Dave's Math Tables: Integral coth(x) |
(Math | Calculus | Integrals | Table Of | coth x) |
|
|
cosh x
sinh x |
= |
(ex - e-x) / 2 |
coth x dx = |
ex - e-x |
dx |
substitute du= (ex + e-x) dx, u = ex
- e-x
= |
u |
= ln |u| + C
substitute back u = ex - e-x
= ln |ex - e-x| + C
since (ex - e-x)/2 = sinh(x)
= ln |2 sinh x| + C
= ln 2 + ln |sinh x| + C
ln 2 is merely a constant that can be combined with C
= ln |sinh x| + C
Q.E.D.