
Sorting and Filtering in a Data Grid

Table of contents

1 Overview..2

2 Sorts... 2

2.1 Data grid Support for Sorting.. 3

2.2 Sorting a Data Set..3

2.3 Creating a Sort...4

3 Filters... 4

3.1 Data grid Support for Filtering.. 5

3.2 Creating a Filter...6

3.3 Filtering a Data Set..6

Copyright © 2004 The Apache Software Foundation. All rights reserved.

1. Overview

The NetUI data grid JSP tags support maintaining and displaying UI based on an abstract set
of sorts and filters applied to a data set. Sorts and filters are Java objects that can be created
manually or can be inferred from state that is encoded in a URL. These objects represent an
abstract notion of a sort and filter that are not coupled to any specific query language. As
such, they can be used to programmatically sort or filter a data set or to parameterize a query
string in a specific query language like SQL, XQuery, EJB-QL, and so on.

The data grid is related to sorting and filtering, but the data grid itself does not actually sort
or filter a data set. While this feature could be supported in the future, the goal of sorts and
filters are to support loose coupling of the process used to sort and filter while allowing the
data grid to track the states of sorts and filters. The data grid supports sorts and filters through
setting CSS class names on columns that are sorted and filtered and by supporting UI
gestures -- such as clicking on a column header -- to sort and filter data. Because the sort and
filter information is exposed from the DataGridState object, the JSP 2.0 expression language
can be used to configure the user interface based on the sort, filter, and paged state of a data
set displayed in a data grid.

This document describes the structure of sort and filter objects and discusses how they can be
created, used to sort a data set, and how they relate to the data grid. A concrete example that
demonstrates some of the sort and filter features can be found in a Beehive sample available
in samples/netui-samples/web/ui/datagrid/sortandfilter. This sample demonstrates the data
grid's support for sorting data by clicking on a grid's header cell and for filtering data using
an HTML form.

For the sake of concrete descriptions, this documentation applies abstract Sort and Filter
objects to SQL in order to make the examples interesting. It is possible to build a mapping
from the Sort and Filter objects to any other query language.

2. Sorts

A data grid sort is represented by the Sort class which has several properties:

Property Name Description

sortExpression The sort expression is a String that describes
the data to be sorted.

sortDirection The sort direction is an enumeration value that
describes the order in which data should be
sorted. In the general case, this is one of
ASCENDING or DESCENDING.

Sorting and Filtering in a Data Grid

Page 2
Copyright © 2004 The Apache Software Foundation. All rights reserved.

datagrid.xml
../apidocs/javadoc/org/apache/beehive/netui/databinding/datagrid/api/DataGridState.html
../apidocs/javadoc/org/apache/beehive/netui/databinding/datagrid/api/sort/Sort.html
../apidocs/javadoc/org/apache/beehive/netui/databinding/datagrid/api/sort/SortDirection.html#ASCENDING
../apidocs/javadoc/org/apache/beehive/netui/databinding/datagrid/api/sort/SortDirection.html#DESCENDING

In more concrete terms, a sort expression of "name" and sort direction of
SortDirection.ASCENDING could be used to produce a SQL ORDER BY fragment
like ORDER BY name ASC.

2.1. Data grid Support for Sorting

The data grid JSP tags can be used to manipulate the sort state for a data grid in a URL. This
allows a URL to explicitly describe the sort appearance of a data grid and makes for easy,
transparent bookmarking. A sort is often applied to a column in a data grid and can be
specified by setting the sortExpression attribute for any data grid headerCell tag.
By default, a sort can be activated by clicking on a column's header in the rendered data grid;
this will cycle the sorted state through a series of states from NONE to ASCENDING to
DESCENDING. The change in state can be observed by watching the URL. By default, a
sort appears in the URL as:
netui_sort=<namespace>;(|-)<sortExpression>

The namespace is taken from the data grid's name attribute in order to scope a sort to a
particular data grid. The sort expression is explicitly in the parameter value; the default sort
direction is ASCENDING unless a - is present to change the sort direction to
DESCENDING.

The list of Sort(s) available on the URL can be read using a DataGridState object that
parses state information from a query string and can return the list of states. This can be done
using the following code:
DataGridState dataGridState =
DataGridStateFactory.getInstance(httpServletRequest).getDataGridState("<namespace>");
List sorts = dataGridState.getSortModel().getSorts();

Although the data grid may use a sort expression, the data will not be sorted until code
executes to actually sort the data. The data grid does not automatically sort data. In order to
sort data, controller code must be implemented to apply Sort objects to a data grid.

The sort state of a particular sort expression can also be used to configure the styles of a data
grid column's header cell and data cells. When a column is sorted, it will render a sorted
style for both the header and data cells.

2.2. Sorting a Data Set

Sorts must be manually applied to a data set in order to cause data to be sorted in a particular
direction. This sorting can be implemented in several ways including converting a Sort object
into a query language fragment and letting a query engine sort a data set or manually writing
code to sort a data set. To convert Sort(s) into a query language fragment, a converter must
be built to produce the fragment from the Sort(s). A simple SQL converter called

Sorting and Filtering in a Data Grid

Page 3
Copyright © 2004 The Apache Software Foundation. All rights reserved.

../apidocs/javadoc/org/apache/beehive/netui/databinding/tags/datagrid/DataGrid.html#setName()
../apidocs/javadoc/org/apache/beehive/netui/databinding/datagrid/api/DataGridState.html

SQLSupport can be used for this purpose. A sort of the form
netui_sort=customers;-customerid will be converted into a SQL fragment of the form
ORDER BY customerid DESC using the code:
List sorts = dataGridState.getSortModel().getSorts();
String sort = SQLSupport.getInstance().createOrderByClause(sorts);

A list of Sort(s) can also be used to manually filter a data set, particularly when sorting on a
single sort expression (column of data). In this case, a reasonably sized data set can be sorted
in-memory quickly using a custom Comparator and the
java.util.Collections.sort(...) method. An example of this is available in the
data grid sort / filter sample in the distribution.

2.3. Creating a Sort

Sort objects can also be created programmatically. When creating a Sort object manually, the
Sort object should be created from the DataGridConfig object for a data grid. The
DataGridConfig object is used as a configuration object that can be used in its default state or
can be extended to provide, extend, or change the operation of the data grid. In most cases,
the DataGridConfig object can be created with:
DataGridConfig dataGridConfig = DataGridConfigFactory.getInstance();

And, the DataGridConfig can be used to create a Sort with:
Sort sort = dataGridConfig.createSort();

Once a Sort is created, it can be configured by setting its JavaBean properties and can be
applied to a data set as described here.

3. Filters

A data grid filter is represented by the Filter JavaBea which has several properties:

Property Name Description

filterExpression The filter expression is a String that describes a
property from the data set to filter.

filterOperation A query language specific representation of a
filter operation. A filter operation may provide an
operator that is used when building a query
string. For example, some languages may
represent equals as '=' or as 'eq'.

filterOperationHint A query language neutral hint of the type
operation to perform. Not all operation hints will
be supported for all query languages.

Sorting and Filtering in a Data Grid

Page 4
Copyright © 2004 The Apache Software Foundation. All rights reserved.

../apidocs/javadoc/org/apache/beehive/netui/databinding/datagrid/runtime/sql/SQLSupport.html
../apidocs/javadoc/org/apache/beehive/netui/databinding/datagrid/api/DataGridConfig.html
../apidocs/javadoc/org/apache/beehive/netui/databinding/datagrid/api/filter/Filter.html

typeHint A hint provided to describe the type of the filter
value to a query engine. This is needed in order
to correctly build a query string describing a filter
or to correctly filter a value of a particular type.
For example, when building a filter expression
for a String, the String value may need to be
wrapped in quotes to be interpreted by a query
engine.

value The value of an operation that provides a
constraint to a fliter. For example, when filtering
to a specific integer value, this is the value of
that integer.

The filter operation hint can be one of many values that represent filtering options such as:

• EQUAL
• GREATER_THAN
• IS_ONE_OF
• STARTS_WITH
• CONTAINS

As a concrete example, a filter on a value of "companyname" with an operator of "contains"
and a value "wheel" with type String could be used to produce a SQL WHERE clause like
WHERE companyname LIKE '%wheel%'.

3.1. Data grid Support for Filtering

The data grid's support for filtering is different than that for sorting; the data grid itself does
not provide logic for filtering and instead has the ability to mark a column of data as filtered
and leaves the construction of filter UI to the developer. A common pattern for building filter
UI is to provide an embedded filter form or a filter pop-up that implements filter logic. A
data grid header cell can be linked to a filter expression using the filterExpression attribute
on the headerCell.

The data grid APIs support reading filter information that is encoded in the URL. One benefit
of adding this information to a query string as query parameters is that a filtered data grid can
be bookmarked, which can make it easy to return to a specific view into a data set. The
default format for filters in the URL is:
netui_filter=<namespace>;<filterExpression>~<filterOperation>~<value>

The namespace of the filter is taken from the data grid's name attribute, and the filter's
expression, operation type, and value are encoded in the remainder of the query parameter.
The filters on a URL query string can be read using a DataGridState which is used to
manage a grid's state from some state source. The filters can be extracted from the query

Sorting and Filtering in a Data Grid

Page 5
Copyright © 2004 The Apache Software Foundation. All rights reserved.

../apidocs/javadoc/org/apache/beehive/netui/databinding/datagrid/api/filter/FilterOperationHint.html#EQUAL
../apidocs/javadoc/org/apache/beehive/netui/databinding/datagrid/api/filter/FilterOperationHint.html#GREATER_THAN
../apidocs/javadoc/org/apache/beehive/netui/databinding/datagrid/api/filter/FilterOperationHint.html#IS_ONE_OF
../apidocs/javadoc/org/apache/beehive/netui/databinding/datagrid/api/filter/FilterOperationHint.html#STARTS_WITH
../apidocs/javadoc/org/apache/beehive/netui/databinding/datagrid/api/filter/FilterOperationHint.html#CONTAINS
../apidocs/javadoc/org/apache/beehive/netui/databinding/tags/datagrid/DataGrid.html#setName()
../apidocs/javadoc/org/apache/beehive/netui/databinding/datagrid/api/DataGridState.html

string using the following code:
DataGridState dataGridState =
DataGridStateFactory.getInstance(httpServletRequest).getDataGridState("<namespace>");
List filters = dataGridState.getFilterModel().getFilters();

Filters can be placed on the URL by JavaScript in the page or by extending the data grid
itself to support filtering.

3.2. Creating a Filter

Filter objects can be created programmatically and applied to a data set either manually or by
converting Filter{s) into query fragments to be executed by a query engine. A
DataGridConfig object can be used get a factory that can provide a Filter object for a
specific type of data grid. This can usually be created with:
DataGridConfig dataGridConfig = DataGridConfigFactory.getInstance();

And, the DataGridConfig can be used to create a Filter with:
Filter filter = dataGridConfig.createFilter();

This Filter object can be configuerd usints its JavaBean properties to set the expression,
type hint, value, and operation hint. Then, the filter can be used to filter a data set as
described in here

3.3. Filtering a Data Set

Once a set of Filter objects have been obtained, they can be used to filter a data set by using a
query engine or by manually filtering a data set. A query engine can be used by converting a
set of Filter objects into a fragment of a query string. For example, a filter can be configured
and converted into a SQL WHERE clause WHERE companyname LIKE '%wheel%'
using the following code:
// create the DataGridConfig object for a grid

DataGridConfig dataGridConfig =
DataGridConfigFactory.getInstance();

// configure the filter
Filter filter = dataGridConfig.createFilter();
filter.setFilterExpression("companyname");

filter.setOperation(SQLSupport.mapFilterHintToOperation(FilterOperationHint.CONTAINS);
filter.setTypeHint(FilterTypeHint.STRING);
filter.setValue("wheel");
List filterList = new LinkedList();
filterList.add(filter);

// create the WHERE clause
String whereClause =

SQLSupport.getInstance().createWhereClause(filters);

Sorting and Filtering in a Data Grid

Page 6
Copyright © 2004 The Apache Software Foundation. All rights reserved.

../apidocs/javadoc/org/apache/beehive/netui/databinding/datagrid/api/DataGridConfig.html

Note:
If the Filter(s) are encoded in the URL, the Filter creation / configuration above can be replaced by the code to parse filters
from the query string.

Notice that the type hint is explicitly specified in the example above; the type of the
companyname could be read from a relational database's DatabaseMetaData object, but this
is a very expensive way to determine the type of a column of data. Once the where clause has
been obtained, it can be used to parameterize a SQL query statement.

It is also possible to programmatically filter a data set. As an example, a simple set of filter
predicate objects are available in the Beehive sample listed above. In this case, the filters are
created manually, and a data set is filtered in-memory to provide a subset matching the filter
criteria that should be rendered.

Sorting and Filtering in a Data Grid

Page 7
Copyright © 2004 The Apache Software Foundation. All rights reserved.

	1 Overview
	2 Sorts
	2.1 Data grid Support for Sorting
	2.2 Sorting a Data Set
	2.3 Creating a Sort

	3 Filters
	3.1 Data grid Support for Filtering
	3.2 Creating a Filter
	3.3 Filtering a Data Set

