
EJB Control Developer's Guide

Table of contents

1 Overview..2

2 EJB Control Annotations... 2

2.1 The EJBHome Annotation.. 2

2.2 The JNDIContextEnv Annotation... 3

3 EJB Control Methods...4

4 Accessing EJBs on a Different Server... 4

5 Creating an EJB Control.. 5

6 Using an EJB Control.. 5

7 Selecting Instances for Session EJBs...7

7.1 Creating a Session EJB..7

7.2 Caching a Session EJB Reference...7

7.3 Removing a Session EJB...8

8 Selecting Instances for Entity Beans..8

8.1 Creating an Entity EJB.. 8

8.2 Referencing an Entity EJB.. 8

8.3 Caching an Entity EJB Reference... 8

8.4 Removing an Entity EJB... 9

8.5 Returning Multiple Records.. 9

9 Handling EJB Exceptions.. 9

9.1 Checked Exceptions.. 9

9.2 Runtime Exceptions...10

9.3 A Nested Exception Example..10

Copyright © 2004 The Apache Software Foundation. All rights reserved.

1. Overview

To access the capabilities of an Enterprise JavaBean (EJB) without an EJB control, several
preparatory operations must be performed. You must look up the EJB in the JNDI registry,
obtain the EJB's home interface, obtain an EJB instance, and then finally invoke methods on
the EJB's remote interface to perform tasks.

The EJB control eliminates all of this preparatory work. Once you have created the EJB
control, a web service or page flow can use the control to access the EJB's business methods
directly. The EJB control manages communication with the EJB, including all JNDI lookup,
interface discovery and EJB instance creation and management.

In short, EJB controls provide an alternative approach that makes it easy to use an existing,
deployed EJB from within an application. EJB controls supports interaction with two of the
three types of EJBs, that is, session beans and entity beans. The EJB control does not support
direct communication with message-driven EJBs.

Note: Requests for messages can be sent indirectly to message-driven EJBs using the JMS
control instead. However, unlike the EJB control, the JMS control is not used to locate and
reference an existing message-driven EJB. For more information, see JMS Control.

To create an EJB control to represent an EJB, you must know the names of the home and
business interfaces. The name for the home interface is typically of the form
com.mycompany.MyBeanNameHome or
com.mycompany.MyBeanNameLocalHome, and the business interface is typically of
the form com.mycompany.MyBeanName or com.mycompany.MyBeanNameLocal.
The EJB control uses either the EJB's local interfaces or the remote interfaces.

2. EJB Control Annotations

2.1. The EJBHome Annotation

EJBHome is a required class-level annotation used to specify the target EJB's home interface
for the EJB control. Either the jndiName or ejbLink attribute must be specified.

Member Name Value Type Value Required Description

jndiName String No Specifies the JNDI
name of the target
EJB's home interface
(e.g. EJBNameHome).
This value may also be
an URL using the

EJB Control Developer's Guide

Page 2
Copyright © 2004 The Apache Software Foundation. All rights reserved.

"JNDI:" protocol (e.g.
jndi://username:password@host:port/EJBNameHome).

ejbLink String No Specifies the name of
the target EJB using
the application relative
path to the EJB JAR.
This syntax causes the
runtime to use an
application scoped
name when locating
the referenced EJB.
The naming syntax is
BeanName#EJBJAR
(e.g.
CreditCard#CustomerData.jar).

2.2. The JNDIContextEnv Annotation

JNDIContextEnv specifies the environment properties for the JNDI context that will be used
to lookup the target EJB. It is an optional class-level annotation for the EJB Control.

If using a URL with the "JNDI:" protocol or to use a JNDI context with the default
envirnoment properties, this annotation is not necessary.

Member Name Value Type Value Required Description

contextFactory String No The fully qualified class
name of a JNDI
context factory. If not
set the default
InitialContext will be
used and none of the
other attribute values
of this annotation will
be used.

providerURL String No The provider URL.
Used only if
contextFactory
attribute has been set.

principal String No Specifies the identity of
the principal for
authenticating the
caller to the service.
Used only if the
contextFactory

EJB Control Developer's Guide

Page 3
Copyright © 2004 The Apache Software Foundation. All rights reserved.

attribute has been set.

credentials String No Specifies the
credentials of the
principal for
authenticating the
caller to the service.
Used only if the
contextFactory
attribute has been set.

3. EJB Control Methods

The following methods are supported by the EJB Control:

Method Description

getEJBHomeInstance() Returns an instance of the home interface
associated with the target bean component.

hasEJBHomeInstance() Returns true if the EJB control currently has a
target bean instance upon which bean business
interface methods may be invoked. This will be
true after a successful create() or single
select finder method execution, or in cases
where implicit creation or find has occurred by
the control on the control users behalf. This
provides a simple way to procedurally check the
status of explicit or implicit bean instance
creation or find operations.

getEJBBeanInstance() Returns the current target instance of the bean
business interface used for business interface
method invocations. This API is provided for
advanced use cases were direct access to the
local/remote interfaces outside of the control is
required. It will return null if no target instance
is currently selected.

getEJBException() Returns the last EJB exception serviced by the
EJB control on the developers behalf. This can
be used to discover or log additional information,
for example when a create or find method is
unable to locate a target bean instance.

4. Accessing EJBs on a Different Server

EJB Control Developer's Guide

Page 4
Copyright © 2004 The Apache Software Foundation. All rights reserved.

You can access EJBs on a different server with an EJB control, provided the server hosting
the EJB control and the server to which the target EJB is deployed are in the same domain.
You access EJBs on a different server by using special JNDI syntax in the EJBHome
annotation's jndiName attribute.

For example:

@EJBHome(jndiName="jndi://username:password@host:7001/my.resource.jndi.object")

You can also use environment properties to specify configuration information, such as:

@EJBHome(jndiName="jndi://host:7001/MyEJBHome?SECURITY_PRINCIPAL=me&SECURITY_CREDENTIALS=passwd")

5. Creating an EJB Control

The EJB Control is an extensible control, and you do not use it directly. To create an EJB
control for an EJB, you would create a control extending the EJB Control. An extended EJB
control can only represent one EJB, so you must create one for each EJB.

The following steps should be observed:

1. Create a Java interface extending the appropriate EJB Control interface. If the EJB is a
session bean, extend
org.apache.beehive.controls.system.ejb.SessionEJBControl, if it
is an entity bean, extend
org.apache.beehive.controls.system.ejb.EntityEJBControl.

2. Annotate the Java interface with @ControlExtension
(org.apache.beehive.controls.api.bean.ControlExtension), so the
Control Annotation Processor will know that the Java interface is a control extension.

3. Have the Java interface also extend the EJB's home and business interfaces. The business
interface may either by the EJB's local interface or the remote interface.

4. Specifiy how the EJB control should lookup the EJB. To lookup the EJB by its JNDI
name, set the EJB control's @EJBHome.jndiName annotation to the EJB's JNDI name.
To lookup the EJB using an EJB link, set the EJB control's @EJBHome.ejbLink
annotation to the name of the EJB link.

5. If the EJB control uses JNDI to look up an EJB, optionally specify the JNDI context
environment properties using the @JNDIContextEnv annotation.

6. Using an EJB Control

After you have created an EJB Control, you can invoke an target EJB method via the EJB
control. Specifically, the EJB control exposes all and only the EJB methods defined in the

EJB Control Developer's Guide

Page 5
Copyright © 2004 The Apache Software Foundation. All rights reserved.

EJB interfaces that the control extends. You can invoke these methods simply by invoking
the method with the same signature on your EJB control.

The EJB control automatically manages locating and referencing the EJB instance, and
directs method invocations to the correct instance of the target EJB. Whether or not you must
first create an instance of the target EJB using the EJB's create method depends on whether
the EJB control references a session or an entity bean.

Here is an example of the code required to invoke a single method on an exposed EJB using
standard J2EE APIs:

Trader trader = null;
try {

InitialContext ic = new InitialContext();
TraderHome home = (TraderHome)ic.lookup("MyTraderBean");
trader = home.create();
TradeResult tradeResult = trader.buy(stock, shares);
return tradeResult;

}
catch (NamingException e) {

...
}
catch (CreateException e) {

...
}
catch (RemoteException e) {

...
}
finally {

if (trader != null)
trader.remove();

}

The code can be reduced to the following using the EJB Control:

@Control
TraderControlBean traderControl;

try {
TradeResult tradeResult = traderControl.buy(stock, shares);
return tradeResult;

}
catch (RemoteException re) {

...
}
finally {

if (traderControl != null)
traderControl.remove();

}

EJB Control Developer's Guide

Page 6
Copyright © 2004 The Apache Software Foundation. All rights reserved.

7. Selecting Instances for Session EJBs

A session EJB is used to execute business tasks for a client on the application server. The
session EJB might execute only a single method for a client, in the case of stateless session
beans, or it might execute several methods for that same client, in the case of stateful session
beans. A session bean never serves multiple clients at the same time. The lifetime of a
stateful session bean is tied to the duration of the conversation with the client. In contrast, a
small number of pooled stateless session bean instances is used to serve large number of
client requests.

7.1. Creating a Session EJB

If the target EJB is a stateless session bean, you do not need to invoke the create method of
the EJB via the EJB control. Instead, the EJB control automatically creates a reference to an
appropriate instance of the EJB whenever one of the EJB's business methods is invoked, as is
shown in this code fragment:

@Control()
private EJBControls.MusicBeanControl library;
...
// create method is not invoked first
allBands = library.getBands();

If the target EJB is a stateful session bean you must first invoke (one of) its create method(s)
to obtain a reference.

7.2. Caching a Session EJB Reference

After a reference is obtained, it is cached in the EJB control and is used for any subsequent
calls to the EJB within the method invocation in which the initial call was made. If for a
stateless session bean you explicitly call the create method, or if for a stateful session bean
you again call a create method, the EJB control replaces a previously cached reference with
the newly created reference.

The lifetime of the cached EJB reference within the EJB control depends on the invoking
application and the type of session bean. If a stateful session EJB is invoked by a
conversational web service (that is, a web service method that takes part in a conversation),
the EJB reference's lifetime is the lifetime of the conversation. If a stateful or stateless
session EJB is invoked by a non-conversational web service, the lifetime of the EJB
reference in the EJB control is the lifetime of the web service method invocation. For page
flows and both stateful and stateless session EJBs, if the session EJB is defined in the
controller class, the lifetime of the reference is the lifetime of the page flow.

EJB Control Developer's Guide

Page 7
Copyright © 2004 The Apache Software Foundation. All rights reserved.

7.3. Removing a Session EJB

When you call the remove method on an EJB control that represents a session EJB, the
currently cached instance of the bean is released. The server might destroy the bean at that
time, but the actual behavior is up to the server. Either way, the bean no longer
communicates with the EJB control.

8. Selecting Instances for Entity Beans

Instances of entity EJBs are associated with a particular collection of data. Typically this
collection of data is a row in a database table.

8.1. Creating an Entity EJB

When you invoke the EJB's create method through the EJB control, you create a new
persistent entity, that is, a new record in the underlying database table. In other words,
creating a new entity bean with the create method amounts to inserting a new record in a
table.

8.2. Referencing an Entity EJB

You can reference an entity EJB instance by calling the findByPrimaryKey method, or
another findXxx method provided by the EJB's designer that returns a reference to one entity
bean. In other words, the entity bean instance represents an existing record in a database
table.

8.3. Caching an Entity EJB Reference

The EJB control caches a reference to the EJB instance being used, that is, the instance
returned by the most recent call to the create, findByPrimaryKey or findXxx method,
which returns one data record. When you invoke subsequent methods on the EJB control, it
invokes that method on the EJB instance to which the cached reference refers. If there is no
EJB reference currently cached, the EJB control attempts to invoke the
findByPrimaryKey method with the last successful key used in a create or
findByPrimaryKey call. If there is no previous key, the EJB control throws an
exception.

The lifetime of the cached entity EJB reference within the EJB control depends on the
invoking application. If the entity EJB is invoked by a conversational web service (that is, a
web service method that takes part in a conversation), the EJB reference's lifetime is the
lifetime of the conversation. For non-conversational web services, the lifetime of the EJB

EJB Control Developer's Guide

Page 8
Copyright © 2004 The Apache Software Foundation. All rights reserved.

reference in the EJB control is the lifetime of the web service method invocation. For page
flows, if the entity EJB is defined in the controller class, the lifetime of the reference is the
lifetime of the page flow.

8.4. Removing an Entity EJB

When you call the remove method on an EJB control that represents an entity EJB, the record
represented by the cached EJB reference is removed from the underlying persistent storage.
That is, the row is deleted from the database table.

8.5. Returning Multiple Records

A findXxx method may return a Collection object, holding a set of references to entity beans.
The EJB control does not cache this object. If you wish to cache the return value of a
findXxx method, you should store the object in a member variable of the application
invoking the EJB control.

9. Handling EJB Exceptions

The EJB control makes it easy to use an existing, deployed EJB from within an application.
This topic describes how to handle exceptions that might be thrown by the target EJB or the
EJB control itself.

9.1. Checked Exceptions

If the target EJB method invoked via an EJB control throws a checked exception (that is, an
exception that does not extend a RuntimeException), a try-catch block must catch the
exception. It is generally considered a best practice to catch exceptions that occur within the
EJB method (thrown by other methods the EJB method uses), and either overcome the
exception or, when this is impossible, rethrow these exceptions either as an application
exception or an EJBException, depending on whether the failure is due to a system-level or
business logic error, and whether the transaction should be automatically rolled back.

An application exception is a checked exception that is either defined by the bean developer
and does not extend a RemoteException, or is predefined in the javax.ejb package (that is,
CreateException, DuplicateKeyException, FinderException, ObjectNotFoundException, or
RemoveException). The EJB's method explicitly defines any application exception in the
throws statement, and a try-catch block must catch the exception.

If the EJB control uses the EJB control's remote interfaces, a RunTimeException or an
EJBException thrown by the EJB method is nested by the EJB container inside a

EJB Control Developer's Guide

Page 9
Copyright © 2004 The Apache Software Foundation. All rights reserved.

RemoteException, and the RemoteException is propagated to the client. Because a
RemoteException is a checked exception, the client must catch the exception. For more
information on RemoteException, see your favorite J2EE reference documentation or the
J2SE API documentation at http://java.sun.com. An example of catching a RemoteException
is given below.

9.2. Runtime Exceptions

A java.lang.RuntimeException and its subtypes, including EJBException, can be thrown by
an EJB method via its corresponding EJB control. Although these exceptions do not have to
be explicitly caught in your code, it is generally a good idea to catch these exceptions in the
client application invoking an EJB control, which uses the EJB's local interfaces. (Remember
that for remote interfaces, the EJBException is rethrown by the EJB container as a
RemoteException.)

As mentioned above, a checked exceptions caught in a bean method is often rethrown as an
EJBException. You can checked for such a nested exception by invoking the getCause() or
getCausedByException() methods on the caught EJBException. An example of nesting and
catching an exception through EJBException is given below.

The EJB control will throw a
org.apache.beehive.controls.api.ControlException when it has a
problem locating/referencing the EJB. Although this is a subtype of RuntimeException and
therefore does not have to be caught explicitly, it again might be a good idea to catch it in the
client application.

9.3. A Nested Exception Example

The following example demonstrates the rethrowing of a checked exception inside an
EJBException by an EJB method, and the catching of this exception on the client side.
Rethrowing the exception inside an EJBException in the example is done solely to illustrate
the mechanics of exception handling, and should not be considered recommended design. As
mentioned above, checked exceptions should be rethrown either as an application exception
or an EJBException, depending on whether the failure is due to a system-level or business
logic error, and whether the transaction should be automatically rolled back.

The first code snippet shows the definition of the MusicBean method addRecording. Notice
that FinderException, which can be thrown by findByPrimaryKey, is rethrown inside an
EJBException, and that CreateException, which can be thrown by the BandBean's business
method addThisRecording, is rethown inside an EJBException:

public void addRecording(String band, String recording)

EJB Control Developer's Guide

Page 10
Copyright © 2004 The Apache Software Foundation. All rights reserved.

{

try {
Band bandBean = bandHome.findByPrimaryKey(new BandPK(band));
if(bandBean != null) {

bandBean.addThisRecording(recording);
}

}
catch(CreateException ce) {

throw (EJBException) new EJBException(ce).initCause(ce);
}
catch(FinderException fe) {

throw (EJBException) new EJBException(fe).initCause(fe);
}

}

On the client side, the MusicBean's method is invoked via an EJB control, and an
EJBException is caught and checked. If the client uses an EJB control that locates the EJB
via its local interfaces, you can catch the EJBException directly and retrieve the nested
exception. The following code snippet shows how this is done in a page flow's action
method, using an EJB control that locates the EJB via its local interfaces:

@Control()
private EJBControls.MusicBeanControl library;

...

@Jpf.Action(
forwards = {

@Jpf.Forward(name="success", path="addRecording.jsp")
}

}
protected Forward addARecording(AddARecordingForm form)
{

String recording = (form.getRecordingName()).trim();
String bandChoice = form.getSelectedBand();
if(recording.length() != 0) {

try {
library.addRecording(bandChoice, recording);
allRecordings = library.getRecordings(bandChoice);

}
catch(EJBException ee) {

Exception ne = (Exception) ee.getCause();
if(ne.getClass().getName().equals("FinderException"))

...
else if(...)

...
}

}
...
return new Forward("success");

}

EJB Control Developer's Guide

Page 11
Copyright © 2004 The Apache Software Foundation. All rights reserved.

If the client uses an EJB control that references the EJB via its remote interfaces, you must
catch the RemoteException instead and retrieve its nested exception. The following code
snippet shows how this is done:

@Control()
private EJBControls.RemoteMusicBeanControl remoteLibrary;

...

@Jpf.Action(
forwards = {

@Jpf.Forward(name="success", path="addRecording.jsp")
}

}
protected Forward addARecording(AddARecordingForm form)
{
String recording = (form.getRecordingName()).trim();
String bandChoice = form.getSelectedBand();
if(recording.length() != 0) {

try {
remoteLibrary.addRecording(bandChoice, recording);
allRecordings = library.getRecordings(bandChoice);

}
catch(RemoteException re) {

EJBException ee = (EJBException) re.getCause();
Exception ne = (Exception) ee.getCause();
...

}
}
...
return new Forward("success");

}

EJB Control Developer's Guide

Page 12
Copyright © 2004 The Apache Software Foundation. All rights reserved.

	1 Overview
	2 EJB Control Annotations
	2.1 The EJBHome Annotation
	2.2 The JNDIContextEnv Annotation

	3 EJB Control Methods
	4 Accessing EJBs on a Different Server
	5 Creating an EJB Control
	6 Using an EJB Control
	7 Selecting Instances for Session EJBs
	7.1 Creating a Session EJB
	7.2 Caching a Session EJB Reference
	7.3 Removing a Session EJB

	8 Selecting Instances for Entity Beans
	8.1 Creating an Entity EJB
	8.2 Referencing an Entity EJB
	8.3 Caching an Entity EJB Reference
	8.4 Removing an Entity EJB
	8.5 Returning Multiple Records

	9 Handling EJB Exceptions
	9.1 Checked Exceptions
	9.2 Runtime Exceptions
	9.3 A Nested Exception Example

