
Tree Tags

Table of contents

1 Introduction..2

2 Simple Example... 2

2.1 Simple Example Code... 2

2.2 Simple Sample Lifecycle...4

3 Tag and Classes..4

3.1 Tag to Class Mapping..5

3.2 ITreeRootElement... 5

4 Tree Features..6

4.1 runAtClient.. 6

4.2 expandOnServer.. 7

4.3 TreeElement Rendered Contents...7

4.4 Using a Custom TreeRenderer Implementation.. 9

Copyright © 2004 The Apache Software Foundation. All rights reserved.

1. Introduction

The following topic explains the tree tags and classes and how they are used to create and
render trees. A tree is rendered in an HTML page based upon an object representation of the
tree. NetUI defines a set of classes which create the tree structure which is rendered. The
object representation may be created either through NetUI JSP tags found in a JSP or may be
created programmatically in a page flow or shared flow. This means that there are parallel
representations of a tree. In a JSP, a set of JSP tags represent the tree. This representation is
then transformed into a tree data structure defined by a set of tree classes.

2. Simple Example

This section presents a sample of the most basic tree. The tree is created in a JSP and
displays a simple tree on the page. The tree itself has a root node with three children. The
root may be expanded and collapsed. Any of the tree nodes may be selected.

2.1. Simple Example Code

simpleTree.jsp

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-html-1.0"
prefix="netui"%>
<netui:html>

<head>
<title>SimpleTree</title>
<netui:base/>

</head>
<netui:body>

<netui:tree dataSource="pageFlow.simpleTree"
selectionAction="postback" tagId="tree">

<netui:treeItem expanded="true">
<netui:treeLabel>0</netui:treeLabel>
<netui:treeItem>

<netui:treeLabel>0.0</netui:treeLabel>
</netui:treeItem>
<netui:treeItem>0.1</netui:treeItem>
<netui:treeItem>0.2</netui:treeItem>

</netui:treeItem>
</netui:tree>

</netui:body>
</netui:html>

The <netui:tree> tag is the JSP tag that adds a tree to the page. It is responsible for
rendering the tree in the generated HTML page. In this example, the contents of the tree itself
are also defined in the <netui:tree> tag by using the <netui:treeItem> tags and

Tree Tags

Page 2
Copyright © 2004 The Apache Software Foundation. All rights reserved.

nesting them in a tree structure. In this simple case, the tree has a root (0) with three children
(0.0, 0.1, and 0.2).

There are three required attributes on the <netui:tree> tag, dataSource, tagId and
selectionAction. The dataSource is used to bind to a TreeElement based data
structure representing the tree to be displayed. The selectionAction is the action that
will be called when a node is selected in the tree. In some cases, it may also be called when a
node in the tree is expanded or collapsed. In addition, the tagId attribute is also required. If
runAtClient is true then you must also specify the name of the tree by setting the
tagId.

Note: In the example above, the leaf nodes are defined in two manners. The first child (0.0)
uses the <netui:treeLabel> to set the nodes label. The next two children (0.1 and 0.2)
are defined with the label as the body of the <netui:treeItem>. The
<netui:treeItem> supports setting the label value from the body of the
<netui:treeItem> if it is a leaf in the tree. You are required to use the
<netui:treeLabel> for all interior nodes or nodes with children. In other words,
<netui:treeItem> does not support mixed content; meaning that interior nodes must
use <netui:treeLabel> to set the label value and all text inside the body is ignored.

Controller.jpf

package simpleTree;

import org.apache.beehive.netui.pageflow.PageFlowController;
import org.apache.beehive.netui.pageflow.annotations.Jpf;
import org.apache.beehive.netui.tags.tree.TreeElement;

@Jpf.Controller(
simpleActions={

@Jpf.SimpleAction(name="begin", path="simpleTree.jsp"),
@Jpf.SimpleAction(name="postback", path="simpleTree.jsp")

}
)
public class Controller

extends PageFlowController
{

private TreeElement _simpleTree;

public TreeElement getSimpleTree() {
return _simpleTree;

}

public void setSimpleTree(TreeElement _simpleTree) {
this._simpleTree = _simpleTree;

}
}

Tree Tags

Page 3
Copyright © 2004 The Apache Software Foundation. All rights reserved.

This very simple Page Flow controller supports displaying a tree. There is a single property
"simpleTree" which holds a reference to a TreeElement. This TreeElement represents
the root of the underlying tree object structure which is rendered by the <netui:tree>
tag. There are two actions defined, the standard begin action and the postback action.
The postback action is called when a selection or expansion link is selected in the
rendered tree.

2.2. Simple Sample Lifecycle

This section describes the basic tree lifecycle using the SimpleTree example above. The
following figure represents the basic lifecycle of a tree being rendered by a <netui:tree>
tag.

Tree Tag Lifecycle

The dataSource attribute is a required attribute on all trees. It binds to an instance of a
TreeElement (defined in org.apache.beehive.netui.tags.tree). All trees
are represented as tree data structure with a single root. The dataSource attribute binds to
this root.

When the <netui:tree> tag begins processing it checks to see if the variable bound to by
the dataSource is equal to null. If it is, then the tree will process it's body content to
create the tree data structure. If the dataSource is not null, then that tree's data structure is
used to render content. If you want to programmatically (or dynamically) create a tree, you
may create the tree structure before the bound variable is accessed. Typically this would be
done in the onCreate method of a shared flow or page flow.

In the simpleTree sample, the first time the page is displayed the body of the tree tag is
processed because the page flow's property simpleTree is null. This creates the initial tree
data structure which is then rendered. When the page is requested again, for example when a
tree element is selected, the tree data structure created on the first request continues to be
used and the body of the <netui:tree> tag is ignored.

Note: A very common development task is to iteratively develop the <netui:tree>'s
body content. In order for any changes to be reflected when the tree is rendered, the variable
bound to by dataSource must be null. It is common to add an action to the page flow that
will reset the value to null and call that from a link on a page. If variable is not null, changes
to the JSP will not be reflected in the rendered tree.

3. Tag and Classes

This section describes the primary JSP tags and how they relate to the classes which define

Tree Tags

Page 4
Copyright © 2004 The Apache Software Foundation. All rights reserved.

the underlying data structure representing the tree. All of the tree features are available both
in the tree tags as well as the underlying tree classes (described below).

3.1. Tag to Class Mapping

There are a number of JSP tags that allow creation of tree through JSPs. These tags build the
underlying data structures representing the tree. This section describes the mapping between
the JSP tags and the actual classes that represent the tree.

Note: in many cases, this document describes setting attributes on the tree JSP tags to enable
features. In reality, the attributes are passed through to the TreeElement class which
usually has a corresponding property. Other tags map their values to properties of the
TreeElement. If you are programmatically creating a tree by building the tree hierarchy
using TreeElements, you directly set properties on the tree classes.

The following list describes the mapping of the tree JSP tags to underlying tree classes:

• Tree -- The <netui:tree> tag doesn't create a TreeElement. It binds to a
TreeElement representing the root of the tree data structure. The <netui:tree>
tag does create the initial TreeRenderState object representing how the tree is
rendered.

• TreeItem -- The <netui:treeItem> tag will create a TreeElement. If the
<netui:treeItem> is the root of a tree, then the TreeRootElement will be
created.

• TreeLabel -- The <netui:treeLabel> tag sets the value of the label which is
stored as a property of a TreeElement. Using this tag is required for non-leaf nodes.
For leaf nodes the body content of the <netui:treeItem> will be used as the label
value as long as that body does not contain other JSP tags (mixed content).

• TreeContent -- The <netui:treeContent> tag sets the value of the content for a
TreeElement. The content is a property of the TreeElement.

• TreeProperyOverride -- The <netui:treePropertyOverride> tag is used
to override various attributes on the tree such as the selection action and images. This tag
will create an InheritableState object and set it on the TreeElement.

• TreeHtmlAttribute -- The <netui:treeHtmlAttribute> tag is used to set
additional attributes on the HTML generated when rendering the node. This tag will
create a TreeHtmlAttributeInfo class that is set on the TreeElement.

3.2. ITreeRootElement

In the SimpleTree example above, we described the tree data structure as being a hierarchy of
TreeElement nodes. Many advanced features, including runAtClient, of the tree require
the root of the tree to implement the interface ITreeRootElement. The class

Tree Tags

Page 5
Copyright © 2004 The Apache Software Foundation. All rights reserved.

TreeRootElement extends TreeElement and implements ITreeRootElement,
providing a default implementation. In the SimpleTree example, when the body of the
<netui:tree> is processed, the root <netui:treeItem> is created as a
TreeRootElement and all other <netui:treeItem>'s are created as
TreeElements.

The following features require the root element in a tree to implement
ITreeRootElement:

• runAtClient -- Allows the tree to be expanded and collapsed on the client without
round trips to the server.

• Root Images -- Allows setting different expand and collapse images on the root node of
the tree.

The following additional state is tracked by the root element:

• Selection -- Direct access to the currently selected tree element.
• Tree State -- Access to the InheritableState and TreeRenderState defined on the tree

(explained below).
• Images -- Allows different expand and collapse images to be set on the root supporting

the Root Images feature.

4. Tree Features

This section describes the basic features of the NetUI Tree. The SimpleTree example
introduces the basic mechanics for creating a tree in a page flow. A tree is output into the
HTML page as a hierarchy of TreeElements. The SimpleTree example renders the
following:

Tree Tag Display

The root of the tree supports expanding and collapsing. The children of a node appear at the
same level. Trees appear commonly in applications such as file system explorers and are
good at representing limited hierarchical data sets.

4.1. runAtClient

The <netui:tree> tag has an attribute runAtClient which when set to true will
enabled expanding and collapsing the tree on the client without server round trips. When
runAtClient is on, the tree will be completely rendered into the generated HTML. Client side
JavaScript will then collapse and expand nodes when the user interacts with the tree. The
following image describes the interactions between the server and client.

Flow of the tree when runAtClient is true

Tree Tags

Page 6
Copyright © 2004 The Apache Software Foundation. All rights reserved.

runAtClient uses XmlHttpRequest to update the underlying state on the server as the user
interacts with the tree on the client. This mode requires JavaScript and XmlHttpRequest
support in the client browser. This mode of operation is commonly referred to as AJAX
(Asynchronous JavaScript and XML). It minimizes the amount of information sent between
the client and server when the user is exploring the tree itself.

In the diagram above, when the tree is rendered, all of the nodes will be rendered into the
HTML document generated. JavaScript on the client will then process the tree when the
HTML document is loaded. The JavaScript will turn off display of tree nodes which are
collapsed so that the tree appears in the expected state. As the user interacts with the tree by
expanding and/or collapsing nodes, JavaScript will continue to turn on and off the display of
tree nodes (and their children). In order to update the state of the tree stored on the server, the
client also use XmlHttpRequest to send messages to the server indicating the nodes that are
being expanded and collapsed. The next full server request will display the tree properly
because the internal state has been updated as the user interacted with the tree.

4.2. expandOnServer

When a tree has the runAtClient attribute set, then individual elements can indicate that
they need to be expanded on the server by setting the expandOnServer attribute on the
<netui:treeItem> tag. When expandOnServer is enabled, if the node is in a
collapsed state, the node itself will be rendered in the generated HTML, but all children
nodes will not. When the user expands the node, an XmlHttpRequest is made to the server
and the children (and possibly their children) will be rendered into HTML and sent back to
the client. JavaScript will update the DOM and cause the children to be displayed. Once the
children are received, all further expand and collapse operations happen on the client.

runAtClient and expandOnServer can be used together to optimize the amount of tree
state rendered into the initial request and then to minimize the amount of state transferred
when the user is exploring the tree. It is very common for people to drill into one or two areas
of a tree after searching the top level nodes. To optimize for this type of browsing, render out
the top few levels of a tree and then create a layer of children that set expandOnServer to
true. The top few layers will be initially rendered and when a user goes deep into one, the
server provides the branch asynchronously when requested.

4.3. TreeElement Rendered Contents

This section describes the markup written out to represent a tree node in the rendered HTML
document. The basic Markup looks like this:

[Tree Markup] [Expand/Collapse Icon] [Anchor - [Icon][Label]] [Content]

Tree Tags

Page 7
Copyright © 2004 The Apache Software Foundation. All rights reserved.

• Tree Markup [

lineJoin.gif
- lineJoin.gif,

lastLineJoin.gif
- lastLineJoin.gif,

verticalLine.gif
-verticalLine.gif, spacer.gif] -- There are four images that represent the "structure" of the
tree. These are used to create the visual hiearchical representation of the tree.

• Expand/Collapse Icon [

nodeCollapsed.gif
- nodeCollapsed.gif,

lastNodeCollapsed.gif
- lastNodeCollapsed.gif

rootCollapsed.gif
- rootCollapsed.gif,

nodeExpanded.gif
- nodeExpanded.gif,

lastNodeExpanded.gif
- lastNodeExpanded.gif

rootExpanded.gif
- rootExpanded.gif] -- There are six images that represent the expand and collapse links
on an interior node. The root images are only available if the root of the tree implements
ITreeRootElement.

• Icon [

Tree Tags

Page 8
Copyright © 2004 The Apache Software Foundation. All rights reserved.

folder.gif
- folder.gif,] -- This Icon and the Label represent the node in the tree. Either act as a
selectable link that will call the selection action.

• Label -- The label is a text item representing the node. This is a property of the
TreeElement. This is a selectable link that will call the selection action.

• Content -- This is an optional text item that may appear after the label. It is not
selectable.

The tree supports setting a default location where the images are picked from within a
WebApp. All of the images are found by default in the
resources\beehive\version1\images directory. It is possible to change both the
default location for finding the images in addition to the images themselves by explicitly
setting the name of the image on the Tree.

4.4. Using a Custom TreeRenderer Implementation

The HTML markup for the tree is handled by the TreeRenderer class. By default,
TreeRenderer handles tree rendering across the web application, unless another rendering
class is specified.

You can override the rendering behavior of the default TreeRenderer class with a custom
renderer class. A custom TreeRenderer class is especially useful for precise control of
whitespace, line breaks, and image placement in the rendered tree.

To override the default TreeRenderer class:

1. extend the TreeRenderer class and override any of the formatting methods that are
appropriate to your purposes

2. configure NetUI to use your extended class to render the tree

An example custom TreeRenderer class appears below. This class overrides the method
renderConnectionImageSuffix() so that a new line is not added after the element for
the connetcting expand/collapse image and renderSelectionLinkPrefix() so that no white
space indentation is placed before the anchor used to select a node. Also, the methods
renderItemIconPrefix() and renderItemIconSuffix() are overridden to wrap a around
the element for the node icon. A might be used to incorporate CSS styles or a
call to a JavaScript routine.

package mytree.renderer;

import org.apache.beehive.netui.tags.rendering.AbstractRenderAppender;
import org.apache.beehive.netui.tags.tree.TreeElement;
import org.apache.beehive.netui.tags.tree.TreeRenderer;

Tree Tags

Page 9
Copyright © 2004 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/netui/tags/tree/TreeRenderer.html

public class MyTreeRenderer extends TreeRenderer
{

protected void renderConnectionImageSuffix(AbstractRenderAppender
writer,

TreeElement node)
{
}

protected void renderSelectionLinkPrefix(AbstractRenderAppender writer,
TreeElement node)

{
}

protected void renderItemIconPrefix(AbstractRenderAppender writer,
TreeElement node)

{
writer.append("<span ID=\"myItemIcon\" style=\"cursor:pointer;\"");
writer.append(" onClick=\"doSomething()\">");

}

protected void renderItemIconSuffix(AbstractRenderAppender writer,
TreeElement node)

{
writer.append("");

}

// more overridden methods...
}

To configure NetUI to use your custom TreeRenderer, edit the <tree-renderer-class> element
of the beehive-netui-config.xml file to refer to your custom class:
<tree-renderer-class>mytree.renderer.MyTreeRenderer</tree-renderer-class>

Tree Tags

Page 10
Copyright © 2004 The Apache Software Foundation. All rights reserved.

../../netui/config/beehive-netui-config.html#tree-renderer-class

	1 Introduction
	2 Simple Example
	2.1 Simple Example Code
	2.2 Simple Sample Lifecycle

	3 Tag and Classes
	3.1 Tag to Class Mapping
	3.2 ITreeRootElement

	4 Tree Features
	4.1 runAtClient
	4.2 expandOnServer
	4.3 TreeElement Rendered Contents
	4.4 Using a Custom TreeRenderer Implementation

