is Auto.
• If Auto, then the type of JMS message is determined by the type of the body passed in;

rules for determining these types are:
• If the body is a String or XmlObject, a TextMessage is sent.
• If the body is a byte[], a StreamMessage is sent.
• If the body is a Map, a MapMessage is sent
• If the body is a JMSMessage, a JMSMessage is sent
• Otherwise if the body is Serializable, an ObjectMessage is sent.
• Any other type results in a control exception.

2.3. JMS Control Method Parameter Annotations

These annotations denote which parameter is to be the body of the message and zero or more
properties to be set in the message respectively. The following annotations my be used on
method parameters:

Annotation Value Description

JMSControl.Property String The parameter contains the
value of the property.

The JMS Control Developer's Guide

Page 5
Copyright © 2004 The Apache Software Foundation. All rights reserved.

JMSControl.Priority int A JMS priority (0-9). If not
specifed the method-level
annotation is used; if
method-level annotation has
not been specified the default
for the JMS provider is used.

JMSControl.Expiration long JMS expiration in milliseconds.
If not specified the
method-level annotation is
used; if method-level
annotation has not been
specified the default for the
provider is used.

JMSControl.Delivery JMSControl.DeliveryMode The DeliveryMode valued
parameter determines the
delivery mode of the message.
If not specified, then the
method-level annotation is
used; else the default for the
provider is used.

JMSControl.Type String The JMS type.

JMSControl.CorrelationId String The JMS correlation id.

3. JMS Control Methods

A JMS control always includes the following methods:

Method Description

getSession() Get the queue/topic session.

getDestination() Get the queue/topic destination.

getConnection() Get the queue/topic connection.

setHeaders(Map) Sets the JMS headers to be assigned to the next
JMS message sent. Note that these headers are
set only on the next message, subsequent
messages will not get these headers. Also note
that if the body is a message itself, then any
header set through this map will override
headers set in the message. The keys should be
of type HeaderType or equivalent strings. See
table below for valid values.

The JMS Control Developer's Guide

Page 6
Copyright © 2004 The Apache Software Foundation. All rights reserved.

setHeader(HeaderType,Object) Sets a JMS header to be assigned to the next
JMS message sent. Note that this header is set
only on the next message, subsequent
messages will not get this header. Also note that
if the body is a message itself, then the header
set here will override the header set in the
message.

setProperties(Map) Sets the JMS properties to be assigned to the
next JMS message sent. Note that these
properties are set only on the next message,
subsequent messages will not get these
properties. Also note that if the next message is
sent through a publish method, then any
property set through this map will override
properties set in the message itself.

setProperty(String,Object) Set the given JMS property to be assigned to
the next JMS message sent. Note that this
property is set only on the next message,
subsequent messages will not get this property.
Also note that if the body is a message itself,
then the property set here will override the
property set in the message.

The methods of the extension control-classes correspond to sending a message to a
topic/queue, e.g.
send<message-type>(...)

4. Header Types

The table below defines the valid values for header types passed into setHeader() or
setHeaders():

JMS Message Method HeaderType/String Allowed Value Types

setJMSType() JMSType String

setJMSCorrelationID() JMSCorrelationID String or byte[]

setJMSExpiration() JMSExpiration String valued long or Long

setJMSPriority() Priority String valued int or Integer

5. Creating a JMS Control

The JMS control is an extensible control. Before a JMS Control can be used in an

The JMS Control Developer's Guide

Page 7
Copyright © 2004 The Apache Software Foundation. All rights reserved.

application, a sub-interface of the
org.apache.beehive.controls.system.jms.JmsControl interface must be
created and annotated with @ControlExtension.

@ControlExtension
public interface SampleQueue

extends JMSControl {
...
}

A JMS control needs to know the destination of the messages it will send. This is
accomplished using a JNDI context. Unless otherwise specified the default initial context is
used. This may be overridden by settng the @Destination annotation's
jndiContextFactory and the jndiProviderUrl attributes.

The queue/topic destination is then obtained using the value of the sendJndiName
attribute of the @Destination annotation. A queue/topic connection is obtained using by
the jndiConnectionFactory attribute. In most cases the same connection factory is
used for both queues and topics.

The @Destination.sendType attribute may be used to constrain the use of the control
to either a topic or a queue. By default its value is Auto which allows for run-time
determination of whether the sendJndiName names a queue or a topic. By setting it to
Queue or Topic a run-time check is made to see if the connection factory and destination is
of the correct type.

The extension interface can include one or more methods that send messages. These methods
must have at least one parameter that corresponds to the body of the message. Other
annotated parameters can defined to provide property values and other information at
run-time to the message. The method itself can be annotated as well.

In the example below, the OrderQueue control class has one submitOrder() method that takes
an Order object as the body and a string that sets the 'DeliverBy' property in the
javax.jms.ObjectMessage to be sent to the queue.orders JMS queue.

@ControlExtension
@JMSControl.Destination(sendJndiName="queue.orders",jndiConnectionFactory="weblogic.jws.jms.QueueConnectionFactory")
public interface OrderQueue extends JMSControl
{

public class Order implements java.io.Serializable
{

public Order()
{

}

The JMS Control Developer's Guide

Page 8
Copyright © 2004 The Apache Software Foundation. All rights reserved.

public Order(int buyer,String[] list)
{

buyerId = buyer;
itemList = list;

}
private int buyerId;
private String[] itemList;

}

public void submitOrder(Order order,@Property(name="DeliverBy") String
deliverBy);
}

6. Specifying the Message Body

This section describes some of the ways in which you can specify the body of a message sent
via the JMS control.

6.1. Selecting the Message Type

A JMS control can send text messages (including XML messages), byte array messages,
object messages, and javax.jms.Message (JMS Message) objects. These are the types defined
by the JMS messaging service specification.

When you create a JMS control, you can specify which type of message it sends and receives
with the JMSControl.Message.messageType() annotation.

You have complete control over the send methods, as long as you are sending a message of a
supported type; you can modify method signatures as you need to, including adding
additional parameters to handle message headers and properties. However, you can only
specify one parameter in the method for the message body.

6.2. Sending and Receiving a Simple Text Message

The simplest message body is a text message. The following example shows a simple text
message sent to the messaging service via a JMS control:

public void sendString(String msg) throws Exception
{
myJMSControl.sendTextMessage(msg);
}

6.3. Sending and Receiving an XML Message using XMLBeans

The JMS Control Developer's Guide

Page 9
Copyright © 2004 The Apache Software Foundation. All rights reserved.

If you need to send a set of values in the message body, you can construct the message body
using an XMLBeans object type. Apache XMLBeans technology generates a set of Java
classes from an XML schema (.xsd) file. You can then use these classes to work with XML
documents in your code.

If you don't already have a schema file, you can construct one by hand, or you can generate
one from an XML document or fragment using a third-party authoring tool. Once you've
generated the XMLBeans classes from the schema file, you can import those classes into
your JMS control class. You can then modify the send method or receiving callback on the
JMS control to send or receive a message of the appropriate type.

Note that XMLBeans messages are transmitted as JMS text messages. When you create a
JMS control that will use an XMLBeans type for the message body, specify the type as with
the JMSControl.Message.messageType() annotation as 'Text'.

The following is a simple JWS Control which sends an XML message:

import java.util.Date;

import org.apache.beehive.controls.api.bean.ControlExtension;
import org.apache.beehive.controls.system.jms.JMSControl;
import org.apache.xmlbeans.XmlObject;

@ControlExtension
@JMSControl.Destination(sendJndiName="jms.SampleQueue",jndiConnectionFactory="weblogic.jws.jms.QueueConnectionFactory")
public interface SampleQueue extends JMSControl
{

/**
* Submit an xml object (org.apache.xmlbeans) as a text message.
* @param document the document.
* @param type the message JMS type.
*/
public void submitXml(XmlObject document,@Type String type);

/**
* Submit an xml object (org.apache.xmlbeans) with JMS type

"xmlObject".
* @param document the document.
*/
@Message(MessageType.Text)
@Type("xmlObject")
public void submitXml(XmlObject document);

/**
* Submit an already constructed message
* @param message the jms-message.
*/
public void submitMessage(Message message);

}

The JMS Control Developer's Guide

Page 10
Copyright © 2004 The Apache Software Foundation. All rights reserved.

7. Specifying Message Headers and Properties

The JMS control includes properties for setting and retrieving headers and properties on a
JMS message.

7.1. Accessing Message Headers

A JMS message includes a number of header fields that contain information used to identify
and route messages. You can set the message headers for an outgoing message using the JMS
control by using the JMSControl.setHeaders(Map) method or the
JMSControl.setHeader(HeaderType, Object) method. The supported headers
for an outgoing message are:

• JMSCorrelationID
• JMSExpriation
• Priority
• JMSType

For more information on these headers, see the Sun JMS specification.

7.2. Accessing Message Properties

A JMS message can also include properties that you or the message sender can add to send
additional information about the message. You can think of them as optional, custom
headers. Properties can be of type boolean, byte, short, int, long, float, double, or string. They
can be set when a message is sent. You can add as many properties to the message as you
need to.

You can set the properties of messages sent using the JMS control by using the
JMSControl.setProperties(Map) or the
JMSControl.setProperty(String, Object) methods.

When the JMS control is sending a message, the JMS control adds the properties specified to
the outgoing message. You can optionally specify that a parameter passed to the method that
sends the message should be substituted as a property value on the message.

The JMS Control Developer's Guide

Page 11
Copyright © 2004 The Apache Software Foundation. All rights reserved.

	1 Overview: Messaging Systems and JMS
	1.1 Understanding Messaging Systems
	1.2 Using JMS Queues for Point-to-Point Messaging
	1.3 Using JMS Topics for Publish-and-Subscribe Messaging
	1.4 Connection Factories and Transactions

	2 JMS Control Annotations
	2.1 JMS Control Class-level Annotations
	2.2 JMS Control Method Annotations
	2.3 JMS Control Method Parameter Annotations

	3 JMS Control Methods
	4 Header Types
	5 Creating a JMS Control
	6 Specifying the Message Body
	6.1 Selecting the Message Type
	6.2 Sending and Receiving a Simple Text Message
	6.3 Sending and Receiving an XML Message using XMLBeans

	7 Specifying Message Headers and Properties
	7.1 Accessing Message Headers
	7.2 Accessing Message Properties

