Tree Tags

Table of contents

I 1 11 0o 1T i o 1O 2
2 SIMPIE EXAMPIE.....coeeeee et ettt nre e 2
2.1 SIMPIE EXAMPIE COUE......cvee ettt ere e 2
2.2 SiMple SaMPIE LITECYCIE.....cueiieeceee et 4
R I o I 1o [S S 4
3.1 TaY tO ClaSS MADPING.....cviieirtirierierierieeiieee ettt e et b bbb se e e eneas 5
3.2 ITreEROOIEIEBMENL........ccieiece ettt enneenes 5
A TTEE FEALUIES........eeeeeee ettt et e e ae e e e an e e s se e e s ne e e sane e e saneeesaneeas 6
U 7N (O = o | S 6
4.2 EXPANAONSENVEc.eeiueeieeieetee e ete s e st et e s e e s teeeesseesseaeeaseestesssesseeseensasseensesneesseensens 7
4.3 TreeElement Rendered CONLENLS..........cceveeieiierieie e sieeiesee e ee e ee e sae e e 7

4.4 Using a Custom TreeRenderer Implementation.............ccovveerinereienenecesesesecenenes 9

Tree Tags

1. Introduction

The following topic explains the tree tags and classes and how they are used to create and
render trees. A treeisrendered in an HTML page based upon an object representation of the
tree. NetUI defines a set of classes which create the tree structure which is rendered. The
object representation may be created either through NetUI JSP tags found in a JSP or may be
created programmatically in a page flow or shared flow. This means that there are parallel
representations of atree. In aJSP, a set of JSP tags represent the tree. This representation is
then transformed into a tree data structure defined by a set of tree classes.

2. Simple Example

This section presents a sample of the most basic tree. The treeis created in a JSP and
displays a simple tree on the page. The treeitself has a root node with three children. The
root may be expanded and collapsed. Any of the tree nodes may be selected.

2.1. Simple Example Code
simpleTreejsp

<% page | anguage="j ava" content Type="text/htm ; charset =UTF- 8" %
<v@taglib uri="http://beehive. apache. org/ netui/tags-htm-1.0"
prefix="netui" %
<netui: htm >
<head>
<title>Si npl eTree</title>
<net ui : base/ >
</ head>
<net ui : body>
<net ui : t ree dat aSour ce="pageFl ow. si npl eTr ee"
sel ecti onActi on="post back" tagld="tree">
<netui :treeltem expanded="true">
<net ui : t reeLabel >0</ netui : treelLabel >
<netui:treeltenr
<net ui : t reeLabel >0. 0</ net ui : t reeLabel >
</netui:treeltenr
<netui:treeltenr0. 1</ netui:treeltenp
<netui:treeltenr0. 2</ netui:treeltenp
</netui:treeltenr
</netui:tree>
</ net ui : body>
</netui:htm >

The<net ui : t r ee> tag isthe JSP tag that adds atree to the page. It isresponsible for
rendering the tree in the generated HTML page. In this example, the contents of the tree itself
are also defined inthe <net ui : t r ee>tag by using the<net ui : t r eel t en» tags and

Page 2

Tree Tags

nesting them in atree structure. In this simple case, the tree has aroot (0) with three children
(0.0,0.1, and 0.2).

There are three required attributes on the <net ui : t r ee> tag, dat aSour ce, t agl d and
sel ecti onActi on. Thedat aSour ce isused to bindtoaTr eeEl enent based data
structure representing the tree to be displayed. Thesel ect i onAct i on isthe action that
will be called when anode is selected in the tree. In some cases, it may also be called when a
node in the tree is expanded or collapsed. In addition, thet agl d attribute is also required. If
runAt C i ent ist r ue then you must also specify the name of the tree by setting the
tagl d.

Note: In the example above, the leaf nodes are defined in two manners. Thefirst child (0.0)
usesthe<net ui : t r eeLabel > to set the nodes label. The next two children (0.1 and 0.2)
are defined with the label asthe body of the<net ui : treel t enk. The

<net ui : t r eel t en supports setting the label value from the body of the
<netui:treeltenwifitisaleaf inthetree. You arerequired to use the

<net ui : t r eeLabel > for al interior nodes or nodes with children. In other words,

<net ui : t r eel t en> does not support mixed content; meaning that interior nodes must
use<net ui : tr eeLabel > to set the label value and al text inside the body isignored.

Controller.jpf

package si npl eTr ee;

i mport org. apache. beehi ve. net ui . pagef | ow. PageFl owCont rol | er
i mport org. apache. beehi ve. net ui . pagef | ow. annot ati ons. Jpf;
i mport org. apache. beehi ve. netui .tags.tree. TreeEl enent ;

@pf.Controller(
si npl eAct i ons={
@pf . Si npl eActi on(hane="begi n*, pat h="si npl eTree.jsp"),
@pf . Si npl eAct i on(nane="post back”, path="sinpl eTree.jsp")

public class Controller
ext ends PageFl owControl | er
private TreeEl enent _sinpl eTree;
public TreeEl enent get Si npl eTree() {

return _sinpleTree

public void setSinpleTree(TreeEl ement _sinpleTree) {
this. sinpleTree = _sinpl eTree;

Page 3

Tree Tags

This very ssmple Page Flow controller supports displaying atree. Thereis asingle property
"simpleTree" which holds areferenceto aTr eeEl enent . ThisTr eeEl enent represents
the root of the underlying tree object structure which isrendered by the<net ui : t r ee>
tag. There are two actions defined, the standard begi n action and the post back action.
The post back action is called when a selection or expansion link is selected in the
rendered tree.

2.2. Simple Sample Lifecycle

This section describes the basic tree lifecycle using the SimpleTree example above. The
following figure represents the basic lifecycle of atree being rendered by a<net ui : tree>

tag.
Tree Tag Lifecycle

Thedat aSour ce attributeisarequired attribute on all trees. It binds to an instance of a
Tr eeEl enent (definedinor g. apache. beehi ve. net ui . t ags. tree). All trees
are represented as tree data structure with asingle root. The dat aSour ce attribute binds to
thisroot.

When the <net ui : t r ee> tag begins processing it checks to seeif the variable bound to by
thedat aSour ce isequa to null. If it is, then the tree will processit's body content to
create the tree data structure. If the dat aSour ce isnot null, then that tree's data structure is
used to render content. If you want to programmatically (or dynamically) create atree, you
may create the tree structure before the bound variable is accessed. Typically thiswould be
donein the onCr eat e method of a shared flow or page flow.

In the simpleTree sample, the first time the page is displayed the body of the treetag is
processed because the page flow's property si npl eTr ee isnull. This createstheinitial tree
data structure which is then rendered. When the page is requested again, for example when a
tree element is selected, the tree data structure created on the first request continues to be
used and the body of the<net ui : t r ee> tag isignored.

Note: A very common development task isto iteratively develop the<net ui : t r ee>'s
body content. In order for any changes to be reflected when the tree is rendered, the variable
bound to by dat aSour ce must be null. It is common to add an action to the page flow that
will reset the value to null and call that from alink on a page. If variableis not null, changes
to the JSP will not be reflected in the rendered tree.

3. Tag and Classes
This section describes the primary JSP tags and how they relate to the classes which define

Page 4

Tree Tags

the underlying data structure representing the tree. All of the tree features are available both
in the tree tags as well as the underlying tree classes (described below).

3.1. Tagto Class M apping

There are anumber of JSP tags that allow creation of tree through JSPs. These tags build the
underlying data structures representing the tree. This section describes the mapping between
the JSP tags and the actual classes that represent the tree.

Note: in many cases, this document describes setting attributes on the tree JSP tags to enable
features. In reality, the attributes are passed through to the Tr eeEl enment class which
usually has a corresponding property. Other tags map their values to properties of the

Tr eeEl enent . If you are programmatically creating atree by building the tree hierarchy
using Tr eeEl enent s, you directly set properties on the tree classes.

The following list describes the mapping of the tree JSP tags to underlying tree classes:

« Tree--The<net ui:tree>tagdoesntcreateaTr eeEl enent . It bindsto a
Tr eeEl enment representing the root of the tree data structure. The<net ui : tr ee>
tag does create the initial Tr eeRender St at e object representing how the treeis
rendered.

« Treeltem--The<netui:treeltenktagwill createaTr eeEl enent . If the
<net ui : treel t em> istheroot of atree, then the Tr eeRoot El enent will be
created.

« TreelLabel --The<net ui : treelLabel > tag setsthe value of the label whichis
stored as a property of aTr eeEl enent . Using thistag is required for non-leaf nodes.
For leaf nodes the body content of the <net ui : t r eel t en® will be used as the |abel
value as long as that body does not contain other JSP tags (mixed content).

« TreeContent -- The<net ui : t r eeCont ent > tag sets the value of the content for a
Tr eeEl enment . The content is a property of the Tr eeEl enent .

e TreeProperyOverride--The<netui:treePropertyOverri de>tagisused
to override various attributes on the tree such as the selection action and images. Thistag
will createan | nheri t abl eSt at e object and set it onthe Tr eeEl enent .

e TreeHtm Attribute--The<netui:treeH m Attri but e>tagisusedto set
additional attributes on the HTML generated when rendering the node. Thistag will
createaTreeHt m Attri but el nf o classthat isset onthe Tr eeEl enent .

3.2. ITreeRootElement

In the SimpleTree example above, we described the tree data structure as being a hierarchy of
Tr eeEl ement nodes. Many advanced features, including runAtClient, of the tree require
the root of the tree to implement the interface | Tr eeRoot El enent . The class

Page 5

Tree Tags

Tr eeRoot El enent extends Tr eeEl enent and implements| Tr eeRoot El enent ,
providing a default implementation. In the SimpleTree example, when the body of the
<net ui : t r ee>isprocessed, theroot <net ui : tr eel t en> iscreated asa

Tr eeRoot El enent and al other <net ui : tr eel t enP'sare created as

Tr eeEl enent s.

The following features require the root element in atree to implement
| Tr eeRoot El enent :

« runAtd i ent -- Allowsthe tree to be expanded and collapsed on the client without
round trips to the server.

» Root Images -- Allows setting different expand and collapse images on the root node of
the tree.

The following additional state is tracked by the root element:

« Selection -- Direct access to the currently selected tree element.

« Tree State -- Accessto the InheritableState and TreeRenderState defined on the tree
(explained below).

« Images-- Allows different expand and collapse images to be set on the root supporting
the Root Images feature.

4. Tree Features

This section describes the basic features of the NetUI Tree. The SimpleTree example
introduces the basic mechanics for creating atree in a page flow. A treeis output into the
HTML page asahierarchy of Tr eeEl enent s. The SimpleTree example renders the
following:

Tree Tag Display

The root of the tree supports expanding and collapsing. The children of a node appear at the
same level. Trees appear commonly in applications such asfile system explorers and are
good at representing limited hierarchical data sets.

4.1. runAtClient

The<net ui : t r ee> tag hasan attributer unAt C i ent whichwhensettot r ue will
enabled expanding and collapsing the tree on the client without server round trips. When
runAtClient is on, the tree will be completely rendered into the generated HTML. Client side
JavaScript will then collapse and expand nodes when the user interacts with the tree. The
following image describes the interactions between the server and client.

Flow of the tree when runAtClient is true

Page 6

Tree Tags

runAtClient uses Xml Ht t pRequest to update the underlying state on the server as the user
interacts with the tree on the client. This mode requires JavaScript and XmlHttpRequest
support in the client browser. This mode of operation is commonly referred to as AJAX
(Asynchronous JavaScript and XML). It minimizes the amount of information sent between
the client and server when the user is exploring the tree itself.

In the diagram above, when the tree isrendered, all of the nodes will be rendered into the
HTML document generated. JavaScript on the client will then process the tree when the
HTML document is loaded. The JavaScript will turn off display of tree nodes which are
collapsed so that the tree appears in the expected state. As the user interacts with the tree by
expanding and/or collapsing nodes, JavaScript will continue to turn on and off the display of
tree nodes (and their children). In order to update the state of the tree stored on the server, the
client al'so use XmlHttpRequest to send messages to the server indicating the nodes that are
being expanded and collapsed. The next full server request will display the tree properly
because the internal state has been updated as the user interacted with the tree.

4.2. expandOnSer ver

When atree hasther unAt Cl i ent attribute set, then individual elements can indicate that
they need to be expanded on the server by setting the expandOnSer ver attribute on the
<net ui : treel t enr tag. When expandOnSer ver isenabled, if thenodeisina
collapsed state, the node itself will be rendered in the generated HTML, but all children
nodes will not. When the user expands the node, an XmlHttpRequest is made to the server
and the children (and possibly their children) will be rendered into HTML and sent back to
the client. JavaScript will update the DOM and cause the children to be displayed. Once the
children are received, all further expand and collapse operations happen on the client.

runAtClient and expandOnSer ver can be used together to optimize the amount of tree
state rendered into the initial request and then to minimize the amount of state transferred
when the user is exploring the tree. It is very common for people to drill into one or two areas
of atree after searching the top level nodes. To optimize for this type of browsing, render out
the top few levels of atree and then create alayer of children that set expandOnSer ver to
true. The top few layerswill beinitially rendered and when a user goes deep into one, the
server provides the branch asynchronously when requested.

4.3. TreeElement Rendered Contents

This section describes the markup written out to represent atree node in the rendered HTML
document. The basic Markup looks like this:

[Tree Markup] [Expand/Collapse I con] [Anchor - [Icon][L abel]] [Content]

Page 7

Tree Tags

TreeMarkup [

lineJoin.gif
- lineJoin.gif,

lastLineJoin.gif
- lastLineJoin.gif,

verticalLine.gif
-verticalLine.gif, spacer.gif] -- There are four images that represent the "structure” of the
tree. These are used to create the visual hiearchical representation of the tree.
Expand/Collapselcon [

O

nodeCollapsed.gif
- nodeCollapsed.gif,

=

lastNodeCollapsed.qgif
- lastNodeCollapsed.gif

o

rootCollapsed.qgif
- rootCollapsed.gif,

7
nodeExpanded.gif
- nodeExpanded.gif,
7
lastNodeExpanded.qgif
- lastNodeExpanded.gif
-
rootExpanded.gif

- rootExpanded.qgif] -- There are six images that represent the expand and collapse links
on an interior node. The root images are only available if the root of the tree implements
| Tr eeRoot El enment .

lcon [

Page 8

Tree Tags

folder.gif
- folder.gif,] -- Thislcon and the Label represent the node in the tree. Either act asa
selectable link that will call the selection action.
« Labed -- Thelabel isatext item representing the node. Thisis a property of the
Tr eeEl enent . Thisisaselectable link that will call the selection action.
« Content -- Thisisan optional text item that may appear after the label. It is not
selectable.

The tree supports setting a default location where the images are picked from within a
WebApp. All of the images are found by default in the

resour ces\ beehi ve\ ver si onl\ i mages directory. It is possible to change both the
default location for finding the images in addition to the images themselves by explicitly
setting the name of the image on the Tree.

4.4. Using a Custom TreeRenderer | mplementation

The HTML markup for the tree is handled by the TreeRenderer class. By defaullt,
TreeRenderer handles tree rendering across the web application, unless another rendering
classis specified.

Y ou can override the rendering behavior of the default TreeRenderer class with a custom
renderer class. A custom TreeRenderer classis especially useful for precise control of
whitespace, line breaks, and image placement in the rendered tree.

To override the default TreeRenderer class;

1. extend the TreeRenderer class and override any of the formatting methods that are
appropriate to your purposes

2. configure NetUI to use your extended class to render the tree

An example custom TreeRenderer class appears below. This class overrides the method

renderConnectionl mageSuffix() so that anew lineis not added after the element for

the connetcting expand/collapse image and renderSelectionLinkPrefix() so that no white

space indentation is placed before the anchor used to select a node. Also, the methods

renderlteml conPrefix() and renderlteml conSuffix() are overridden to wrap a around

the element for the node icon. A might be used to incorporate CSS styles or a

call to a JavaScript routine.

package nytree.renderer

i mport org. apache. beehi ve. netui . tags. renderi ng. Abst r act Render Appender
i mport org.apache. beehi ve. netui .tags.tree. TreeEl enent ;
i mport org. apache. beehi ve. netui .tags.tree. TreeRenderer

Page 9

apidocs/javadoc/org/apache/beehive/netui/tags/tree/TreeRenderer.html

Tree Tags

public class M/TreeRenderer extends TreeRenderer

prot ected voi d render Connecti onl mageSuf fi x(Abst ract Render Appender
witer,

{
}

protected void render Sel ecti onLi nkPrefi x(Abstract Render Appender witer,
Tr eeEl ement node)
{

}

protected void renderlten conPrefix(Abstract Render Appender witer,
Tr eeEl enment node)

Tr eeEl ement node)

witer.append("<span ID=\"nyltenm con\" style=\"cursor:pointer;\"");
writer.append(" ondick=\"doSonet hi ng()\">"

}

protected void renderlten conSuf fix(Abstract Render Appender witer,
Tr eeEl ement node)

writer.append("");

}

// nore overridden nethods. .

To configure NetUI to use your custom TreeRenderer, edit the <tree-renderer-class> element
of the beehive-netui-config.xml file to refer to your custom class:

<tree-renderer-class>nytree.renderer. M/Tr eeRenderer</tree-renderer-cl ass>

Page 10

../../netui/config/beehive-netui-config.html#tree-renderer-class

	1 Introduction
	2 Simple Example
	2.1 Simple Example Code
	2.2 Simple Sample Lifecycle

	3 Tag and Classes
	3.1 Tag to Class Mapping
	3.2 ITreeRootElement

	4 Tree Features
	4.1 runAtClient
	4.2 expandOnServer
	4.3 TreeElement Rendered Contents
	4.4 Using a Custom TreeRenderer Implementation

