
Data binding to NetUI Implicit Objects

Table of contents

1 Introduction..2

2 JSP Implicit Objects...3

3 NetUI Implicit Objects...3

3.1 NetUI Implicit Object Details... 5

3.2 actionForm...5

3.3 bundle.. 6

3.4 container.. 7

3.5 pageFlow... 8

3.6 pageInput... 9

3.7 sharedFlow.. 10

4 Expression Language Details...11

Copyright © 2004 The Apache Software Foundation. All rights reserved.

1. Introduction

In NetUI, data binding allows JSP tags or other UI technologies to read and write data
available in the web-tier environment. This document discusses both the implicit objects that
are available via NetUI to the JSP author and the expression languages that are used to bind
UI objects to those implicit objects.

NetUI tags support binding to both read-only and read-write data. Read-only data is usually
bound to tag attributes that simply display information on a page. Read-write data is bound
with the intention of being updated from a web browser. Often, read-write data is displayed
within an HTML form tag and bound to HTML text boxes, radio buttons, select boxes, and
other HTML widget types. Each of these types of binding use the syntax of the JSP 2.0
Expression Language (EL) to express a binding from JSP tag to JavaBean property, Map
member, List item, array element, and so on. The JSP 2.0 Expression Language is used to
bind read-only data to tag attributes. This language is documented in detail here. For
example, this example binds a NetUI span tag to a value from a JSP's PageContext attribute
map:
<netui:span value="${pageScope.fooAttribute}"/>

Here, the JSP container evaluates the expression and invokes the span tag's setValue
attribute method to pass the result to the tag. The JSP 2.0 EL is also able to perform simple
arithmetic and boolean operations in expressions.

When using the NetUI JSP tags, read-write data is bound to NetUI JSP tags differently.
NetUI tags use a derivation of the JSP 2.0 EL to refer to implicit objects in a JSP, but unlike
the JSP 2.0 EL, the syntax is slightly different. For example, when binding a NetUI
textBox tag to data that is meant to be read and then updated during an HTML form
POST, the textBox tag might look like:
<netui:textBox dataSource="actionForm.userName"/>

This expression syntax is used on NetUI JSP tag attributes named dataSource. The
expression syntax is necessary to allow the NetUI tags to know both the value of the
expression and the expression text. The expression text is needed in order to write the tag's
name in the HTML rendered to a web browser. For example, with a userName of "foo", the
JSP tag above will render:
<input type="text" name="{actionForm.userName}" value="foo"/>

The expression text is used by the <netui:textBox> tag to render the value of the
HTML input's name attribute, and when the containing HTML form POSTs, this name is
used to detect the presence of a NetUI expression that can then be used to update a property
on a JavaBean or other data structure.

Best Practice

Data binding to NetUI Implicit Objects

Page 2
Copyright © 2004 The Apache Software Foundation. All rights reserved.

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSPIntro7.html

In order to prevent POSTing data into JSP implicit objects such as requestScope or sessionScope, only a few NetUI
implicit objects should be used in read/write expressions. These include pageFlow, sharedFlow, and actionForm.

2. JSP Implicit Objects

A JSP 2.0+ container exposes a set of implicit objects for use by JSP authors. These implicit
objects are documented here. These can be used on any of the NetUI JSP tag attributes that
accept runtime expressions. For example, in a webapp called foo the following JSP snippet
uses the pageContext implicit object as a JavaBean to build a fully-qualified image path:
<netui:image value="${pageContext.request.contextPath}/images/banner.png"/>

This renders the following HTML markup:

The JSP container also makes implicit objects available that provide access to the attribute
maps for the page context, request, session, and servlet context. By adding attributes to the
page context, request, and session, webapp developers can add their own implicit objects. In
the following example, a JavaBean of type Widget is added to the request in a page flow
action:
getRequest().setAttribute("widget", fooWidget);

Then, this JSP snippet uses the expression language to data bind to the Widget's density
property:
The density is: ${widget.density}

This is effectively the same as writing code that does:
The density is: <%= ((Widget)request.getAttribute("widget")).getDensity()
%>

3. NetUI Implicit Objects

In addition to the implicit objects that the JSP container provides, the NetUI runtime provides
an additional set of objects that are available when using certain NetUI features. Not all of
the implicit objects are always available -- for example, the actionForm implicit object is
only available when used inside of a <netui:form tag for accessing the form's associated
form bean.

A summary of the NetUI implicit objects is shown in the table below; details are available
further down this document.

Implicit Object Context Description

actionForm Within the <netui:form> tag Provides access to the
properties of a JavaBean used
as the form bean for an HTML

Data binding to NetUI Implicit Objects

Page 3
Copyright © 2004 The Apache Software Foundation. All rights reserved.

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSPIntro7.html

form.

bundle Inside of a JSP where the
<netui-data:declareBundle>
tag is used to refer to a
resource bundle or where a
JSP is part of a page flow that
has resource bundles declared
with the
@Jpf.MessageBundle
annotation.

Provides access to message
strings contained in a Java
properties file. Strings are
referred to by name in the
expression.

container The container implicit object
is available inside of several
NetUI JSP tags that "repeat"
over data sets including the
<netui-data:dataGrid,
<netui-data:repeater,
<netui-data:cellRepeater,
<netui:select,
<netui:checkBoxGroup,
and
<netui:radioButtonGroup,

Provides access to the
JavaBean properties exposed
by the
IDataAccessProvider
interface. Implementations of
this interface are made
available to the PageContext
during rendering so that tag
bodies can access information
about the current data item, the
item's index, and so on.

pageFlow Available to any JSP that is
part of a page flow.

The pageFlow implicit object
provides access to the current
page flow controller instance as
a JavaBean. This allows a
page flow controller to expose
properties to JSPs.

pageInput Available to any JSP that was
reached by a page flow
Forward object that had page
inputs attached to the Forward.

Page flows allow action outputs
to be attached to Forward
objects as a way to provide a
data contract between a page
flow action and a page. This
ensures that all actions that
forward to JSPs provide the
JSP with the appropriate data
and that all JSPs receive the
correct data. This data contract
is validated at both the action
and at the JSP when using the
<netui-data:declarePageInput>.
tag.

sharedFlow Available to any JSP that is
part of a page flow which

The sharedFlow implicit
object provides access to any

Data binding to NetUI Implicit Objects

Page 4
Copyright © 2004 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/netui/tags/databinding/bundle/DeclareBundle.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.MessageBundle.html
apidocs/javadoc/org/apache/beehive/netui/tags/databinding/datagrid/DataGrid.html
apidocs/javadoc/org/apache/beehive/netui/tags/databinding/repeater/Repeater.html
apidocs/javadoc/org/apache/beehive/netui/tags/databinding/cellrepeater/CellRepeater.html
apidocs/javadoc/org/apache/beehive/netui/tags/html/Select.html
apidocs/javadoc/org/apache/beehive/netui/tags/html/CheckBoxGroup.html
apidocs/javadoc/org/apache/beehive/netui/tags/html/RadioButtonGroup.html
apidocs/javadoc/org/apache/beehive/netui/script/common/IDataAccessProvider.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/Forward.html
apidocs/javadoc/org/apache/beehive/netui/tags/databinding/pageinput/DeclarePageInput.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/PageFlowController.html

references shared flows. JavaBean properties on Shared
Flows associated with the
current page flow. This allows
Shared Flows to expose
properties to JSPs.

3.1. NetUI Implicit Object Details

3.2. actionForm

The actionForm implicit object is a convenient way to explicitly reference a JavaBean
used for authoring HTML forms. This implicit object is available only inside of
<netui:form> tags with action attributes that reference page flow actions accepting a
JavaBean. The actionForm implicit object allows data binding to JavaBean properties,
Map attributes, Lists, and arrays as with any other implicit object. This example shows a JSP
that contains a form which POSTs to a page flow action that accepts a JavaBean NameForm.

The JavaBean:
public class NameForm {

private String _name;
public String getName() {

return _name;
}

public void setName(String name) {
_name = name;
}

}

The JSP:
<netui:form action="submitNameform">

<netui:textBox dataSource="actionForm.name"/>

<netui:button value="Submit"/>

</netui:form>

The page flow action submitNameForm:
@Jpf.Action()
public Forward submitNameForm(NameForm form) {

...
}

Here, the dataSource's actionForm.name expression refers to the value of the
NameForm's name property. The result is data bound to the textBox tag. When the form
is submitted to the server, the request parameter {actionForm.name} is applied to the
action form which is then passed to the submitNameForm action.

Data binding to NetUI Implicit Objects

Page 5
Copyright © 2004 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/netui/pageflow/SharedFlowController.html

3.3. bundle

The bundle implicit object is useful for binding UI to localized message strings. The
bundle implicit object is available in one of two situations:

• when declaring a resource bundle accessible to a JSP via the
<netui-data:declareBundle> tag.

• when a page flow with which the JSP is associated exposes resource bundles via the
@Jpf.MessageBundle annotation.

The declareBundle JSP tag is used to make a specific resource bundle available to a
JSP. For example, given the following resource bundle and JSP, a page can data bind to
messages in the resource bundle using the JSP 2.0 EL.

The resource bundle, which is located in
WEB-INF/classes/org/foo/messages.properties:
message1=This is the first message
message2=Another message

The JSP can declare this resource bundle to be available to the page using this JSP snippet:
<%@ taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0"
prefix="netui-data"%>

<netui-data:declareBundle name="fooMessages"
bundlePath="org/foo/messages"/>

Finally, messages in the JSP can be data bound with JSP literal text and tags:
<netui:span value="${bundle.fooMessages.message1}"/>

${bundle.fooMessages.message2}

The expressions above contain a reference to the bundle implicit object. Then, the specific
bundle name is referred to with fooMessages; this name must match the value of a name
attribute of a declareBundle tag or the name of a bundle declared in a page flow
controller. Finally, the expressions use message1 and message2 to refer to message keys
in the messages.properties file.

Resource bundles can also be registered with the bundle implicit object by using the
@Jpf.MessageBundle class-level annotation. This allows a page flow to also integrate
with the implicit message resources object which is available via a Struts module. These
resource bundles will be available to all JSPs that are part of a page flow without having to
use the declareBundle JSP tag. Because a default resource bundle can be associated with
a Struts module, the bundle name default is reserved for referencing this bundle. For
example, the following page flow controller declares the resource bundle above as the default
page flow bundle:

Data binding to NetUI Implicit Objects

Page 6
Copyright © 2004 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/netui/tags/databinding/bundle/DeclareBundle.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.MessageBundle.html
apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.MessageBundle.html

@Jpf.Controller(
forwards = {...}
messageBundles = {

@Jpf.MessageBundle(bundlePath="org.foo.messages")
}

)
public class Controller

extends PageFlowController {
...

}

Message strings from this bundle can be referred to in JSPs with an expression like:
${bundle.default.message1}

A resource bundle can also be registered with a specific name by adding an annotation like:
@Jpf.Controller(

forwards = {...}
messageBundles = {

@Jpf.MessageBundle(bundleName="jpfBundle",
bundlePath="org.foo.messages")

}
)
public class Controller

extends PageFlowController {
...

}

Then, the same message strings from the previous two examples are available with an
expression like
${bundle.jpfBundle.message1}

Each of these three ways to register a resource bundle (JSP tag, implicit page flow bundle,
and explicit page flow bundle) can be used together in a single page flow.

3.4. container

The container implicit object is available to a JSP when inside of several NetUI tags that
repeat over a Map, List, array, or various other kinds of data sets. Generally, JSP tags that
can be bound to data sets iterate through them from start to end as in a Java for loop. Such
JSP tags include:

• <netui-data:dataGrid>
• <netui-data:repeater>
• <netui-data:cellRepeater>
• <netui:select>
• <netui:checkBoxGroup>
• <netui:radioButtonGroup>.

The container implicit object provides access to the current item in the data set and to

Data binding to NetUI Implicit Objects

Page 7
Copyright © 2004 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/netui/tags/databinding/datagrid/DataGrid.html
apidocs/javadoc/org/apache/beehive/netui/tags/databinding/repeater/Repeater.html
apidocs/javadoc/org/apache/beehive/netui/tags/databinding/cellrepeater/CellRepeater.html
apidocs/javadoc/org/apache/beehive/netui/tags/html/Select.html
apidocs/javadoc/org/apache/beehive/netui/tags/html/CheckBoxGroup.html
apidocs/javadoc/org/apache/beehive/netui/tags/html/RadioButtonGroup.html

metadata about the current iteration. This access is based on the properties available on the
IDataAccessProvider interface and includes:

Property Name Description

item Refers to the current data item. In an array of
Widget beans, the JavaBean propeties of
widget can be accessed with an expression like
${container.item.density}

index Refers to the current index of iteration. Tags are
free to define their own rules for the the value of
the index property, but in general, this is a
zero-based index that increments each time the
JSP tag renders its body / iterates to the next
data item.

container Refers to an outer repeating container. This
value is used when two repeating containers are
nested and the inner container needs to access
the current item in the outer container. For
example, this might be used when rendering
hierarchical data sets.

The following example uses the NetUI <netui-data:repeater> to iterate over an
array of Widget beans displaying each Bean's name and density properties and their index
in the array.
<%@ taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0"
prefix="netui-data"%>

<table>
<tr><th>Index</th><th>Name</th><th>Density</th></tr>
<netui-data:repeater dataSource="requestScope.widgetBeanArray">
<tr><td>${container.index}</td><td>${container.item.name}</td><td>${container.item.density}</td></tr>
</netui-data:repeater>
</table>

Notice in this example how the repeater tag has a dataSource attribute that references
the data set to iterate through. The dataSource attribute requires the use of the NetUI
Expression Language because the repeater can be used to render editing UI for data sets.
For example, in the case of rendering a shopping cart, the repeater can be used to render each
item in the cart with a <netui:textBox> for editing the quantity of each item. An
example of this can be found in the Beehive sample webapp called netui-samples under
the ui/repeaterediting/ directory.

3.5. pageFlow

Data binding to NetUI Implicit Objects

Page 8
Copyright © 2004 The Apache Software Foundation. All rights reserved.

The pageFlow implicit object is used to refer to the current page flow controller as a
JavaBean. If there is no page flow present, the pageFlow implicit object will not be
available for data binding. For example, if a page flow controller exposes a username
property as:
@Jpf.Controller(

forwards={@Jpf.Forward(name="index", path="index.jsp")}
)
public class Controller {

private String _username = null;

public String getUsername() {
return _username;

}

@Jpf.Action()
public Forward begin() {

_username = "Foo Bar";
return new Forward("index");

}
}

The username property can be data bound in index.jsp as:
${pageFlow.username}

Best Practice
Because mutable JavaBean properties can be updated via an HTML form POST, JavaBean properties exposed by a page flow
should usually be read-only unless the page flow itself is being used as a form bean.

3.6. pageInput

The pageInput implicit object is used to refer to a Map of objects that are passed via a
Forward from a page flow action to a JSP. Use of Page Inputs consists of two parts -- the
first are called action outputs and the second are called page inputs. Action outputs are
passed from page flow actions to pages via the action's Forward object. page flow actions
use Java annotations to declare a validatable data contract that ensures that an action passes
the correct data via a Forward. At the page, this data is called a page input and can again be
checked to ensure that the page receives the data necessary to render successfully.

This example shows a page flow action that passes an action output of type Widget to a JSP
which data binds to the density property on the Widget.

The page flow controller:
@Jpf.Controller()
public class Controller

extends PageFlowController {

Data binding to NetUI Implicit Objects

Page 9
Copyright © 2004 The Apache Software Foundation. All rights reserved.

@Jpf.Action(
forwards={@Jpf.Forward(name="success",

path="index.jsp",
actionOutputs={@Jpf.ActionOutput(name="theWidget", type=Widget.class,
required=true)}

)
}

)
protected Forward begin() {

Widget widget = new Widget();
widget.setDensity(3.14);
Forward f = new Forward("success");
f.addActionOutput("theWidget", widget);
return f;

}
}

Notice here that the action has added an action output to the Forward via the
addActionOutput method call. The NetUI runtime will then validate the data contract
declared in the annotations against the returned forward object. If validation fails, a runtime
error will be displayed in the browser.

The JSP:
<%@ taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0"
prefix="netui-data"%>

<netui-data:declarePageInput name="theWidget" type="org.foo.Widget"/>

${pageInput.theWidget.density}

Notice here that the page has used a declarePageInput tag to ensure that the Widget
entering the page is both present in the set of page inputs and is non-null. Given this
information, the JSP then refers to properties on the Widget via the expression language.

Action outputs and page inputs can be used with or without validation; to disable action
output validation, simply remove any action output annotations from a page flow action. To
disable page input validation in a JSP, remove any declarePageInput tags from the
JSP. The APIs to add action outputs to Forward objects and to refer to them via the
pageInput implicit object will continue to work without any data contract validation.

3.7. sharedFlow

The sharedFlow implicit object is used to refer to properties of shared flow objects that
are associated with the current page flow. If there is no page flow present, the sharedFlow
implicit object will not be available for data binding. In order for a shared flow to be
available for data binding, it must be registered with a page flow by type; additionally, it is
registered with a name that will uniquely identify it in the set of shared flows associated with
a page flow. More information on shared flows can be found here.

Data binding to NetUI Implicit Objects

Page 10
Copyright © 2004 The Apache Software Foundation. All rights reserved.

../netui/sharedFlow.html

The following example shows a shared flow, a page flow that uses the Shared Flow, and a
JSP that uses the JSP 2.0 EL to data bind to a JavaBean propety of the shared flow.

The Shared Flow:
package org.foo;

import org.apache.beehive.netui.pageflow.SharedFlowController;

@Jpf.Controller()
public class SharedFlow

extends SharedFlowController {

private String _sharedMessage = null;

public String getSharedMessage() {
return _sharedMessage;

}
}

The page flow controller:
@Jpf.Controller(

sharedFlowRefs={@Jpf.SharedFlowRef(name="aSharedFlow",
type=org.foo.SharedFlow.class)}
)
public class Controller

extends PageFlowController {

...
}

Above, the page flow controller adds an explicit reference to the shared flow controller
org.foo.SharedFlow defined above.

The JSP:
${sharedFlow.aSharedFlow.sharedMessage}

In a JSP whose current page flow controller is the Controller class defined above, the
JSP has access to all of the shared flows associated to the page flow via its
@Jpf.SharedFlowRef annotation. The shared flow can then be referenced by the name
attribute of the SharedFlowRef annotation. In this case, the name aSharedFlow is used
in the JSP 2.0 expression to refer to the sharedFlow's sharedMessage property.

4. Expression Language Details

Due to limitations in the JSP 2.0 Expression Language specification, expressions can not be
used to reference read-write data because the JSP tag itself can never obtain both the
expression text and the value of the expression. In NetUI, both the value and expression text

Data binding to NetUI Implicit Objects

Page 11
Copyright © 2004 The Apache Software Foundation. All rights reserved.

apidocs/javadoc/org/apache/beehive/netui/pageflow/annotations/Jpf.SharedFlowRef.html

are required to bind to editable data because the expression text is written into the JSP as the
HTML name attribute of HTML form input fields.

Data binding to NetUI Implicit Objects

Page 12
Copyright © 2004 The Apache Software Foundation. All rights reserved.

	1 Introduction
	2 JSP Implicit Objects
	3 NetUI Implicit Objects
	3.1 NetUI Implicit Object Details
	3.2 actionForm
	3.3 bundle
	3.4 container
	3.5 pageFlow
	3.6 pageInput
	3.7 sharedFlow

	4 Expression Language Details

